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Sound attenuation in two-dimensional glasses at finite temperatures
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The thermal conductivity of glasses exhibits an unusual temperature dependence compared to their crystalline
counterparts. Sound attenuation due to disorder in glasses was proposed to be important in rationalizing this
special behavior. Simulation studies suggest that in the harmonic approximation, the sound attenuation follows
Rayleigh scattering scaling at small wave vector in both two-dimensional (2D) and 3D glasses. The influence of
the anharmonicity on sound attenuation has very recently been investigated numerically, but only in 3D glasses.
Hence, it remains unknown in simulations how sound attenuation changes with the wave vector in 2D glasses
when the anharmonicity comes into play. Here, we address this issue by performing computer simulations in
low-temperature 2D glasses over a large range of glass stabilities. We find that the way the anharmonicity affects
sound attenuation in 2D glasses is the same as that in 3D, thus revealing that numerically the influence of the
anharmonicity on sound attenuation does not rely on the spatial dimension.
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I. INTRODUCTION

Different from ordered crystals, glasses are well known
to be characteristic of disorder in structures or other physi-
cal observables [1,2]. The intrinsic disorder endows glasses
with various thermal and vibrational properties [3–9] that are
markedly different from their crystalline counterparts. One
is that the thermal conductivity κ in glasses exhibits an un-
usual temperature T dependence. Specifically, κ below around
1 K behaves as T 2 in glasses, instead of T 3 as observed in
crystals. Moreover, near approximately 10 K, κ exhibits a T -
independent plateau, which is different from how κ performs
in crystals within the same temperature regime. Such abnor-
mal behavior in the thermal conductivity has been suggested
to originate potentially from sound attenuation of glasses due
to the disorder, which also constitutes one important reason to
study sound attenuation in glasses.

In the literature, one could find that sound attenuation in
glasses has been a subject of persistent research up to now.
Although there have been some theoretical explanations or
predictions with respect to sound attenuation under differ-
ent theoretical frameworks [11–15], the physical origin of it
seems to still be debated. Moreover, there even seems to be no
consensus on how sound waves are attenuated in simulation
studies of different glasses. Some simulation studies [16–19]
have demonstrated that in the harmonic approximation, sound
attenuation � follows Rayleigh scattering scaling at small
wave vectors k in two-dimensional (2D) and 3D glasses, i.e.,
� ∼ kd+1 with d spatial dimension, while � ∼ k2 at large k,
independent of d . In between the small-k � ∼ kd+1 and the
large-k � ∼ k2 regimes, it was suggested in Ref. [20] that
there is a logarithmic correction to the Rayleigh scattering
scaling regime, i.e., � ∼ kd+1ln(k). However, this logarithmic
behavior was subsequently demonstrated to be nearly absent
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in very stable glasses [16]. In addition, there have been stud-
ies [21] suggesting that � exhibits a linear relation with k at
higher k beyond the high-k quadratic scaling region.

Moreover, there seems to be a more complex picture
with respect to sound attenuation in realistic low-temperature
glasses, where anharmonic effects induced by, e.g., thermal
motions, may come into play. The anharmonicity caused by
thermal motions is suppressed and negligible at very low tem-
peratures, but becomes gradually obvious with the increase
of temperature. In scattering experiments [22–25] where an-
harmonicity is non-negligible, it was suggested that � ∼ k2

in small- and large-k regimes, with the Rayleigh scattering
scaling in between. However, it was also observed that � ∼ k
instead of � ∼ k2 at small wave vector in one experimental
study of vitreous germanium [26].

The influence of the anharmonicity on sound attenuation
has very recently been investigated by simulations, but only
in 3D glasses. Simulation studies [27,28] of low-temperature
monodisperse Leonard-Jones 3D glasses found that � ∼ k1.5

at small wave vector, with the Rayleigh scattering and � ∼
k2 scalings in the intermediate-k and large-k regimes, re-
spectively. Wang et al. [29] examined the sound attenuation
in low-temperature polydisperse inverse-power-law-potential
3D glasses over a wide range of glass stabilities. They found
� ∼ k1.5 for an ageing glass, which is easily observed in
poorly annealed glass, while � ∼ k2 when there is no ageing
on the calculated timescale. The nonquadratic scaling of �

is consistent with the prediction of fluctuating elasticity the-
ory [11,26,30]. This theory predicts that the anharmonicity
results in a nonquadratic scaling of � in glasses which are
on the verge of an elasticity instability, but a quadratic scaling
in glasses far away from the instability. However, there seems
to be no direct evidence showing that those glasses showing
nonquadratic scaling of sound attenuation studied by Wang
and co-workers [29], and Mizuno and co-workers [27,28],
are close to an elasticity instability. A compilation of studies
in 3D glasses could reach one common conclusion that the
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anharmonicity mainly affects the behavior of the small-wave-
vector sound attenuation [27–29].

