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Brownian dynamics simulations of hard rods in external fields and with contact interactions
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We propose a simulation method for Brownian dynamics of hard rods in one dimension for arbitrary
continuous external force fields. It is an event-driven procedure based on the fragmentation and mergers of
clusters formed by particles in contact. It allows one to treat particle interactions in addition to the hard-sphere
exclusion as long as the corresponding interaction forces are continuous functions of the particle coordinates.
We furthermore develop a treatment of sticky hard spheres as described by Baxter’s contact interaction potential.
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I. INTRODUCTION

Motion of μm-sized particles in soft matter and biological
systems can in general be well described by an overdamped
Brownian motion. In these dynamics, the excluded volume
part of the particle-particle interactions is often taken into
account by considering the particles as hard spheres. The
hard-sphere interaction represents a core part of any interac-
tion if particles cannot penetrate each other and has a decisive
impact on collective phenomena. Even if a softcore potential
is more accurately accounting for the repulsive interactions
when particles approach each other, the hard-sphere model is
often used as an effective description. However, in Brown-
ian dynamics simulations the hard-sphere interaction requires
special care due to its singular nature.

The problem of simulating hard spheres has been around
as long as modern computational physics [1,2]. In these
early studies, equilibrium properties were simulated based on
Monte Carlo methods. The first dynamic algorithm was simi-
lar to standard Monte Carlo simulations and based on rejecting
movements when particle positions violate the hardcore con-
straint [3]. A modification to this approach was made by
placing particles in contact instead of rejecting the movements
[4]. However, these first proposed methods are not suitable for
high particle densities. Recent developments have shown that
Monte Carlo schemes can give quantitative agreement with
Brownian dynamics simulations even at high densities [5–7].

An alternative means of simulating hardcore particle
interaction are event-driven algorithms, where particle over-
lappings are avoided, similarly as it is often done in molecular
dynamics simulations [8]. Most of these approaches are based
on the idea that when an attempted displacement of the par-
ticles in the numerical procedure leads to an overlap of two
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particles, the corresponding encounter of the two particles
is treated like a binary elastic collision. For treating a case
where more than two particles overlap, a sequence of binary
collisions can be carried out. For zero external forces, a cor-
responding procedure was developed in Refs. [9,10], and for
nonzero external forces a refined method was proposed in
Ref. [11]. One may also consider binary collisions, which are
not perfectly elastic [12–14].

In real systems, it is often found that more than two parti-
cles come into contact [15–17]. Then, particles can be grouped
into clusters. The presence of clusters can be justified by
kinetic theory, thereby establishing the limits of applicability
of the binary collision theory (inelastic or elastic) [18]. Ag-
gregation of such clusters in Brownian dynamics simulation
was described in Ref. [19].

Here we present a method for simulating overdamped
Brownian dynamics of hard rods in one dimension based on
particle clusters. It relies on an exact method to solve the
Langevin equation for this many-body system in arbitrary
continuous external force fields. Particle configurations are
evolved such that particle clusters are moved coherently. The
clusters are formed by particles that are in contact. They
can fragment into smaller or merge into larger clusters, and
the fragmentation and merging processes are determined by
conditions on the mean external forces acting on the clusters.

In several applications, in addition to excluded volume
interactions, attractive interaction forces need to be taken into
account. To this end, a simple generalization of the hard-
sphere model was introduced by Baxter [20]. In this model
of sticky hard spheres, adhesive interactions are present when
particles are in contact. Equilibrium properties of this model
can be studied analytically in one dimension [21]. Beyond
one dimension, structural properties were studied extensively
by Monte Carlo simulations in the past [22–31]. Approaches
based on rates for contact breaking and formation between
spheres were developed to describe nonequilibrium kinetics
of such systems [32].

For including the contact interaction into Brownian dy-
namics simulations, we present a way of representing the δ
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singularity in the sticky hard-sphere interaction potential. This
allows one to tackle the contact interaction in our cluster-
based algorithm. One can use this method also in other
simulation procedures for the Brownian dynamics of hard
spheres.

II. LANGEVIN EQUATIONS FOR BROWNIAN MOTION OF
HARD RODS

The one-dimensional overdamped Brownian motion of N
hard rods of length σ with center positions at xi, i = 1, . . . , N ,
in an external force field f (x) is described by the Langevin
equations

dxi

dt
= μ f (xi ) +

√
2D ξi(t ), (1)

where μ is the particle mobility, D is the diffusion coefficient,
and ξi(t ) are Gaussian white noise processes with zero mean
and correlation functions 〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′).

If the particles would exert continuously varying interac-
tions forces on each other, one could add these forces to the
right-hand side of Eqs. (1) and simulate the particles’ motion
by standard methods [33,34], e.g., by the Euler algorithm in
the simplest approach. For hard rods, however, the interaction
cannot be described by a continuously varying force. It enters
the dynamics as a condition imposed on probability currents in
the many-particle Fokker-Planck equation (see Supplemental
Material of Ref. [35]). The accurate and efficient treatment of
this interaction in the Langevin equations (1) needs special
care.

In the following we present a method to solve Eqs. (1),
which we refer to as Brownian cluster dynamics (BCD) sim-
ulations. We will also consider Baxter’s sticky hard-sphere
interaction [20], which corresponds to an additional attraction
between two hard rods when they get in contact.

III. BCD SIMULATIONS FOR HARD RODS IN EXTERNAL
FORCE FIELD

Our algorithm gives an approximate solution of the
Langevin equations (1) by evolving the system in fixed time
steps �t . It is based on conditions for cluster movements.
Such movements are highly relevant, for example, to under-
stand unexpected particle currents in driven Brownian motion
through highly populated periodic potentials [36]. A cluster
of size n is a local arrangement of n rods that are mutually in
contact, but not in contact with other rods. We call such an
arrangement an n-cluster. Single rods in this description are
1-clusters.

In dense systems, there will be clusters of all sizes that can
fragment into smaller ones and/or collide with neighboring
clusters during their motion. The challenge is to identify these
fragmentation and collision events accurately.

We do this by first identifying at a starting time t how the
clusters move. This “cluster analysis” takes into account the
fragmentation events. It amounts to assigning a velocity to
each particle at time t , where particles moving together as
a cluster have the same velocity. An attempt is then made to
propagate the particle positions with these velocities in a small
time step �t . If there is no collision of clusters in the interval

[t, t + �t[, the particles are displaced correspondingly, and
the cluster analysis is carried out for the particle configuration
at time t + �t .

In the case when there is a collision of clusters during
the interval [t, t + �t[, the first collision event at time tc is
determined. For the clusters involved in that collision, the
cluster analysis is carried out, yielding updated velocities for
the particles being part of the colliding clusters. Then again it
is attempted to propagate the particle positions with the fixed
velocities for all particles until time t + �t . If there is a further
collision, this is taken into account in the same manner as the
first collision.

The process is repeated until the time t + �t is reached.
Then all particle velocities are updated by a cluster analysis.

A. Cluster analysis

We consider n hard rods of length σ forming an n-cluster at
time t . The particle positions in the n-cluster are ordered from
left to right,

x2 = x1 + σ, . . . , xn = x1 + (n − 1)σ, (2)

where x1 is the position of the leftmost particle. In the cluster,
the particles can exert forces on each other that must obey the
following conditions:

(1) The interaction force F int
i,i+1 of particle i on particle

(i + 1) must be non-negative, F int
i,i+1 � 0.

