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Densest plane group packings of regular polygons
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Packings of regular convex polygons (n-gons) that are sufficiently dense have been studied extensively in
the context of modeling physical and biological systems as well as discrete and computational geometry.
Former results were mainly regarding densest lattice or double-lattice configurations. Here we consider all
two-dimensional crystallographic symmetry groups (plane groups) by restricting the configuration space of
the general packing problem of congruent copies of a compact subset of the two-dimensional Euclidean space
to particular isomorphism classes of the discrete group of isometries. We formulate the plane group packing
problem as a nonlinear constrained optimization problem. By means of the Entropic Trust Region Packing
Algorithm that approximately solves this problem, we examine some known and unknown densest packings
of various n-gons in all 17 plane groups and state conjectures about common symmetries of the densest plane
group packings for every n-gon.
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I. INTRODUCTION

Understanding the packing properties of crystalline solids
has important implications for solid state physics modeling
[1], materials science [2,3], and biophysics [4]. In two-
dimensional Euclidean space, crystal structures based on the
densely packed representations of a molecule by a regular
convex polygon (n-gon) were found to be adequate models
for virus structures [5] or self-assembly of organic molecules
on metal surfaces [6]. Compared to the densest packings,
lower density but higher symmetry crystal structures of com-
plex noncovalent molecular systems on surface substrates
[7], monolayer covalent organic frameworks [8], or two-
dimensional crystallization of proteins on lipid monolayers
[9] can also be regarded as densest packings, although among
a particular isomorphism class of periodic structures.

Moreover, the crystallization problem and the disk packing
problem are identical in the Euclidean space of dimensions
two for some energy potentials [10,11]. Thus, fast ways of
identifying dense packings could accelerate predictions of
molecular crystal structures, where the usual approach is to
search for the lowest energy configurations [12].
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The packing problem is wellstudied in discrete and com-
putational geometry. Substantial consideration has been given
to densest lattice [13,14] and double-lattice packings [15,16]
as special cases of the general densest packing configu-
rations. On the other hand, little is known about densest
packings when configurations are restricted to the remaining
isomorphism classes of discrete groups of isometries of the
two-dimensional Euclidean space. We examine the densest
packings of various n-gons where the packing configura-
tions are restricted to one of the 17 isomorphism classes
of the discrete group of isometries of the two-dimensional
Euclidean space containing a lattice subgroup, in literature
also referred to as plane groups or wallpaper groups. Fig-
ure 2 illustrates plane group packings on densest p2, p2gg,
pg, p3, and p1 configurations of a pentagon, heptagon,
enneagon, and dodecagon. We consider finding the dens-
est plane group packing as a nonlinear, constrained, and
bounded optimization problem. Using the Entropic Trust Re-
gion Packing Algorithm [17], developed specifically to search
for densest crystallographic symmetry group packings of ar-
bitrary dimensions, we successfully recover approximations
of known densest lattice and double-lattice packing con-
figurations including a disk, regarded as a limiting n-gon
when the number of vertices approaches infinity. Additionally,
we obtained the previously unknown highest density pack-
ings of the n-gons for all 17 plane groups and n equal to
3, 4, . . . , 25, 30, 35, 36, 37, 39, 42, 55, 89.

Our experiments suggest the following relationships be-
tween symmetries of n-gons and shared symmetries of their
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FIG. 1. The colored rank table of plane groups in relation to the
number of vertices n of an n-gon. For every n = 3, . . . , 35 plane
groups are ordered according to densities in Table I, and a color is
assigned based on rank r ranging from one to rmax . The value of rmax

depends on a specific n-gon.

respective densest plane group packing configurations divided
into three classes. In the p2/p2gg/pg/p3/p1 plane group
class,

(1) except for centrally nonsymmetric n-gons containing a
three-fold rotational symmetry with number of vertices higher
or equal to nine, densities of the densest p2, p2gg, and pg
configurations are equal,

(2) for centrally symmetric n-gons, densities of the dens-
est p2, p2gg, pg, and p1 configurations are equal,

(3) for centrally nonsymmetric n-gons containing a three-
fold rotational symmetry, densities of the densest p3 and p1
configurations are equal,