Interestingly, the sound attenuation was suggested to be
correlated to the low-frequency vibrational modes in excess
of Debye prediction in both 2D and 3D glasses [10,16,18,31].
Very recently, it was demonstrated explicitly in Ref. [31] that
these excess modes’ density scales differently in 2D glasses
than in 3D glasses, which further implies that the properties
of glasses and glass-forming liquids may not be extrapolated
across different spatial dimensions [32]. This also motivates
us to check numerically whether the effect of anharmonicity
on sound attenuation depends on the spatial dimension.

In this work, we studied low-temperature sound attenuation
in 2D glasses over a wide range of stabilities, from very poorly
annealed to very stable glasses with stability comparable to
experimental glasses. When the anharmonicity induced by
temperature comes into play, in all glasses examined, we
observe � ∼ kβ with β �= 3 at very low wave vector. Specif-
ically, for poorly annealed glasses, we find β varies from
1.5 to 2.0 with waiting times increased, while for very stable
glasses, we can always observe β = 2.0 within our available
range of waiting times. Our main conclusions in 2D glasses
are almost the same as those observed in 3D glasses [29].
Hence, our findings suggest that the anharmonicity effect on
the low-frequency (low-wave-vector) sound attenuation does
not depend on spatial dimension.

II. SIMULATION DETAILS

We simulated a continuous polydisperse two-dimensional
system composed of N = 20 000 particles with equal mass
m = 1. The number density is ρ = 1.0. Periodic bound-
ary conditions are applied in both two directions. The
interaction between particles i and j is the purely repulsive in-
verse power-law potential, V (rij ) = ( σij

rij
)12 + c0 + c1( rij

σ ij )2 +
c2( rij

σij
)4, when their separation rij is smaller than the cutoff

distance rcut = 1.25σij, and zero otherwise. Here, the con-
stants c0, c1, and c2 are set to guarantee the continuity of the
potential at rcut up to its second derivative. The distribution
of the particle diameter σ follows p(σ ) ∼ σ−3, and we de-
termine the cross diameter between particles i and j through
the nonadditive mixing rule, i.e., σij = σi+σj

2 (1 − 0.2|σi − σj|).
Details regarding our simulation model could also be found in
Ref. [33].

We employed the swap Monte Carlo method [34] to
prepare equilibrated supercooled liquids at different parent
temperature Tp, which ranges from Tp = 0.40 > Tonset down
to Tp = 0.03 < Tg; here, Tonset ≈ 0.25 is the onset temper-
ature of slow dynamics and Tg ≈ 0.082 is the estimated
experimental glass transition temperature [33]. We performed
molecular dynamics simulations using the LAMMPS program
package [35,36] to obtain finite-temperature glasses. First,
we created a zero-temperature (T = 0) glass by performing
an instantaneous quench of a configuration equilibrated at
Tp down to zero temperature, and the energy minimization
method used is the conjugate gradient algorithm. Second, we
heated the T = 0 glass to the desired T in the NVT ensemble.
Third, the resulting glass was equilibrated for a time of tw,
which is in the following referred to as waiting time. Finally,

we collected data in the NVE ensemble. The average was
taken over 40 different initial configurations equilibrated at
Tp.

Following the previous procedure [29] to get sound at-
tenuation information, we calculate the transverse (T) and
longitudinal (L) current density correlation functions, which
read

Cλ(k, t ) =
〈 �Jλ(k, t ) · �Jλ(−k, 0)

�Jλ(k, 0) · �Jλ(−k, 0)

〉
, (1)

with

�JT(k, t ) =
N∑

j=1

{�v j (t ) − [�v j (t ) · k̂]k̂}ei�k·�r j (t ) (2)

for the transverse part, and

�JL(k, t ) =
N∑

j=1

{[�v j (t ) · k̂]k̂}ei�k·�r j (t ) (3)

for the longitudinal part. Here, �v j (t ) is the velocity of particle
j at time t , k = |�k|, and k̂ = �k/|�k| with �k the wave vector.

Ideally, Cλ(k, t ) could usually be fitted by a function,
exp(−�λt/2) cos(ωλt ), where we could get the characteristic
frequency ωλ and the sound attenuation coefficient �λ. How-
ever, recent studies [16,18,29] suggest that finite-size effects
could prevent the fitting function from working in the long-
time tail of Cλ(k, t ) in a finite-size system. Therefore, we
follow the restricted envelope fit method [16,29] to eliminate
the finite-size effects in the calculation of sound attenuation.