(2) The force F int
i+1,i exerted by particle (i + 1) on particle i

is F int
i+1,i = −F int

i,i+1.
We furthermore define by

F ext
i = f (xi ) +

√
2D

μ
ξi (3)

the total external force, including the stochastic force medi-
ated by the surrounding fluid.

The particles in the n-cluster can move in different ways.
For example, in case of a 3-cluster, all particles can move as
single particles (1-clusters). Or only the left particle moves
as a single particle (1-cluster), while the middle and right
particle move together as a 2-cluster. Or the left and middle
particle move as a 2-cluster, and the right one as a 1-cluster.
Or all three particles keep in touch and the 3-cluster moves
as a whole. We can distinguish between these possibilities by
considering the four compositions {1, 1, 1}, {1, 2}, {2, 1}, and
{3} of the 3-cluster into the respective subclusters.

For an n-cluster, there exist 2n−1 possible composi-
tions (fragmentations) {m1, . . . , ms} into subclusters of sizes
m1, . . . , ms, with 1 � mj � n,

∑s
j=1 mj = n. A possible frag-

mentation of a 10-cluster into four subclusters is illustrated in
Fig. 1 together with the conditions for this fragmentation to
occur. The conditions for a general composition (fragmenta-
tion) {m1, . . . , ms} to occur, are explained next.

Let us first consider the condition for the jth subcluster of
size mj to become separated from the ( j + 1)th subcluster of
size mj+1. All particles in a moving subcluster must have the
same velocity, and this velocity must be the same as that of
the center (of mass) of the subcluster. The velocity of the jth
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FIG. 1. Illustration of a possible fragmentation of a 10-cluster
into a 2-, 5-, 1-, and 2-cluster. The conditions for the external forces
giving rise to such fragmentation are given in Eqs. (5) and (6).

subcluster is equal to μF̄ ext
j , where

F̄ ext
j = 1

mj

mj∑
k=1

F ext
j,k (4)

is the mean external force exerted on the particles in this
subcluster. Here, F ext

j,k is the external force on particle k in the
subcluster j, i.e., it is equal to the force F ext

l on particle l in
the n-cluster, where l = k + ∑ j−1

i=1 mi.
For the jth and ( j + 1)th subclusters to separate, the ve-

locity of the ( j + 1)th subcluster must be larger than that of
the jth subcluster, i.e., the condition F̄ ext

j < F̄ ext
j+1 must be ful-

filled. The same holds true for the other subcluster separations,
i.e., we obtain

F̄ ext
j < F̄ ext

j+1, j = 1, . . . , s − 1 (5)

as a first set of conditions for the composition {m1, . . . , ms} to
occur.

In addition, the particles in the jth subclusters need to keep
in contact. This means that the condition (5) for subcluster
separation must be violated for all possible fragmentations of
this subcluster. We thus obtain

1

i

i∑
k=1

F ext
j,k � 1

mj − i

mj∑
k=i+1

F ext
j,k , i = 1, . . . , mj − 1. (6)

The same holds true for all other subclusters, i.e., inequalities
(6) must be obeyed for all j = 1, . . . , s. This gives the second
set of conditions for the composition {m1, . . . , ms} to occur.

For completeness, let us derive these conditions on the
forces in a more formal manner by considering the equa-
tions of motions of particles in a subcluster of size m. For
simplicity, we here label the particle coordinates in the sub-
cluster as x1 . . . , xm. The equations are

ẋ1 = μ
(
F ext

1 − F int
1,2

)
, (7a)

ẋi = μ
(
F ext

i + F int
i−1,i − F int

i,i+1

)
, i = 2, . . . , m − 1, (7b)

ẋm = μ
(
F ext

m + F int
m−1,m

)
. (7c)

All particles in the subcluster have the same velocity,

ẋ1 = . . . = ẋm = μF̄ ext, (8)

where F̄ ext = ∑m
i=1 F ext

i /m is the mean external force. Unless
the external forces F ext

i acting on the particles in the subcluster
are all equal, the interaction forces F int

i−1,i between the particles
must enforce these conditions.

In fact, Eqs. (8) constitute m linear equations for determin-
ing the (m − 1) interaction forces F int

1,2, F int
2,3, . . . , F int

m−1,m. Only
(m − 1) of these equations are independent, since

∑m
i=1 ẋi

does not depend on the interaction forces. The solution of the
system of linear equations gives

F int
i,i+1 = m − i

m

i∑
j=1

F ext
j − i

m

m∑
j=i+1

F ext
j (9)

for i = 1, . . . , m − 1. These interaction forces have to be non-
negative, yielding the (m − 1) conditions in Eq. (6) for the
subcluster to move as a whole (with mj = m).

Moreover, each subcluster must become separated from its
neighboring subclusters. This gives the set of conditions (5).

B. Algorithm

We consider the positions xi of the N rods to be ordered as

x1 < x2 < . . . < xN , (10)

where (xi+1 − xi ) � σ . In the absence of the hardcore interac-
tion, the particle positions could be propagated as

xi(t + �t ) = xi(t ) + μ f (xi )�t +
√

2D�t Ni, (11)

when applying the Euler scheme with time step �t for solving
Eqs. (1). Here Ni are independent random numbers drawn
from a Gaussian distribution with zero mean and unit variance
(standard normal distribution). Accordingly, the total external
forces (3) at time t are approximated by

F ext
i (t ) = xi(t + �t ) − xi(t )

μ�t
= f (xi(t )) + 1

μ

√
2D

�t
Ni. (12)

Knowing these forces, the cluster analysis is carried out.
For each cluster of touching particles, we identify the de-
composition into subclusters according to the condition (5).
Specifically, for a k-cluster with k > 1, we consider the frag-
mentation into each possible pair of subclusters ( j, k − j),
j = 1, . . . , k − 1. For these subclusters, we calculate the re-
spective mean external forces F̄ ext

j and F̄ ext
k− j , using Eq. (12) for

the force exerted on each individual particle of the subcluster.
We split the k-cluster into that pair of subclusters, for which
the difference (F̄ ext

k− j − F̄ ext
j ) > 0 is the largest. Then we repeat

this procedure for the two subclusters, and again for the pair of
subclusters resulting from the two subclusters and so on. The
procedure stops, if no further splitting into subclusters occurs.

After this step, it is known which particles form clusters
that will move with the same velocity at the beginning of the
time interval [t, t + �t]. For particles i = j, . . . , j + n − 1
forming such cluster with n particles, the velocities according
to Eq. (8) are

vi(t ) = μ

n

j+n−1∑
k= j

F ext
k (t ), (13)

with the F ext
k (t ) from Eq. (12).