(4) for centrally symmetric n-gons containing a three-fold
rotational symmetry, densities of the densest p2, p2gg, pg, p3,

and p1 configurations are equal,
in the p2mg/cm/p4 plane group class,
(1) except for n-gons with vertices equal to 12k − 1 and

12k + 1, where k is an integer, densities of densest p2mg and
cm configurations are equal,

(2) for all n-gons with 12-fold rotational symmetry, densi-
ties of the densest p2mg, cm, and p4 configurations are equal,

and in the p4gm/c2mm/pm/p2mm plane group class,
(1) densities of the densest pm and p2mm configurations

are equal for all n-gons,
(2) for centrally symmetric n-gons, densities of the dens-

est pm, p2mm, and c2mm configurations are equal,
(3) for n-gons containing a four-fold rotational symmetry,

densities of the densest pm, p2mm, c2mm, and p4gm config-
urations are equal,

Consequently, the densest known packings of a pentagon
and a heptagon have higher symmetries than that of a double-
lattice configuration.

Figure 1 visually summarizes our results. For each n-gon,
all groups are ranked according to the density of the respective
densest plane group packing, either obtained experimentally
or extrapolated from the rankings of n-gons with similar sym-
metries. For instance, the ranking of densities of a 33-gon is
based on rankings of 9-gon, 15-gon, 21-gon and 39-gon.

The manuscript is organized in the following way. Sec-
tion II introduces the plane group packing and the underlying
densest plane group packing problem. In Sec. III, we present
the densest plane group packings of regular n-gons. We

examine the symmetries of packing configurations in distinct
plane group classes based on symmetries of densest plane
group packings of a disk. Section IV summarizes our ex-
perimental results in the form of multiple conjectures about
common symmetries of the densest plane group packings of
n-gons for arbitrary n.

II. PLANE GROUP PACKING

We consider the two-dimensional Crystallographic Sym-
metry Group (CSG) G, which is a discrete subgroup of the
group of isometries of the two-dimensional Euclidean space
containing a lattice subgroup. The parallelogram spanned by
the generators of the lattice L associated with CSG G is
called the primitive cell and is denoted by UL. An asymmetric
unit is a subset of the primitive cell such that the whole
two-dimensional Euclidean space is filled when the CSG sym-
metry operations are applied.

It has to be noted that the term CSG has two distinct
meanings in literature; one referring to an actual group and the
other to a group isomorphism class. We refer to isomorphism
classes of two-dimensional CSGs as plane groups. All two-
dimensional CSGs are classified into 17 plane groups. Each
class is assigned to one of the four maximal crystallographic
point group conjugacy classes, referred to as the crystal sys-
tem. In all the following, we use the International Union of
Crystallography plane group notation [18].

Given a two-dimensional CSG G, an element of a plane
group G, and a polygon K whose centroid lies in the asym-
metric unit of G, by a CSG packing KG, we mean a collection
of nonoverlapping orbits of K with respect to the G action on
the Euclidean plane.

Since a CSG packing KG is a periodic system of rotated
and translated copies of polygon K , following the formula for
the density of packing of a periodic system [19], the density
of a CSG packing has a simple closed form expression

ρ(KG) = Narea(K )

area(UL )
,

where N is the number of symmetry operations in CSG G
modulo translations by the lattice associated with G, UL is the
primitive cell, and area(·) denotes area.

Given a plane group G and a polygon K , the densest plane
group packing of K is a CSG packing KGmax that maximizes
packing density over the whole isomorphism class G. For-
mally expressed,

KGmax = argmaxKG∈Gρ(KG).

Here we search not only over the whole plane group G but also
over all rotations and translations of K , whose centroid lies in
the asymmetric unit of G such that the resulting configuration
is a CSG packing.

Figure 2 presents examples of the densest plane group
packings of a pentagon, heptagon, enneagon, and dodecagon
in plane groups p2, p2gg, pg, p3, and p1.