An illustration of using the restricted envelope fit method
is shown in Fig. 1. Figure 1(a) shows a typical transverse
current correlation function CT(k, t ) in 2D glasses studied in
this work. We determine the envelope ET(k, t ) corresponding
to CT(k, t ) as peak values in |CT(k, t )|, the absolute value of
the CT(k, t ); see Fig. 1(b). We then fit in Fig. 1(c), ET(k, t )
to exp(−�Tt/2). One could observe that the fitting can no
longer work when the time exceeds a characteristic timescale,
which is denoted as tc,λ. We checked the dependence of tc,λ on
other parameters in Fig. 6 in the Appendix, and found that
tc,λ depends on, e.g., the wave vector and the polarization,
but varies little with temperatures for a fixed wave vector.
As explained in previous studies [16,18,29], the deviation of
CT(k, t ) from the fitting function at time larger than tc is due
to finite-size effects. Hence, we get �T by fitting ET(k, t ) up
to around tc; see Fig. 1(c). A more detailed discussion with
respect to the finite-size effects on sound attenuation can be
found in Refs. [16,18,29].

Moreover, to ensure the reliability of our methods used in
this work, we show in Fig. 7 in the Appendix the comparison
of the sound attenuation and disperse relation in glasses at
a very low temperature and at zero temperature. The sound
attenuation and frequency in the very low-temperature glasses
are obtained from the fit to the current density correlation
function [see Eq. (1)], while those in the zero-temperature
glasses are from the fit to the velocity correlation function
calculated during the integration of a harmonic equation of
motion; see Refs. [16,19,20] for more details. One would
expect that the two methods could produce the same results
in the zero- and finite-temperature glasses, provided that the
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FIG. 1. An illustration showing how we obtain the sound attenuation coefficient � using the restricted envelope fit method. (a) The time
evolution t of the transverse current correlation function CT (k, t ) at a wave vector k ≈ 0.089. (b) The absolute value of CT (k, t ), |CT (k, t )| and
(c) the corresponding envelope ET(k, t ). In (b), we define the envelope as the peaks of |CT (k, t )|. For visualization purposes, we do not show
in (b) all the data corresponding to that shown in (a). The solid line in (c) indicates ET(k, t ) = exp(−�Tt/2) with �T ≈ 0.0042. We get �T by
the fit to ET(k, t ) in the short-time regime, where ET(k, t ) does not deviate from the fitting line; we note that the fail of the fit at longer time is
due to finite-size effects, as explained in detail in Refs. [16,18,29].

temperature for the finite-temperature glasses is so low that
anharmonic effects could be neglected. Our comparison sug-
gests that the two methods could indeed lead to consistent
results.

III. RESULTS AND DISCUSSION

A. Waiting time dependence of sound attenuation
in poorly annealed glasses

Our finite-temperature glass could be characterized by
three parameters, i.e., temperature T , parent temperature Tp,
and the waiting time tw. These parameters couple together to
determine the stability of the resulting glass. We first study
how tw affects sound attenuation with both Tp and T fixed.
Since tw refers to how long the glass is annealed before our
production run, it is expected a larger tw will result in a more
stable glass. For our very stable low-temperature glasses with,
e.g., Tp = 0.03, we observe no visible dependence of sound
attenuation on tw within our simulation time window. We note
here that our tw that is examined is up to one million. However,
for our very poorly annealed glasses, we do find tw could
have a marked influence on sound attenuation, which will be
discussed in this section.

We show the waiting time tw dependence of the transverse
sound attenuation �T(k) in Fig. 2(a) and longitudinal sound
attenuation �L(k) in Fig. 2(b), respectively, in our very poorly
annealed glasses with (T = 0.03, Tp = 0.40). For the trans-
verse part, we find that tw = 100 and tw = 1 M will result
in two glasses with the same sound attenuation at large k,
suggesting that the high-k sound attenuation does not depend
on the examined waiting times. However, the resulting two
glasses with tw = 100 and tw = 1 M exhibit markedly differ-
ent scalings of sound attenuation at very small k. For instance,
one could observe �T(k) ∼ k1.5 in the tw = 100 glass, but
�T(k) ∼ k2 in the tw = 1 M glass. We find the same scenario
in which the waiting time only affects the low-k sound atten-
uation also applies to the longitudinal part; see Fig. 2(b). In
addition, for tw = 100, we could observe the k1.5 scaling of
�T(k) spans a wider wave-vector range than that of �L(k). We
note that if one wants to observe a more obvious distinction

of the low-k longitudinal sound attenuations in glasses with,
e.g., tw = 100 and tw = 1 M, a much larger system than the
one that we are examining in this work is needed.