Knowing the velocities, all particle positions are propa-
gated within the time interval [t, t + �t[ in an event-driven
procedure from a collision at time tc to a next collision at
time t ′

c.
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Initially we set tc = t . A possible collision can occur be-
tween neighboring rods, if their velocities satisfy

vi(tc) > vi+1(tc). (14)

The time of this possible collision is

ti,i+1 = tc + xi+1(tc) − xi(tc) − σ

vi(tc) − vi+1(tc)
. (15)

The next collision realized is the one occurring at the smallest
time in the set {ti,i+1}, i.e.,

t ′
c = min

i
{ti,i+1}. (16)

If t ′
c < (t + �t ), we determine the particle ic taking part in

this collision:

ic = argmini{ti,i+1}. (17)

This collision leads to the merging of two clusters, where in
the first cluster the rod ic is the rightmost one and in the second
cluster the rod (ic + 1) is the leftmost one. As a consequence,
after time t ′

c the particles in the merged cluster move together
and must have the same velocity, which is determined by the
average external force, see Eq. (8). This implies that the veloc-
ities of the particles in the merging clusters become equal and
are given by the weighted average of the velocities vic (tc) and
vic+1(tc). If the first and second cluster contain m rods and n
rods, respectively (merger of an m- with an n-cluster), the ve-
locities v j of the rods j = ic − m + 1, ic − m + 2, . . . , ic + n
at time t ′

c become

v j (t
′
c) = m vic (tc) + n vic+1(tc)

m + n
. (18)

This change of velocities means that the two clusters undergo
a perfectly inelastic collision. The velocities of all other rods
are kept, i.e., vi(t ′

c) = vi(tc) (no updating).
To keep the implementation simple, the positions xi of all

rods are updated at time t ′
c,

xi(t
′
c) = xi(tc) + vi(tc)(t ′

c − tc), i = 1, . . . , N. (19)

This event-driven procedure given by Eqs. (14)–(19) is
repeated until t ′

c � t + �t . Then the positions of all rods
i = 1, . . . , N at time t + �t are calculated using

xi(t + �t ) = xi(tc) + vi(tc)(t + �t − tc). (20)

Thereafter, updated external forces F ext
i (t + �t ) at time t +

�t are calculated, the cluster analysis is performed again, and
the event-driven procedure is carried out for the next time step.

We note that one could also update the external forces
and perform the cluster analysis after each collision. This
would lead to an implementation of the BCD algorithm with
a variable time step. However, the use of a fixed time step
becomes more efficient in particular in dense systems with
high collision rate because the external forces do not need to
be updated during a time interval �t .

A flow diagram illustrating the algorithm is given in Fig. 2.
A C++ code implementing this BCD algorithm, which uses
vector manipulation procedures from Refs. [38,39], is avail-
able on Ref. [37].

Calculation of external forces [Eq. (12)]; tc ← t[ q ( )]; c

Cluster analysis [Eqs. (5), (6)] based on known
cluster identification in previous time step

Calculation of velocities [Eq. (13)][ q ( )]

Calculation of set of times of possible collisions
[Eqs. (14), (15)][ q ( ), ( )]

Determination of next collision time t′c and
clusters taking part in collision [Eqs. (16), (17)]g p [ q ( ), (

t′c ≥ t + Δt?

Update of velocities of
merging clusters [Eq. (18)]

Update of rod positions [Eq. (19)]

tc ← t′c

Update of rod positions [Eq. (20)]

t ← t + Δt

yes

no

FIG. 2. Flow diagram of the BCD simulation algorithm [37].

C. Validation: Comparison with exact analytical results

For testing our algorithm, we compare simulation results
for density profiles �(x) and two-particle densities �2(x, x +
σ ) at contact with analytical results derived from the exact
density functional [40]

�[�(x)]

=
∫

dx �(x)

{
U (x) − μch − kBT

[
1 − ln

(
�(x)

1 − η(x)

)]}
(21a)

of hard rods in equilibrium, where U (x) is an external poten-
tial, μch is the chemical potential, and

η(x) =
x∫

x−σ

dy �(y). (21b)

We choose the periodic potential

U (x) = U0

2
cos

(
2πx

λ

)
, (22)

for which the integration limit in Eq. (21a) can be taken from
zero to the wavelength λ.

The equilibrium density profiles follow by minimization
of the density functional �[�(x)]. Numerically, we perform
this minimization by evolving an initial profile using the
dynamical density functional theory (DDFT) [41,42] until
the stationary equilibrium profile is obtained. As initial pro-
file, we used the Boltzmann one �(x) ∝ exp[−U (x)/kBT ] of
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noninteracting particles with a normalization

�̄ = 1

λ

∫ λ

0
dx�(x) = N

L
, (23)

where the system length L is a multiple of λ. The coverage
(volume fraction) is equal to �̄σ = Nσ/L.

The two-particle density at contact is [40,43]

�2(x, x + σ ) = �(x)�(x + σ )

1 − η(x + σ )
. (24)

To determine the density profile from our simulations, we
discretize our periodicity interval into Mbin bins [xα, xα + �x[
with

xα = α�x, �x = 1/Mbin. (25)

After each time step �t in the simulation, we increase a
counter pα by the number of particles in bin α. We thus obtain

�(xα + �x/2) = pα

Msmp�x
+ O

(
�x, M−1

smp

)
, (26)

where Msmp is the number of time intervals used in the sam-
pling. Equation (26) allows one to calculate the density at
position x = xα + �x/2 with controlled accuracy.

For determining the two-particle density at contact, we
check after each time step whether one particle with coordi-
nate x falls into the bin α and another particle coordinate falls
into the interval ]x + σ, x + σ + �′], where �′ � 1 is a small
length. If this is the case, we increase a counter qα for the bin
α by one. We thus obtain

�2(xα + �x/2, xα + �x/2 + σ ) = qα

Msmp�x�′

+ O
(
�x,�

′, M−1
smp

)
(27)

for calculating the two-particle density at contact if the left
particle is at position x = xα + �x/2.

In the following we take λ as length unit, λ2/D as time unit,
and kBT as energy unit (λ = 1, D = 1, kBT = 1). Furthermore
we must set D = kBTμ for simulating equilibrium properties,
i.e., μ = 1 in our units. We consider a high amplitude U0 =
6 kBT of the external potential. In the simulations, we used
the system length L = 100 with periodic boundary conditions,
and chose �x = �′ = 10−3 for the discretization lengths. The
time step is reduced with increasing particle density �̄ to
properly resolve collisions between clusters. For the largest
simulated �̄ = 0.8 here, we chose �t = 10−7.

In Figs. 3 and 4 we compare simulated equilibrium density
profiles �(x) with the theoretical profiles derived from the
Percus functional. These figures show an excellent agreement
between theory and simulation for various representative val-
ues of rod lengths σ and mean particle densities �̄.