We consider the densest plane group packing as a non-
linear, constrained, and bounded optimization problem. We
transform this problem via stochastic relaxation [20] to the
problem of estimation of a probability distribution with the
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FIG. 2. Densest configurations of (from top to bottom) pentagon, heptagon, enneagon, and dodecagon in plane groups p2, p2gg, pg,
p3, and p1 with the following densities: pentagon in p2/p2gg/pg � 0.92131, p3 � 0.87048, and p1 � 0.81725; heptagon in p2/p2gg/pg �

0.89269, p3 � 0.88085, and p1 � 0.86019; enneagon in p2 � 0.90103, p2gg � 0.89989, pg � 0.89860, and p3/p1 � 0.88773; dodecagon in
p2/p2gg/pg/p3/p1 � 0.92820. The blue parallelogram denotes the primitive cell of the respective configuration. Colors represent symmetry
operations modulo lattice translations.

probability mass concentrated on the maxima of the op-
timization landscape. The two-dimensional lattice group L
associated with a CSG induces a quotient space R2/L, which
is homeomorphic to a two-dimensional torus. Therefore, we
define a parametric family of probability distributions based
on the multivariate von Mises distribution [21], the Extended
Multivariate von Mises distribution (EMvM), and perform
a stochastic trust region search on the functional space in-
duced by this family of toroidal probability distributions
where the Kullback-Leibler divergence [22] defines the trust
region radius. The resulting Entropic Trust Region Pack-
ing Algorithm (ETRPA) is a variant of the natural gradient
method [23].

At the first iteration, N samples are drawn from a uniform
distribution on an n-dimensional torus. The number of sam-
ples used and dimensionality of torus depend on the crystal
system of the plane group where the search is performed.
For instance, in the case of the p2 group there are six con-
figuration parameters, two for fractional coordinates of the
polygon’s centroid in the asymmetric unit, one for the angle
of rotation of the polygon, and three parameters defining the
shape of the primitive cell, that is lengths of lattice generators
and an angle between them. For a six-dimensional torus, the
dimensionality of the EMvM parametric space is p = 72, and
number of samples drawn at each iteration is set such that
p
N < 0.07, meaning that for the search in p2 group N = 1040.
An overlap constraint violation is evaluated for each sampled
configuration, and for configurations with no intersections

between polygons, packing density is computed. Afterwards,
a new batch of samples is generated from the EMvM based
on distribution parameters estimates of the largest increase
in density and lowest constraint violation. This process is
repeated until the algorithm converges to a point distribution
or after 8000 iterations.

There are two main benefits of ETRPA. First, the search
does not depend on initial configurations, a caveat of many
stochastic search methods. The initial sampling from the
uniform distribution on an n-dimensional torus provides a
satisfactory overview of the optimization landscape induced
by the configuration space. Second, by performing the search
on an n-dimensional torus, we cover problematic instances
when the optimal solution lies on the boundary.

To further improve the accuracy of the approximate so-
lutions, after the initial run of the ETRPA search, we
perform a refining process by creating progressively smaller
ε-neighborhoods around the best solution found and employ
ETRPA with new boundaries defined by the ε-neighborhoods.
To prevent the escape of the optimal solution from the
ε-neighborhood, if a solution with higher density than in pre-
vious runs is found, the ε-neighborhood is not decreased, only
recentered on this solution. Otherwise, the ε-neighborhood is
decreased. The lowering of ε is repeated 30 times.

It has to be noted that the entropic trust region is not a
physical simulation since particles in the system are allowed
to overlap during the search. A detailed treatment of ETRPA
is presented for the interested reader in [17].
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III. RESULTS

Using the ETRPA, we recovered known, as well as ob-
tained previously unknown densest packings of n-gons for
n = 3, 4, . . . , 25, 30, 35, 36, 37, 39, 42, 55, 89 in all 17 plane
groups, including a disk regarded as a limiting n-gon when
the number of vertices n approaches infinity. The densities
of the densest configurations obtained in our experiments for
n = 3, 4, . . . , 25 are shown in Table I [24]. All the values are
truncated at the fifth decimal place.