The influence of waiting time on sound attenuation in the
poorly annealed 2D glasses examined here resembles that in
3D glasses observed in Ref. [29]. Specifically, it has been re-
ported in Ref. [29] that the low-k scaling of sound attenuation
changes from k1.5 to k2 with increasing waiting time in 3D
poorly annealed glasses with the same potential model in this
work. However, we notice that the study [27,28] of poorly
annealed monodisperse Leonard-Jones 3D glasses suggests
that � ∼ k1.5 at small wave vector, and it remains unknown
whether increasing the waiting time in these glasses could
reach a different scaling. Therefore, we conclude that the non-
negligible influence of waiting time on the low-wave-vector
sound attenuation in poorly annealed glasses could be gener-
alized to different dimensions, at least in the glasses examined
in our model.

B. Temperature dependence of sound attenuation
and its related properties in stable glasses

As mentioned in the previous section, our glasses’ sta-
bility is controlled by a combination of Tp, T , and tw. Our

FIG. 2. Waiting time tw dependence of sound attenuation for
(a) transverse modes and (b) longitudinal modes in very poorly
annealed glasses (T = 0.03, Tp = 0.40). The scaling of �T(k) with
k changes from around k1.5 to k2, with tw increased from tw = 100 to
tw = 1 M, as does the scaling of �L(k).
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FIG. 3. Temperature T dependence of the (a) transverse and
(b) longitudinal sound attenuation in very stable glasses with (Tp =
0.03, tw = 100). We find that the change of tw over a wide time
range from tw = 10 to tw = 1 M does not alter the sound attenuation
in these low-temperature stable glasses examined here. The inset in
(a) shows the correlation between kc,λ and T . kc,λ at each T is defined
as the wave vector at the intersection of two lines: One line repre-
sents the low-k scaling, �λ(k) ∼ k2, and the other one represents the
intermediate-k Rayleigh scattering scaling, �λ(k) ∼ k3. The inset in
(b) shows the temperature dependence of the quadratic coefficient
B2,λ in �λ(k) = B2,λk2 at very low k. The black and red dashed lines
in the insets correspond to power laws of T 0.46 and T 0.52, respectively.
We find kc,T ∼ B2,T ∼ T 0.46 while kc,L ∼ B2,L ∼ T 0.52.

calculation shows that sound attenuation in our very stable
glasses does not show visible change with the tw that we have
examined. However, we find that the sound attenuation in the
stable glasses is sensitive to T when the anharmonicity in-
duced by thermal motions becomes not negligible. We discuss
in Fig. 3 how T affects sound attenuation in our most stable
glasses with Tp = 0.03 and tw = 100.

For the transverse part in Fig. 3(a) and longitudinal part in
Fig. 3(b), the Rayleigh scattering scaling �λ(k) ∼ k3 seems
to work well without interruption in the low-k regime at T =
0.0001. Note that we find �λ(k) at T = 0.0001 and T = 0 is
almost the same; see Fig. 7 in the Appendix. With increasing
T , the influence of anharmonic effects on sound attenuation
becomes visible within our probed wave-vector regime. For
glasses at T = 0.01 and T = 0.05, we can observe �λ(k) =
B2,λk2 at small k � kc,λ, and both B2,λ and kc,λ increase with
increasing T for λ = T (or λ = L). It should be noted that we
observe no k1.5 scaling of �λ(k) in these stable glasses at all
the examined waiting times, which is markedly different than
the case in poorly annealed 2D glasses as shown in Fig. 2.

At the very large-k regime, there is a nearly T -independent
quadratic scaling of �λ(k), which is different form the low-k
quadratic scaling that depends on T . With increasing T , the
low-k and high-k quadratic scalings of �λ(k) have the trend
to merge. In between the low-k and high-k quadratic scaling
regimes is the Rayleigh scattering scaling, �λ(k) ∼ k3, whose
prefactor, i.e., �λ(k)/k3, does not depend on T . However,
the Rayleigh scattering scaling regime contracts with increas-
ing T and nearly disappears at very high T . Therefore, we
conclude that the temperature-induced anharmonicity affects
sound attenuation more at low k than at intermediate k, but it
has nearly no effects on the high-k sound attenuation. This is
qualitatively similar to what have been reported when study-
ing the T dependence of sound attenuations in 3D stable
glasses [29].