IV. ADDITIONAL INTERACTIONS

If there are additional interaction forces between the hard
rods, it is straightforward to include them in the numerical
treatment as long as the interactions are continuous functions
of the particle coordinates. We focus here on pair interactions
and denote by f int (xi, x j ) the force of rod j exerted on rod
i. Such interactions can include van der Waals, electrostatic,

FIG. 3. Equilibrium density profiles of hard rods in the cosine
potential (22) obtained from BCD simulations (symbols) and from
calculations based on the exact density functional [Eq. (21a)]. The
panels show results for various filling factors �̄ and rod lengths σ .
The potential amplitude is U0 = 6 kBT .

magnetic, steric and/or depletion forces [44]. The Langevin
equations for overdamped Brownian motion of the rods then

FIG. 4. Two-particle density at contact in equilibrium for hard
rods in the cosine potential (22) obtained from BCD simulations
(symbols) and from calculations based on the exact density func-
tional [Eq. (21a)]. The panels show results for various filling factors
�̄ and rod lengths σ . The potential amplitude is U0 = 6 kBT .
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are

dxi

dt
= μ f (xi ) + μ

N∑
j=1

f int (xi, x j ) +
√

2D ξi(t ), (28)

where we set f int (xi, xi ) = 0.
When applying the algorithm discussed in Sec. III B, the

only change is that the external forces in Eq. (12) need to be
replaced by

F ext
i (t ) = f [xi(t )] +

N∑
j=1

f int[xi(t ), x j (t )] + 1

μ

√
2D

�t
Ni.

(29)
The prominent potential for sticky hard spheres contains

a δ singularity and accordingly does not give a continuous
interaction force between the rods. It therefore requires a
special treatment.

A. Treatment of Baxter’s sticky hard-sphere potential

Baxter introduced his model of sticky hard spheres to cap-
ture major characteristics of real interactions, which exhibit
a repulsive core and attractive part. If the attractive part is
a short-range surface adhesion between particles, the pair
interaction potential Vint (r) may be modeled by including a
δ function in the corresponding Boltzmann factor,

exp[−Vint (r)/kBT ] = �(r − σ ) + γ δ(r − σ ). (30)

Here, �(.) is the Heaviside step function, kBT is the thermal
energy, and r is the distance between particle positions. The
parameter γ is a measure for the strength of the adhesive
interaction. This yields the potential [20,21]

Vint (r) =
{∞, r < σ,

−kBT ln[1 + γ δ(r − σ )], r � σ.
(31)

In the recent literature, particles with this type of interaction
are often referred to as adhesive hard spheres.

Baxter’s model has been applied as an approximation to
understand properties of Lennard-Jones fluids [45,46]. Inter-
estingly, when increasing the exponents in the Lennard-Jones
potential, possible cluster formations approach the ones of
Baxter’s model [47]. It was considered also to uncover effects
of adhesive interaction on percolation behavior [22,48–51].
Further applications include analysis of colloid sedimentation
on liquid-solid [52] and fluid-fluid interfaces [53], different
types of sequential adsorption [54], gelation [24,26,27,55]
and gel elasticity [28], aggregation of biomolecules [56,57],
crystallization of macromolecules [58], self-assembly of in-
active [59] and active [60,61] particles, detachment dynamics
of colloidal spheres [62], viscosity of adhesive hard sphere
dispersions [63,64], and charge regulation of colloids inside
electrolyte solutions [65]. Another important application per-
tains to the analysis of scattering experiments on colloids
[66,67] and nanoparticle mixtures [68–73]. The model has
been used also to describe dynamics in glassy states and
liquid-glass phase transitions [74–77]. The model has been
extended to binary mixtures of particles with different strength
of Baxter’s interactions [78,79] and binary mixtures of dif-
ferent particles sizes [80]. Under certain conditions (size
disparity and high concentrations), such mixtures can undergo

FIG. 5. (a) Interaction force f int
p (r) [Eq. (33)] exerted on a par-

ticle at distance r by a particle at the origin for various p, ε = 0.05,
γ = 1, and σ = 0.2. The hardcore regime r � σ is marked by the
shaded area. The vertical dashed lines indicates the end of the vir-
tual interaction interval at σ + ε = 0.25. The interaction forces are
continuous at this point and become zero for larger r, as indicated
by the gray horizontal line. (b) Maximum of | f int

p (r)| as a function
of the exponent in the power-law representation δε (r) in Eq. (32) for
the same parameters as in (a).

a fluid-fluid phase separation [81]. Furthermore, models based
on Baxter’s model have been suggested for mixtures of col-
loids and telechelic polymers [82,83] and for protein-protein
interactions between proteins of different size [84].

In order to deal with the δ singularity in Eq. (31), we use a
power-law representation δε (r) of the δ function:

δε (r) = p + 1

ε p+1
(ε − r)p[�(r) − �(r − ε)], (32)

where p > 1. For p � 1, the force would no longer be contin-
uous at r = σ + ε. The virtual interaction range ε > 0 needs
to be much smaller than the average distance between neigh-
boring particles. For ε → 0, δε (r) → δ(r).

In Baxter’s original work [20], the δ singularity in Eq. (31)
was represented by a rectangular well, corresponding to p = 0
in Eq. (32). This was particularly suitable for the solution of
the Percus-Yevick equations. However, a rectangular potential
well would yield δ singularities in the forces and is thus not
a useful representation for simulation of Brownian dynamics
based on Langevin equations.

By inserting this representation in Eq. (31), we obtain the
interaction force

f int
p (r) =

⎧⎪⎨
⎪⎩

−kBT
γ p(ε + σ − r)p−1

ε p+1

p+1 + γ (ε + σ − r)p
, σ � r < σ + ε,

0, r � σ + ε.

(33)
Because of the constant one introduced in the argument of
the logarithmic function in Eq. (31), this interaction force is
continuous at r = σ + ε.
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FIG. 6. Equilibrium density profiles of sticky hard rods in the
cosine potential (22) obtained from BCD simulations (symbols) and
from numerical solution of the DFT structure equations with the
functional derivative from Eqs. (35) (solid lines). The panels in each
column refer to equal values of the mean particle density �̄ and rod
length σ given at the top of the figure. The rows refers to equal values
of the strength γ of the contact interaction (31). Its values are given
on the right side of the figure. The amplitude of the cosine potential is
U0 = 6 kBT . In the graphs for σ = 0.8 and �̄ = 0.8 (right column),
density profiles are shown for two values of the virtual interaction
range ε.

While γ is a physical parameter characterizing the strength
of the adhesive interaction, p and ε are auxiliary parameters
defining the representation of the δ function in Eq. (31). What
is a good choice of these auxiliary parameters?

The parameter ε gives a virtual range of the attractive con-
tact interaction and should be much smaller than all relevant
length scales in the system such as the particle size, mean
distance between particles, and characteristic lengths of the
external force field, as, e.g., the wavelength in a periodic field.
At the same time, ε should not be taken too small in order
to resolve the virtual interaction range, when particles come
close to each other and are driven by f int

p towards each other.
This can be accounted for by imposing the condition

μmax
r

{∣∣ f int
p (r)

∣∣}�t � ε, (34)

which means that the maximum displacement caused by the
adhesive interaction in a time step �t is much smaller than ε.

In Fig. 5(a), we plot f int
p (r) for ε = 0.05 and various p.

For this ε, Fig. 5(b) shows that maxr{| f int
p (r)|} is smallest for

p ∼= 2.95. As ε should be as small as possible in Eq. (34),
this value for p is preferable. For this reasoning, we used that
maxr{| f int

p (r)|} is a weakly varying function of ε.