In the following paragraphs, we examine these configura-
tions classified according to the disk’s densest plane group
packings. Since the symmetry group of a circle contains sym-
metries of all n-gons, our results indicate that the 24-fold
rotational symmetry of an n-gon is sufficient to constitute
the optimal plane group configurations of a disk and further
suggests a relationship with the plane group symmetries. No-
tably, for the packing densities to be equal in the plane group
class p2/p2gg/pg/p3/p1, two-fold and three-fold rotational
symmetries are necessary, examined in Sec. III A. In the class
p2mg/cm/p4, a four-fold rotational and a local three-fold
symmetry is necessary, examined in Sec. III B, and in the class
p4gm/c2mm/pm/p2mm, a four-fold rotational symmetry is
necessary, examined in Sec. III C. In the context of the crystal-
lographic restriction theorem [25], which states that periodic
crystals can only have two-fold, three-fold, four-fold, and
six-fold rotational symmetries, minimal rotational symmetry
containing all preceding is 12-fold. However, a 12-fold rota-
tional symmetry of an n-gon does not cover a local eight-fold
rotational symmetry that is present in a disk’s optimal p4mm
packing, as demonstrated in Sec. III D. Therefore, minimal
symmetry containing the symmetries mentioned earlier is a
24-fold rotational symmetry.

A. Densest p2, pg, p2gg, p3, and p1 packings

It is known that the packing density of the densest packing
of a disk is π√

12
≈ 0.9068996 . . . [14]. This density was at-

tained as the densest plane group packing of a disk in groups
p2, p2gg, pg, p3, and p1.

The highest packing densities among all plane groups were
observed in the plane group p2 for all examined n-gons. The
p2 group is sometimes referred to as a double lattice since
it can be viewed as a collection of two lattices related by a
two-fold rotational symmetry.

Our results are consistent with known densest packings of
polygons, that is, the uniform triangular, square, and hexag-
onal tilings, densest known packing of a pentagon [16],
heptagon [15], octagon [26], enneagon [27], and disk [28].
Moreover, given that the double lattice packing is at least lo-
cally optimal for convex polygons in the space of all packings
[29] and that the plane group packings are inherently periodic,
our results support the optimality of p2 packing among all
plane group packings.

Additionally, for the space of plane group packing config-
urations, we experimentally verified the conjecture that the
densest p2 packing of the heptagon is less than any other
shape [30]. The extremality of the heptagon can be general-
ized to all n-gons since the p2 packing density converges to
the optimal packing density of a disk when the number of

FIG. 3. Densities of the densest packings of examined n-gons in
the p2/p2gg/pg/p3/p1 plane groups class. The red line denotes the
density of the densest disk packing in this plane group class.

vertices is increased, as is shown in Fig. 3. Moreover, our
results suggest that for every n-gon such that n > 6k + 1 = m
and k ∈ N the densest p2 n-gon packing is strictly higher than
the densest p2 m-gon packing.

Further, our results show that for some n-gons, the densest
plane group packings in groups p2, p2gg, and pg are equal.
Thus the densest known configurations of pentagon and hep-
tagon have higher symmetry than a double lattice, and these
configurations can be realized using a glide reflection instead
of a rotation by π around the center of symmetry of the p2
group. This observation holds for every n-gon we examined,
where the number of vertices n of a given n-gon is not equal
to 3k where k = 2, 3, . . ..

It is known that the group p2gg has three maximal noniso-
morphic subgroups, one with p2 symmetry and two with pg
symmetry [18]. Due to the mirror symmetry of n-gons and the
equality of densest p2 and pg configurations, in the densest
p2gg configuration, the p2 subgroup induces an additional
pg symmetry, and the glide reflection plane of one of the
pg subgroups induces an additional p2 symmetry. Thus, the
densest p2gg configuration coincides with the densest p2 and
pg configurations in these cases.

The only instances where the equality between maximal
densities in groups p2, p2gg, and pg does not hold is for
n-gons with three-fold but no central symmetry where n � 9.
The lowest densities of these three packing configurations
were attained in the pg group. Furthermore, any densest pg
configuration of an n-gon can be easily converted to a p2gg
and p2 packing with the same density, which means that the
densest pg packings for a fixed n can serve as a lower bound
for p2 and p2gg densest packings. In fact, this lower bound
was attained as densest p2 and p2gg packings for all but cen-
trally non-symmetric n-gons containing a three-fold rotational
symmetry and n � 9. The additional symmetry operations in
p2gg group and the additional degree of freedom of the p2
crystal system (oblique) allow for higher density packing than
that of pg in these cases.
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FIG. 4. Densest configurations of (top) heptagon, (middle) endecagon, and (bottom) dodecagon in plane groups p2mg, cm, and p4 with the
following densities: heptagon in p2mg/cm � 0.84226 and p4 � 0.84219; endecagon in p2mg � 0.83116, cm � 0.82795, and p4 � 0.83780;
dodecagon in p2mg/cm/p4 � 0.86156. The blue parallelogram denotes the primitive cell of the respective configuration. Colors represent
symmetry operations modulo lattice translations.