We next studied in a more quantitative way how T changes
the upper wave-vector limit kc,λ for the low-k scaling of
�λ(k) = B2,λk2; we also checked how T changes the quadratic
coefficient B2,λ. The T dependence of kc,T and kc,L is shown
in the inset to Fig. 3(a), while in the inset to Fig. 3(b) is the T
dependence of B2,T and B2,L. We determine, e.g., kc,T as the
intersection of the low-k quadratic and the intermediate-k cu-
bic power-law fitting lines. One can observe that kc,λ becomes
larger with increasing T , suggesting the influence of stronger
anharmonicity induced by increasing T extends to a larger k.
Our tentative fitting suggests that kc,λ ∼ T γ with γ ≈ 0.46
for λ = T , but γ ≈ 0.52 for λ = L. For the quadratic coeffi-
cient B2,λ, it also goes up with increasing T , and hence the
low-k sound modes in a higher-temperature glass are scat-
tered more. At a fixed T , we find B2,L is always larger than
B2,T. This suggests that for modes with the same wavelength,
the longitudinal modes are scattered more severely than the
transverse ones. In addition, we find the fits of the B2,λ vs
T data to power laws, B2,L ∼ T 0.46 and B2,L ∼ T 0.52, could
work well. Hence, the above analysis in 2D stable glasses
suggests that kc,T ∼ B2,T ∼ T 0.46, while kc,L ∼ B2,L ∼ T 0.52.
It has been reported [29], in 3D stable glasses with the same
potential model as employed in this work, that B2,T ∼ T 0.48.
We notice how B2,L scales with T was not given explicitly in
Ref. [29]. Therefore, the way B2,T depends on T in 2D stable
glasses is very similar to that in 3D glasses. It should be noted
here that we used power laws which could fit our data well,
but we do not exclude that other fitting functions may also
work.

Recent simulations have suggested that the longitudinal
sound attenuation is proportional to the transverse one when
plotted as a function of frequency ω in 3D glasses at zero tem-
perature [16,17] and finite temperatures [29], i.e., �T(ω) =
S ∗ �L(ω), with S a scaling constant. The existence of such a
linear correlation could simplify the study of sound attenua-
tion. Specifically, one sometimes does not have to calculate
both parts: Longitudinal and transverse sound attenuation;
instead, one only needs to calculate one part and then get
the other one by extrapolation from the linear relation. This is
more important to experimental studies of sound attenuation
because the longitudinal sound attenuation can be obtained
directly from scattering experiments, while it is technically
difficult to perform a direct measurement of the transverse
sound attenuation in realistic experiments [22–25]. Here, the
linear relation �T(ω) = S ∗ �L(ω) is tested numerically in 2D
glasses though it has proven to be valid in 3D glasses by
simulations.

We show in Fig. 4 the sound attenuation as a function of
frequency ω in our 2D stable glasses, which are the same
glasses examined in Fig. 3. One can observe that the relation
�T(ω) = S ∗ �L(ω) is still valid at different T . At interme-
diate temperatures, e.g., at T = 0.01, �λ(ω) scales with ω

squared at low and high ω, and the Rayleigh scattering scaling
works at intermediate ω. However, we find that the scaling
constant S exhibits a non-negligible dependence on T , e.g.,
we find S changes by about 20% when T varies from 0.0001
to 0.05. This is different from the finding that S is nearly
independent of T in 3D stable glasses [29]. We note that we
find �T(ω) ∼ �L(ω) could also work in our poorly annealed
2D glasses.
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FIG. 4. Sound attenuation as a function of frequency in stable
glasses with the same Tp = 0.03 and tw = 100, but different T . The
glasses examined here are the same as shown in Fig. 3, where sound
attenuation is plotted as a function of the wave vector. �L(ω) at each
T is scaled by a factor S to achieve the best collapse between �L(ω)
and �T(ω). We find that S exhibits a non-negligible temperature
dependence, e.g., S ≈ 2.89 for T = 0.0001, S ≈ 2.52 for T = 0.01,
and S ≈ 2.32 for T = 0.05.

In the last part of this section, we move on to study how
the anharmonicity induced by temperatures affects sound ve-

locities; the related results are reported in Fig. 5. Note that
the glasses examined in Fig. 5 have the same Tp = 0.03 as
those examined in Figs. 3 and 4. We first compare the disperse
relation for transverse excitations ωT(k) in Fig. 5(a) and lon-
gitudinal excitations ωL(k) in Fig. 5(b) at T = 0.0001, T =
0.01, and T = 0.05. One could observe that there is almost no
visible difference in ωT(k) or ωL(k) between the three finite-
temperature glasses. However, as shown in Fig. 3, the same
three glasses exhibit an obvious difference in the low-k be-
haviors of both �T(k) and �L(k). Therefore, it appears that the
anharmonicity affects the sound attenuation more than the dis-
perse relation. Moreover, ωλ(k) seems to scale linearly with k
in the ωλ(k) vs k representation, whereas it has been suggested
that Cλ(k) = ωT(k)/k is not always a constant in the Cλ(k) vs
k representation. We find it to be the case; see Fig. 5(c) for
the transverse polarization and Fig. 5(d) for the longitudinal
one. CT(k) shows a minimum at around a wave vector km,
in agreement with previous results [16,17,19,20,27,37–39]. In
particular, above km, CT(k) increases with increasing k, which
is usually referred to as sound hardening, while below km,
CT(k) increases with decreasing k, which is referred to as
sound softening. Note that at the lowest wave vectors that
we examined, CT(k) is approaching a plateau. The data in
Fig. 5(d) for CL(k) follow a similar scenario, except that the
hardening of longitudinal sound is not obvious in our probed
range of k.