B. Validation: Comparison with exact analytical results

Similarly as in Sec. III C, we test our treatment of Bax-
ter’s potential in connection with the algorithm described in
Sec. III B by comparison with exact analytical results for equi-
librium density profiles. These profiles are generated for the
periodic potential in Eq. (22) by applying the dynamic density
functional theory, where now the exact functional derivative
of the density functional for hard rods with contact interaction
[21] is used:

δ�[�(x)]

δ�(x)
= ln

(
K (x + σ )K̂ (x − σ )

�(x)

)
+ U (x) − μch

kBT
+ 1

2
ln (1 − η(x))(1 − η(x + σ )) − σ

2γ

+
x∫

x−σ

dy

2γ

√
1 + 2γ

�(y + σ ) + �(y)

1 − η(y + σ )
+ γ 2

[
�(y + σ ) − �(y)

1 − η(y + σ )

]2

(35a)

with

K̂ (x) = 1

2γ

[
−

(
1 − γ

�(x + σ ) − �(x)

1 − η(x + σ )

)
(35b)

+
√(

1 − γ
�(x + σ ) − �(x)

1 − η(x + σ )

)2

+ 4γ
�(x + σ )

1 − η(x + σ )

]

and

K (x) = K̂ (x − σ ) − �(x) − �(x − σ )

1 − η(x)
. (35c)

The solution of the structure equation δ�[�(x)]/δ�(x) =
0 gives the equilibrium density profile. As in the case of
hard rods without contact interaction, we generated this
equilibrium profile by evolving the corresponding DDFT
equations into the stationary long-time limit. The computa-

tional time for reaching this long-time limit is much longer
than for the hard rods without contact interaction, because
of the more complex mathematical structure of the functional
derivative δ�[�(x)]/δ�(x) in Eqs. (35a)–(35c). For obtaining
results in reasonable computing time, we were limited to use
a spatial discretization length �x = 10−3 (in units of λ) [85].
As we discuss below, this limitation causes small systematic
deviations at high coverage �̄σ in spatial regions of low parti-
cle densities.
In the simulations, all parameters are chosen as for the hard
rods without contact interaction considered in Sec. III C. To
represent the contact interaction we use the integer exponent
p = 3 in Eq. (32) and set ε = 0.05.

In Fig. 6, simulated equilibrium density profiles �(x) are
compared with theoretical profiles calculated from Eqs. (35)
for three strengths γ of the contact interaction and various
representative rod lengths σ and mean particle densities �̄ =
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FIG. 7. Time-dependent mean-square displacement of a tagged
hard rod for a system with U0 = 0 (no periodic potential) in the
absence of a contact interaction (γ = 0), and for sticky rods with
γ = 1. The rod length is σ = 0.5 and the mean density is �̄ = 0.5.
The data were obtained from simulations in a system of length
L = 400 with periodic boundary conditions. Dashed lines at short
and long times indicate the asymptotic diffusive and subdiffusive
behavior, and the dashed horizontal line marks the squared mean
interparticle distance.

0.2, 0.5, and 0.8. For �̄ = 0.2 and 0.5, the simulated data show
an excellent agreement with the analytical predictions.

For �̄ = 0.8 (graphs in the right column in Fig. 6), the
agreement between simulations and the numerical solution of
the structure equations is also good, but close to x = 0 (or
x = 1) small deviations are seen. Note that the density profiles
in Fig. 6 are plotted on a logarithmic scale, i.e., the absolute
deviation between the data obtained from the simulations and
the numerical solution is very small.

In order to see whether the deviations are caused by our
choice of ε or the limited accuracy of the numerical solution of
the structure equations, we in addition carried out simulations
for a smaller value ε = 0.025 (blue circles in the right column
of Fig. 6). For γ = 0.1 and γ = 1, the simulated results for
ε = 0.05 and ε = 0.025 overlap, and for γ = 10 the results
are almost converged with respect to a decrease of ε. This
indicates that the simulated data represent the true profiles
and that the numerical solution of the structure equation is
not perfectly accurate close to x = 0. As discussed above, the
accuracy of solving the structure equations is limited by the
spatial resolution �x.

C. Time-dependent mean-square displacement

As an application of our method to a dynamical quantity,
we show in Fig. 7 the time-dependent mean-square displace-
ment (MSD) of a tagged rod for a system with U0 = 0 (no
periodic potential) in the absence of a contact interaction
(γ = 0), and for sticky rods with γ = 1. At short times, where
the root of the MSD is smaller than the mean interparticle
spacing, the dynamics must reflect that of independent rods,
i.e., the MSD increases linearly with time. The short-time

diffusion coefficient is smaller in the presence of contact in-
teraction due to enhanced cluster formation. When the MSD
becomes comparable to the squared mean interparticle dis-
tance [(L/N − σ )2, as indicated by the dashed horizontal line
in Fig. 7], collisions become relevant. The behavior then
crosses over to the well-known anomalous single-file diffu-
sion, where the MSD grows as a square root of t . Interestingly,
the subdiffusion is faster in the presence of contact interaction.
A more detailed investigation of this effect and the change of
behavior for U0 > 0 will be presented elsewhere.

V. SUMMARY AND CONCLUSION

Overdamped Brownian motion of particles is ubiquitous in
soft matter and biological systems and clustering of particles
is widely observed in the dynamics observed at high densi-
ties. Here we have presented a method to simulate Brownian
dynamics of clusters formed by hardcore interacting particles
in one dimension. This method can be applied to the motion
in arbitrary external force fields and allows one to determine
interaction forces between particles in contact. It relies on
fragmentation and merging of clusters based on the evaluation
of mean external forces acting upon individual clusters. This
includes the random forces exerted by the fluid environment.
We proposed an algorithm to implement the fragmentation
and merging processes in an event-driven scheme.

Particle interactions beyond hardcore can be straightfor-
wardly included into the algorithm as long as the correspond-
ing interaction forces are continuous functions of the particle
coordinates. Other types of interactions need addition consid-
erations. In particular, Baxter’s sticky hard-sphere interaction
for describing adhesive forces is an important case. We devel-
oped a method to tackle the δ singularity in this model, which
occurs when particles get in contact.

Our event-driven numerical method for treating cluster dy-
namics in collective overdamped Brownian motion has been
successfully tested by comparison with theoretical results
derived from exact density functionals, both for hardcore
interacting systems and in the presence of the additional at-
tractive contact interaction in the sticky hard-sphere model.

In view of the existing methods for treating Brownian mo-
tion of hard spheres, we consider our method to fill a gap when
it becomes necessary to model collective dynamics of particle
clusters, as they can manifest themselves, for example, as
Brownian solitons [36]. As for further developments of the
method, a challenging task its extension to higher dimen-
sions. This requires a refined procedure of cluster analysis
and the cluster dynamics may be treated similarly as in the
one-dimensional case by decomposing forces in the directions
normal to the hard spheres at contact points and perpendicular
to it.

ACKNOWLEDGMENTS

Financial support by the Czech Science Foundation
(Project No. 20-24748J) and the Deutsche Forschungsgemein-
schaft (Project No. 432123484) is gratefully acknowledged.

054606-8



BROWNIAN DYNAMICS SIMULATIONS OF HARD … PHYSICAL REVIEW E 106, 054606 (2022)

[1] M. N. Rosenbluth and A. W. Rosenbluth, Further results on
Monte Carlo equations of state, J. Chem. Phys. 22, 881 (1954).