Since both CL(k) and CT(k) appear to be a plateau at
the lowest wave vectors in each finite-temperature glass,

FIG. 5. Temperature dependence of (a), (b) frequency ωλ(k) and (c), (d) sound velocity Cλ(k) = ωλ(k)/k for glasses with the same
Tp = 0.03 and tw = 100. The horizontal dashed lines in (c) and (d) indicate the macroscopic values of the transverse and longitudinal sound
velocities, CT(0) and CL(0), in T = 0 glasses. CT(0) and CL(0) were calculated from the shear modulus G and bulk modulus B as follows:
CT(0) = √

G/ρ and CL(0) = √
(G + B)/ρ. Note that we obtained G and B in T = 0 glasses by performing quasistatic deformation simulations;

for reference, G ≈ 8.70 and B ≈ 25.87 in T = 0 glasses. In (e) and (f), the longitudinal sound velocity CL(ω) calculated from CL(ω) = ωL/k
is compared with CL(ω) calculated from the corresponding transverse sound velocity, i.e., CL(ω) = √

B/ρ + C2
T (ω). Following Refs. [17,19],

we assume here that B is frequency independent. B in our finite-temperature glasses is derived from the macroscopic sound velocities which
are determined from the low-k plateau in Cλ(k) vs k plots.
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we check to see whether the values of CT(k) and CL(k)
at the lowest wave vectors are around their corresponding
macroscopic values in the long-wavelength limit, CT(0) and
CL(0). We obtained CT(0) and CL(0) in 2D glasses as fol-
lows: CT(0) = √

G/ρ and CL(0) = √
(G + B)/ρ, with G the

shear modulus and B the bulk modulus. In Fig. 7 in the
Appendix, we could see no difference in ωλ(k) between
T = 0.0001 and T = 0 glasses, and the two glasses also
have nearly the same �λ(k). Therefore, we assume the an-
harmonicity due to thermal motions in T = 0.0001 glasses
could be negligible. In line with this reasoning, we use
Cλ(0) calculated at T = 0 to represent Cλ(0) in T = 0.0001
glass. Note that it has been suggested in simulation stud-
ies [17,19] that the low-k plateau value of Cλ(k) coincides
with the corresponding macroscopic Cλ(0). Taking these to-
gether, we would expect Cλ(0) obtained at T = 0 could be
approximately equal to the height of the low-k plateau of
Cλ(k) at T = 0.0001. We find it to be the case. Specifi-
cally, the dashed lines indicating CT(0) from T = 0 glasses
in Fig. 5(c) and CL(0) from T = 0 glasses in Fig. 5(d) could
go through the low-k data for CT(k) and CL(k) in T = 0.0001
glasses, respectively. Note that the dashed lines in Figs. 5(c)
and 5(d) are also close to the low-k Cλ(k) data for T = 0.01
glasses.

Next, we check how the macroscopic moduli change with
the anharmonicity. We first obtained the macroscopic values
Cλ(0) in each finite-temperature glass from the low-k plateau
of Cλ(k), and then extracted the corresponding B and G
from Cλ(0). As a result, we find G ≈ 8.70 at T = 0.0001,
8.66 at T = 0.01, and 8.42 at T = 0.05, while B ≈ 25.76
at T = 0.0001, 26.08 at T = 0.01, and 27.20 at T = 0.05.
Hence, G decreases, though mildly, with increasing temper-
ature, which is expected since the glasses become less stable
with increasing temperatures; however, the corresponding B
increases systematically, though also mildly, with increas-
ing temperature, which is not expected. We notice that the
unexpected decease of bulk modulus with increasing glass
stability has even been reported in Ref. [8], where the authors
studied the same model glasses as examined in this work
but in 3D and at T = 0, and the glass stability is tuned by
parent temperatures from which T = 0 glasses are quenched.
In addition, we find B decreases as well with increasing glass
stability (or decreasing Tp) in zero-temperature 2D glasses,
e.g., B changes approximately from 32.44 to 25.87 with Tp

decreased from 0.40 to 0.03. Further work is needed to un-
derstand the decrease of bulk modulus with increasing glass
stability.