[2] B. J. Alder and T. E. Wainwright, Phase transition for a hard
sphere system, J. Chem. Phys. 27, 1208 (1957).

[3] B. Cichocki and K. Hinsen, Dynamic computer simulation
of concentrated hard sphere suspensions: I. Simulation tech-
nique and mean square displacement data, Physica A 166, 473
(1990).

[4] W. Schaertl and H. Sillescu, Brownian dynamics of polydis-
perse colloidal hard spheres: Equilibrium structures and random
close packings, J. Stat. Phys. 77, 1007 (1994).

[5] S. Jabbari-Farouji and E. Trizac, Dynamic Monte Carlo sim-
ulations of anisotropic colloids, J. Chem. Phys. 137, 054107
(2012).

[6] D. Corbett, A. Cuetos, M. Dennison, and A. Patti, Dynamic
Monte Carlo algorithm for out-of-equilibrium processes in col-
loidal dispersions, Phys. Chem. Chem. Phys. 20, 15118 (2018).

[7] F. A. García Daza, A. Cuetos, and A. Patti, Dynamic Monte
Carlo simulations of inhomogeneous colloidal suspensions,
Phys. Rev. E 102, 013302 (2020).

[8] P. I. Hurtado and P. L. Garrido, Simulations of transport in hard
particle systems, J. Stat. Phys. 180, 474 (2020).

[9] P. Strating, Brownian dynamics simulation of a hard-sphere
suspension, Phys. Rev. E 59, 2175 (1999).

[10] A. Scala, Event-driven Langevin simulations of hard spheres,
Phys. Rev. E 86, 026709 (2012).

[11] H. Behringer and R. Eichhorn, Brownian dynamics simulations
with hard-body interactions: Spherical particles, J. Chem. Phys.
137, 164108 (2012).

[12] T. P. C. van Noije, M. H. Ernst, and R. Brito, Ring kinetic theory
for an idealized granular gas, Physica A 251, 266 (1998).

[13] S. Luding, Collisions & contacts between two particles, in
Physics of Dry Granular Media, edited by H. J. Herrmann, J.-P.
Hovi, and S. Luding (Springer, Dordrecht, 1998), pp. 285–304.

[14] S. González, D. Risso, and R. Soto, Extended event driven
molecular dynamics for simulating dense granular matter, Eur.
Phys. J.: Spec. Top. 179, 33 (2009).

[15] E. Helland, H. Bournot, R. Occelli, and L. Tadrist, Drag reduc-
tion and cluster formation in a circulating fluidised bed, Chem.
Eng. Sci. 62, 148 (2007), fluidized Bed Applications.

[16] J. McMillan, F. Shaffer, B. Gopalan, J. W. Chew, C. Hrenya,
R. Hays, S. B. R. Karri, and R. Cocco, Particle cluster dynam-
ics during fluidization, Chem. Eng. Sci. 100, 39 (2013), 11th
International Conference on Gas-Liquid and Gas-Liquid-Solid
Reactor Engineering.

[17] A. Cahyadi, A. Anantharaman, S. Yang, S. R. Karri, J. G.
Findlay, R. A. Cocco, and J. W. Chew, Review of cluster char-
acteristics in circulating fluidized bed (CFB) risers, Chem. Eng.
Sci. 158, 70 (2017).

[18] G. Lois, A. Lemaître, and J. M. Carlson, Emergence of multi-
contact interactions in contact dynamics simulations of granular
shear flows, Europhys. Lett. 76, 318 (2006).

[19] M. Watanabe and D. Tanaka, Brownian dynamics simulation of
the aggregation of submicron particles in static gas, Comput.
Chem. Eng. 54, 151 (2013).

[20] R. J. Baxter, Percus–Yevick equation for hard spheres with
surface adhesion, J. Chem. Phys. 49, 2770 (1968).

[21] J. K. Percus, One-dimensional classical fluid with nearest-
neighbor interaction in arbitrary external field, J. Stat. Phys. 28,
67 (1982).

[22] N. A. Seaton and E. D. Glandt, Monte Carlo simulation of
adhesive spheres, J. Chem. Phys. 87, 1785 (1987).

[23] M. A. Miller and D. Frenkel, Phase diagram of the adhesive
hard sphere fluid, J. Chem. Phys. 121, 535 (2004).

[24] M. A. Miller and D. Frenkel, Simulating colloids with Baxter’s
adhesive hard sphere model, J. Phys.: Condens. Matter 16,
S4901 (2004).

[25] G. Foffi, C. De Michele, F. Sciortino, and P. Tartaglia, Scaling
of Dynamics with the Range of Interaction in Short-Range
Attractive Colloids, Phys. Rev. Lett. 94, 078301 (2005).

[26] E. Zaccarelli, Colloidal gels: Equilibrium and non-equilibrium
routes, J. Phys.: Condens. Matter 19, 323101 (2007).

[27] G. Wang and J. W. Swan, Surface heterogeneity affects percola-
tion and gelation of colloids: dynamic simulations with random
patchy spheres, Soft Matter 15, 5094 (2019).

[28] K. A. Whitaker, Z. Varga, L. C. Hsiao, M. J. Solomon, J. W.
Swan, and E. M. Furst, Colloidal gel elasticity arises from the
packing of locally glassy clusters, Nature Commun. 10, 2237
(2019).

[29] D. Stopper, H. Hansen-Goos, R. Roth, and R. Evans, On the
decay of the pair correlation function and the line of vanishing
excess isothermal compressibility in simple fluids, J. Chem.
Phys. 151, 014501 (2019).

[30] N. Bou-Rabee and M. C. Holmes-Cerfon, Sticky Brownian
motion and its numerical solution, SIAM Rev. 62, 164 (2020).

[31] M. Holmes-Cerfon, Simulating sticky particles: A Monte Carlo
method to sample a stratification, J. Chem. Phys. 153, 164112
(2020).

[32] S. Babu, J. C. Gimel, and T. Nicolai, Phase separation and
percolation of reversibly aggregating spheres with a square-well
attraction potential, J. Chem. Phys. 125, 184512 (2006).

[33] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic
Differential Equations (Springer Berlin, 1992).

[34] Y. Saito and T. Mitsui, Simulation of stochastic differential
equations, Ann. Inst. Stat. Math. 45, 419 (1993).

[35] D. Lips, A. Ryabov, and P. Maass, Brownian Asymmetric Sim-
ple Exclusion Process, Phys. Rev. Lett. 121, 160601 (2018).

[36] A. P. Antonov, A. Ryabov, and P. Maass, Solitons in Over-
damped Brownian Dynamics, Phys. Rev. Lett. 129, 080601
(2022).

[37] C++ implementation of the Brownian cluster dynamics (BCD)
algorithm available from GitHub repository, https://github.com/
soeren802/Brownian-cluster-dynamics.

[38] C. Sanderson and R. Curtin, Armadillo: a template-based C++
library for linear algebra, J. Open Source Softw. 1, 26 (2016).

[39] C. Sanderson and R. Curtin, A user-friendly hybrid sparse
matrix class in C++, in Mathematical Software–ICMS 2018,
edited by J. H. Davenport, M. Kauers, G. Labahn, and J. Urban
(Springer International Publishing, Cham, 2018), pp. 422–430.