Moreover, it was suggested in Ref. [17] by studying
Leonard-Jones glasses that the simple proportionality between
the frequency dependence of the longitudinal and transverse
sound attenuations, �L(ω) and �T(ω), is accompanied by
a simple relation between the longitudinal and transverse

sound velocities, i.e., CL(ω) =
√

B/ρ + C2
T (ω) in 2D and

CL(ω) =
√

B/ρ + 4
3C2

T (ω) in 3D, where B is assumed to be
frequency independent and equal to its macroscopic value.
This simple relation was found to work as well in glasses
with a purely repulsive harmonic potential [19]. However,
we also notice that it was reported in Ref. [39] that the pro-

posed simple relation may not be general. Since we could
observe the proportionality between �T(ω) and �L(ω) in
different finite-temperature glasses (see Fig. 4), it would be
interesting to check whether the previously proposed sim-
ple relation between the longitudinal and transverse sound
velocities could work in our 2D glasses. We compare in
Figs. 5(e) and 5(f) the CL(ω) data obtained by the fit to
the current density correlation function and the CL(ω) data
derived from CT(ω) by assuming B is a constant. We find that
the simple relation between the longitudinal and transverse
sound velocities could work over a wide range of frequen-
cies in our examined 2D glasses, though there seems to
be a deviation from the relation in the very high-frequency
regime.

IV. CONCLUSION

In this work, we studied numerically how the anharmonic-
ity induced by thermal motions alters sound attenuation in
finite-temperature 2D glasses. We focused on two kinds of
glasses with markedly different stabilities: One is very poorly
annealed glass with small stability, and the other one is
very stable glass whose stability is comparable to that of
experimental glass. The stability of our studied glasses is
determined by the parent temperature Tp, temperature T ,
and waiting time tw. We find that the anharmonicity affects
mainly the transverse and longitudinal sound attenuation in
the low-wave-vector regime in all the examined glasses, ir-
respective of the glass stability; however, the way it affects
sound attenuation depends on the glass stability. Specifically,
the anharmonicity makes finite-temperature glasses feature
a very low-wave-vector regime where �λ ∼ kβ with β �= 3,
which is absent in zero-temperature glasses within the har-
monic approximation. In our very poorly annealed glasses
at finite temperature, the scaling exponent β depends on tw,
i.e., β is around 1.5 for short tw, but converges to around
2.0 with the increase of tw. However, in our very stable
glasses, we observe β ≈ 2.0, independent of tw throughout
our largest available simulation time window. Moreover, we
studied the T dependence of the low-wave-vector quadratic
scaling of �λ(k) = B2,λk2 in stable glasses. We find the up-
per wave-vector limit kc,λ for this quadratic scaling increases
with T , and so does the quadratic coefficient B2,λ. To be
more quantitative, we find kc,T ∼ B2,T ∼ T 0.46 while kc,L ∼
B2,L ∼ T 0.52. This suggests that increasing anharmonicity not
only extends the low-wave-vector quadratic scaling regime,
but also enhances the amplitude of the sound attenuation
at the same wave vector. In addition, in our examined 2D
stable glasses, when plotted as a function of frequency, the
longitudinal sound attenuation is linearly proportional to the
corresponding transverse one; the longitudinal sound veloc-
ity could be derived from the corresponding transverse one
by simply assuming a frequency-independent bulk modu-
lus. Hence, taken together with previous investigations in
3D glasses [29], we conclude that the way the anharmonic-
ity affects sound attenuation does not depend on the spatial
dimension.

We note that the nonquadratic scaling of sound attenua-
tion with wave vectors has been predicted by the fluctuating
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FIG. 6. Comparison of the characteristic time tc,T(k) and tc,L(k) in (a) T = 0.0001 and (b) T = 0.05 glasses. The characteristic time tc,λ(k)
refers to the time above which the fit of the exponential decay to the envelope fails; see Fig. 1(c). For glasses at a fixed temperature, one could
observe that tc,T(k) and tc,L(k) show a small difference at very small k, but exhibit a systematic but small difference at larger k. In addition, both
tc,T(k) and tc,L(k) approximately exhibit a very low-k plateau, and then decrease monotonically with increasing k. (c) Temperature dependence
of tc,T(k) and tc,L(k) which has been scaled by a factor of 0.1 for visualization purposes. One could observe that both tc,T(k) and tc,L(k) are
nearly independent of the examined temperatures. For additional reference, we plot (d) tc,L(k) vs CL (k), (e) tc,T(k) vs CT (k), and (f) CL (k)/CT (k)
vs tc,L(k)/tc,T(k). The symbols in (d)–(f) have the same meanings. Note that glasses at T = 0.0001, T = 0.01, and T = 0.05 have the same
Tp = 0.03 and tw = 100.

elasticity theory [11,26,30], i.e., the anharmonicity results in
a nonquadratic scaling of sound attenuation in glasses with
marginal elastic instability. Moreover, it is worth noting that
this theory is an equilibrium theory which assumes a heteroge-
neous elasticity in space. However, in our simulation studies
of poorly annealed glasses, we observe that the nonquadratic
scaling appears when the waiting time is short, but disap-
pears when the waiting time is long enough. Therefore, the
nonquadratic scaling seems to be a nonequilibrium transient
phenomena from our simulation study. Further work is needed
to reconcile this inconsistency between the simulation and
theory.