[40] J. K. Percus, Equilibrium state of a classical fluid of hard rods
in an external field, J. Stat. Phys. 15, 505 (1976).

[41] U. M. B. Marconi and P. Tarazona, Dynamic density functional
theory of fluids, J. Chem. Phys. 110, 8032 (1999).

[42] M. te Vrugt, H. Löwen, and R. Wittkowski, Classical dynamical
density functional theory: From fundamentals to applications,
Adv. Phys. 69, 121 (2020).

[43] U. M. B. Marconi and P. Tarazona, Dynamic density functional
theory of fluids, J. Phys.: Condens. Matter 12, A413 (2000).

[44] J. A. Lewis, Colloidal processing of ceramics, J. Am. Ceram.
Soc. 83, 2341 (2000).

054606-9

https://doi.org/10.1063/1.1740207
https://doi.org/10.1063/1.1743957
https://doi.org/10.1016/0378-4371(90)90068-4
https://doi.org/10.1007/BF02183148
https://doi.org/10.1063/1.4737928
https://doi.org/10.1039/C8CP02415D
https://doi.org/10.1103/PhysRevE.102.013302
https://doi.org/10.1007/s10955-019-02469-z
https://doi.org/10.1103/PhysRevE.59.2175
https://doi.org/10.1103/PhysRevE.86.026709
https://doi.org/10.1063/1.4761827
https://doi.org/10.1016/S0378-4371(97)00610-9
https://doi.org/10.1140/epjst/e2010-01192-4
https://doi.org/10.1016/j.ces.2006.08.012
https://doi.org/10.1016/j.ces.2013.02.047
https://doi.org/10.1016/j.ces.2016.10.002
https://doi.org/10.1209/epl/i2005-10605-1
https://doi.org/10.1016/j.compchemeng.2013.03.028
https://doi.org/10.1063/1.1670482
https://doi.org/10.1007/BF01011623
https://doi.org/10.1063/1.453724
https://doi.org/10.1063/1.1758693
https://doi.org/10.1088/0953-8984/16/42/008
https://doi.org/10.1103/PhysRevLett.94.078301
https://doi.org/10.1088/0953-8984/19/32/323101
https://doi.org/10.1039/C9SM00607A
https://doi.org/10.1038/s41467-019-10039-w
https://doi.org/10.1063/1.5110044
https://doi.org/10.1137/19M1268446
https://doi.org/10.1063/5.0019550
https://doi.org/10.1063/1.2378832
https://doi.org/10.1007/BF00773344
https://doi.org/10.1103/PhysRevLett.121.160601
https://doi.org/10.1103/PhysRevLett.129.080601
https://github.com/soeren802/Brownian-cluster-dynamics
https://doi.org/10.21105/joss.00026
https://doi.org/10.1007/BF01020803
https://doi.org/10.1063/1.478705
https://doi.org/10.1080/00018732.2020.1854965
https://doi.org/10.1088/0953-8984/12/8A/356
https://doi.org/10.1111/j.1151-2916.2000.tb01560.x


ANTONOV, SCHWEERS, RYABOV, AND MAASS PHYSICAL REVIEW E 106, 054606 (2022)

[45] R. O. Watts, Hypernetted-chain approximation applied to
a modified Lennard-Jones fluid, J. Chem. Phys. 50, 1358
(1969).

[46] A. González-Calderón, J. A. Perera-Burgos, and D. P. Luis,
Critical temperatures of real fluids from the extended law of
corresponding states, AIP Adv. 9, 115217 (2019).

[47] L. Trombach, R. S. Hoy, D. J. Wales, and P. Schwerdtfeger,
From sticky-hard-sphere to Lennard-Jones-type clusters, Phys.
Rev. E 97, 043309 (2018).

[48] Y. C. Chiew and E. D. Glandt, Percolation behaviour of perme-
able and of adhesive spheres, J. Phys. A: Math. Gen. 16, 2599
(1983).

[49] N. A. Seaton and E. D. Glandt, Aggregation and percolation in
a system of adhesive spheres, J. Chem. Phys. 86, 4668 (1987).

[50] S. Torquato, J. D. Beasley, and Y. C. Chiew, Two-point cluster
function for continuum percolation, J. Chem. Phys. 88, 6540
(1988).

[51] J. Kim, D. Merger, M. Wilhelm, and M. E. Helgeson,
Microstructure and nonlinear signatures of yielding in a hetero-
geneous colloidal gel under large amplitude oscillatory shear, J.
Rheol. (NY) 58, 1359 (2014).

[52] R. Piazza, Settled and unsettled issues in particle settling, Rep.
Prog. Phys. 77, 056602 (2014).

[53] D. M. Balazs, T. A. Dunbar, D.-M. Smilgies, and T. Hanrath,
Coupled dynamics of colloidal nanoparticle spreading and self-
assembly at a fluid–fluid interface, Langmuir 36, 6106 (2020),
pMID: 32390432.

[54] J. Talbot, G. Tarjus, P. Van Tassel, and P. Viot, From car parking
to protein adsorption: An overview of sequential adsorption
processes, Colloids Surf. A 165, 287 (2000).

[55] D. Richard, J. Hallett, T. Speck, and C. P. Royall, Coupling
between criticality and gelation in “sticky” spheres: A structural
analysis, Soft Matter 14, 5554 (2018).

[56] S. Assenza and R. Mezzenga, Soft condensed matter physics of
foods and macronutrients, Nat. Rev. Phys. 1, 551 (2019).

[57] G. N. Smith, E. Brok, M. V. Christiansen, and L. Ahrné, Ca-
sein micelles in milk as sticky spheres, Soft Matter 16, 9955
(2020).

[58] D. Rosenbaum, P. C. Zamora, and C. F. Zukoski, Phase Behav-
ior of Small Attractive Colloidal Particles, Phys. Rev. Lett. 76,
150 (1996).

[59] A.-C. Genix and J. Oberdisse, Nanoparticle self-assembly:
From interactions in suspension to polymer nanocomposites,
Soft Matter 14, 5161 (2018).

[60] J. Schwarz-Linek, C. Valeriani, A. Cacciuto, M. E. Cates, D.
Marenduzzo, A. N. Morozov, and W. C. K. Poon, Phase sep-
aration and rotor self-assembly in active particle suspensions,
Proc. Natl. Acad. Sci. USA 109, 4052 (2012).

[61] T. Arnoulx de Pirey, G. Lozano, and F. van Wijland, Active
Hard Spheres in Infinitely Many Dimensions, Phys. Rev. Lett.
123, 260602 (2019).

[62] J. Bergenholtz, Detachment dynamics of colloidal spheres with
adhesive interactions, Phys. Rev. E 97, 042610 (2018).

[63] G. Wang, A. M. Fiore, and J. W. Swan, On the viscosity of
adhesive hard sphere dispersions: Critical scaling and the role
of rigid contacts, J. Rheol. (NY) 63, 229 (2019).

[64] S. von Bülow, M. Siggel, M. Linke, and G. Hummer, Dy-
namic cluster formation determines viscosity and diffusion in
dense protein solutions, Proc. Natl. Acad. Sci. USA 116, 9843
(2019).