Recent studies [16,18,31] show that within the harmonic
approximation in both 2D and 3D glasses, the sound at-
tenuation correlates well with the density of excess modes,
D(ω), beyond the Debye prediction. Therefore, it would be
interesting to check whether the correlation persists at finite
temperatures, which needs to figure out how D(ω) changes
with ω when taking into account anharmonicity. Very recently,
it has been suggested that the frequency ω dependence of
D(ω) relies on the spatial dimension in the harmonic ap-
proximation [31]. Specifically, for excess modes hybridizing
with phonon modes in large-scale glasses, D(ω) ∼ ω4 in
3D glasses, while D(ω) ∼ ω2 in 2D glasses, when D(ω) is
determined by subtracting off the Debye contribution from
the total density of states. We notice that studies of 3D
small glasses [40,41] at finite temperatures suggested that

D(ω) ∼ ω4 below the first sound mode. However, how D(ω)
scales with ω at very low frequencies below the first sound
mode remains a matter of debate, even in the harmonic ap-
proximation, in both 3D and 2D glasses [31,42,43]. This
hinders one from further claiming which changes in the scal-
ing of D(ω) in finite-temperature glasses result from the
anharmonicity. Moreover, it remains unknown how D(ω)
changes with ω at finite temperatures in very large glasses
whose low-frequency excess modes may be in the frequency
regime where the anharmonicity could affect sound attenua-
tion. Further work is needed to examine the scaling of D(ω)
with ω in these finite-temperature glasses, in particular, to
check whether the effect of anharmonicity on the ω depen-
dence of D(ω) relies on the spatial dimension.
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APPENDIX: SUPPORTING FIGURES

In this Appendix, we show further results in Figs. 6 and 7
to support some of our descriptions in the main text.

We show how the characteristic time tc changes with wave
vectors in Figs. 6(a)–6(c), and sound velocities in Figs. 6(d)
and 6(e) in finite-temperature glasses. Note that the charac-
teristic time tc refers to the time above which the fit of the
exponential decay to the envelope fails; see Fig. 1(c). We find
that tc is almost a constant at our lowest wave vectors and
decreases with increasing wave vectors; tc seems to depend on
the polarization (transverse or longitudinal) for the same wave
vector, but depends little on temperatures for the same wave
vector and polarization; see Fig. 6(c). In addition, we show
in Fig. 6(f) the ratio of the longitudinal sound velocity to the
transverse one vs the ratio of the longitudinal characteristic
time to the transverse one. The ratio of sound velocities is
almost a constant if ignoring several fluctuating points, while
the ratio of the characteristic timescales could change from
around 0.25 to 2.0.

In Fig. 7, we compared sound attenuation and disper-
sion relation in very low-temperature and zero-temperature
glasses. We expect that glasses at a low enough temperature
and glasses at zero temperature should show no difference
in, e.g., disperse relation and sound attenuation. For the
very low-temperature glasses, we got the sound attenuation
and frequency from the fit to the current density corre-
lation functions [see Eq. (1)], while for zero-temperature
glasses, we got the sound attenuation and frequency through
the fit to velocity correlation functions calculated during
the integration of an equation of motion within the har-
monic approximation; see Ref. [16] for more details. We
find that the two different methods could lead to consistent
results, which could help further ensure the reliability of our
results.

FIG. 7. Comparison of sound attenuation results in T = 0 and
T = 0.0001 glasses with the same Tp = 0.03. (a) The transverse
frequency ωT(k) and (b) the longitudinal one ωL(k); (c) the trans-
verse sound attenuation coefficient �T(ω) and (d) the longitudinal
one �L(ω). For T = 0.0001 glasses, we got sound attenuation coef-
ficient and frequency from the current density correlation functions
[see Eq. (1)], while we got those in T = 0 glasses using a differ-
ent method, i.e., through the fit to velocity correlation functions
calculated during the integration of an equation of motion within
the harmonic approximation; see Refs. [16,19,20] for more details
regarding this method. Symbols in (a)–(d) have the same mean-
ings. One would expect that the anharmonicity induced by thermal
motions is negligible at low enough temperatures. The examined
temperature T = 0.0001 turns out to be low enough not to induce
anharmonicity, since ωλ(k) at T = 0.0001 and T = 0 shows almost
no difference, as does �λ(ω). Therefore, our two different methods
used to extract sound attenuation information could lead to consistent
results.
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