[65] A. Bakhshandeh, D. Frydel, and Y. Levin, Charge regulation
of colloidal particles in aqueous solutions, Phys. Chem. Chem.
Phys. 22, 24712 (2020).

[66] J. S. Pedersen, Analysis of small-angle scattering data
from colloids and polymer solutions: Modeling and
least-squares fitting, Adv. Colloid Interface Sci. 70, 171
(1997).

[67] D. I. Svergun and M. H. J. Koch, Small-angle scattering studies
of biological macromolecules in solution, Rep. Prog. Phys. 66,
1735 (2003).

[68] T. Li, A. J. Senesi, and B. Lee, Small angle X-ray scattering for
nanoparticle research, Chem. Rev. 116, 11128 (2016).

[69] R. Motokawa, T. Kobayashi, H. Endo, J. Mu, C. D. Williams,
A. J. Masters, M. R. Antonio, W. T. Heller, and M. Nagao,
A telescoping view of solute architectures in a complex fluid
system, ACS Cent. Sci. 5, 85 (2019).

[70] C.-H. Ko, C. Henschel, G. P. Meledam, M. A. Schroer, P.
Müller-Buschbaum, A. Laschewsky, and C. M. Papadakis,
Self-assembled micelles from thermoresponsive poly(methyl
methacrylate)-b-poly(n-isopropylacrylamide) diblock
copolymers in aqueous solution, Macromolecules 54, 384
(2021).

[71] C. M. Heil and A. Jayaraman, Computational reverse-
engineering analysis for scattering experiments of assembled
binary mixture of nanoparticles, ACS Materials Au 1, 140
(2021).

[72] C. M. Jeffries, J. Ilavsky, A. Martel, S. Hinrichs, A. Meyer, J. S.
Pedersen, A. V. Sokolova, and D. I. Svergun, Small-angle X-ray
and neutron scattering, Nature Rev. Meth. Primers 1, 70 (2021).

[73] C. M. Heil, A. Patil, A. Dhinojwala, and A. Jayaraman, Compu-
tational reverse-engineering analysis for scattering experiments
(CREASE) with machine learning enhancement to determine
structure of nanoparticle mixtures and solutions, ACS Cent. Sci.
8, 996 (2022).

[74] J. Bergenholtz and M. Fuchs, Nonergodicity transitions in col-
loidal suspensions with attractive interactions, Phys. Rev. E 59,
5706 (1999).

[75] K. Dawson, G. Foffi, M. Fuchs, W. Götze, F. Sciortino, M.
Sperl, P. Tartaglia, T. Voigtmann, and E. Zaccarelli, Higher-
order glass-transition singularities in colloidal systems with
attractive interactions, Phys. Rev. E 63, 011401 (2000).

[76] G. Parisi and F. Zamponi, Mean-field theory of hard sphere
glasses and jamming, Rev. Mod. Phys. 82, 789 (2010).

[77] C. J. Fullerton and L. Berthier, Glassy Behavior of Sticky
Spheres: What Lies beyond Experimental Timescales?, Phys.
Rev. Lett. 125, 258004 (2020).

[78] R. J. Baxter, Ornstein–Zernike relation and Percus–Yevick ap-
proximation for fluid mixtures, J. Chem. Phys. 52, 4559 (1970).

[79] A. Jamnik, Simulating asymmetric colloidal mixture with adhe-
sive hard sphere model, J. Chem. Phys. 128, 234504 (2008).

[80] J. Opdam, M. P. M. Schelling, and R. Tuinier, Phase behavior
of binary hard-sphere mixtures: Free volume theory including
reservoir hard-core interactions, J. Chem. Phys. 154, 074902
(2021).

[81] H. Kobayashi, P. B. Rohrbach, R. Scheichl, N. B. Wilding, and
R. L. Jack, Critical point for demixing of binary hard spheres,
Phys. Rev. E 104, 044603 (2021).

[82] W. Zhang, A. Travitz, and R. G. Larson, Modeling intercolloidal
interactions induced by adsorption of mobile telechelic poly-
mers onto particle surfaces, Macromolecules 52, 5357 (2019).

054606-10

https://doi.org/10.1063/1.1671198
https://doi.org/10.1063/1.5123613
https://doi.org/10.1103/PhysRevE.97.043309
https://doi.org/10.1088/0305-4470/16/11/026
https://doi.org/10.1063/1.452707
https://doi.org/10.1063/1.454440
https://doi.org/10.1122/1.4882019
https://doi.org/10.1088/0034-4885/77/5/056602
https://doi.org/10.1021/acs.langmuir.0c00524
https://doi.org/10.1016/S0927-7757(99)00409-4
https://doi.org/10.1039/C8SM00389K
https://doi.org/10.1038/s42254-019-0077-8
https://doi.org/10.1039/D0SM01327G
https://doi.org/10.1103/PhysRevLett.76.150
https://doi.org/10.1039/C8SM00430G
https://doi.org/10.1073/pnas.1116334109
https://doi.org/10.1103/PhysRevLett.123.260602
https://doi.org/10.1103/PhysRevE.97.042610
https://doi.org/10.1122/1.5063362
https://doi.org/10.1073/pnas.1817564116
https://doi.org/10.1039/D0CP03633A
https://doi.org/10.1016/S0001-8686(97)00312-6
https://doi.org/10.1088/0034-4885/66/10/R05
https://doi.org/10.1021/acs.chemrev.5b00690
https://doi.org/10.1021/acscentsci.8b00669
https://doi.org/10.1021/acs.macromol.0c02189
https://doi.org/10.1021/acsmaterialsau.1c00015
https://doi.org/10.1038/s43586-021-00064-9
https://doi.org/10.1021/acscentsci.2c00382
https://doi.org/10.1103/PhysRevE.59.5706
https://doi.org/10.1103/PhysRevE.63.011401
https://doi.org/10.1103/RevModPhys.82.789
https://doi.org/10.1103/PhysRevLett.125.258004
https://doi.org/10.1063/1.1673684
https://doi.org/10.1063/1.2939120
https://doi.org/10.1063/5.0037963
https://doi.org/10.1103/PhysRevE.104.044603
https://doi.org/10.1021/acs.macromol.9b00775


BROWNIAN DYNAMICS SIMULATIONS OF HARD … PHYSICAL REVIEW E 106, 054606 (2022)

[83] P. Amani, S. I. Karakashev, N. A. Grozev, S. S. Simeonova, R.
Miller, V. Rudolph, and M. Firouzi, Effect of selected monova-
lent salts on surfactant stabilized foams, Adv. Colloid Interface
Sci. 295, 102490 (2021).

[84] J. W. Bye and R. A. Curtis, Controlling phase separation of
lysozyme with polyvalent anions, J. Phys. Chem. B 123, 593
(2019).

[85] The computational time for generating the stationary pro-
file in the DDFT increases as �x−2. Our choice �x =
10−3 allowed us to obtain the equilibrium profile in
a computational time of about one day with an Intel
Core i5-7600 CPU 3.50 GHz processor. For a spatial
resolution �x = 10−4 the computational time would be
100 days.

054606-11

https://doi.org/10.1016/j.cis.2021.102490
https://doi.org/10.1021/acs.jpcb.8b10868