The densest packing of a convex compact subset of the
two-dimensional Euclidean space with central symmetry is
that of a lattice packing [31]. In the crystallographic setting,
it is the plane group p1, which is a group containing only
lattice translations. Moreover, any lattice packing of a cen-
trally symmetric convex polygon can be easily converted to
a p2 packing with the same density [32], meaning that for
centrally symmetric n-gons, densities of the densest p1 and
p2 packings are equal. Indeed, in our experiments, the densest
p2 packings of centrally symmetric n-gons attained the same
approximate highest density as in p1. Moreover, we obtained
the same densities as in the densest p2gg and pg packings.
These observations suggest that optimal packings of centrally
symmetric polygons can also be realized as either two lattices
related to each other by a glide reflection or as four lattices
related to each other by two glide reflections and two-fold
rotational symmetry. Consequently, optimal packings of cen-
trally symmetric n-gons have higher symmetry than that of a
lattice or double lattice packing.

Concerning the densest p3 and p1 packings of n-gons
with three-fold rotational symmetry, our results show that
the densities in these instances are equal. Moreover, combin-
ing two-fold and three-fold rotational symmetries for n-gons,
where the number of vertices n is divisible by six, the densities
of the densest packings in groups p2, p2gg, pg, p3, and p1
are equal. Consequently, in our experiments, the symmetries
of optimal packing configurations of n-gons with a six-fold
rotational symmetry coincided with the symmetries of optimal
packing configurations of a disk.

Additionally, it is known that the densest p1 packing of
a regular triangle has the lowest density among all densest
p1 configurations of two-dimensional convex shapes [13].
Combined with the observation that for n-gons without central
symmetry, densities of the densest p3 packings are greater

or equal to their respective densest p1 packing densities and
supported by the convergence of densest p3 packing densities
to the optimal packing density of a disk, shown in Fig. 3,
suggests that the regular triangle also minimizes the maximum
density in the group p3.

B. Densest p2mg, cm, and p4 packings

The packing densities of a disk in plane groups p2mg, cm,
and p4 are equal, with a density of approximately 0.8938363.
Our results suggest this is also true for n-gons with 12-fold
rotational symmetry. The difference between these p2mg/cm,
and p4 packing configurations is that the p4 and p2mg/cm
packing configurations are not isometric, as can be observed
by visual comparison in the example of a dodecagon in Fig. 4.
However, there is a local three-fold rotational symmetry of
dodecagonal trimers and four-fold rotational symmetry of
dodecagonal tetramers present in p2mg, cm, and p4 config-
urations. The densities of densest p2mg and cm packings are
equal for all n-gons we examined except for those where the
number of vertices is close to a polygon with 12-fold rota-
tional symmetry. Precisely, for 12k − 1 and 12k + 1, where
k ∈ N. In fact, they are isometric. On the other hand, for
centrally symmetric n-gons there are at least two nonisomet-
ric densest p2mg configurations shown on the example of
decagon in Fig. 5. Consequently, for centrally symmetric n-
gons without four-fold rotational symmetry there exist densest
nonisometric p2mg and cm configurations with equal density.

Visually comparing the heptagon p2mg and cm packings in
Fig. 4, the structure of both packing configurations is similar
in that the mirror symmetry planes of polygons are orthogonal
to the mirror symmetry planes of the cm group. This is not
the case for the p2mg packing configuration of the endecagon
where the planes of mirror symmetries of polygons are
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FIG. 5. Two nonisomorphic densest p2mg packings of a decagon
obtained by ETRPA with packing density of approximately 0.83722.

parallel to the p2mg mirror symmetry planes of reflection. In
fact, it is not hard to convert the densest cm packings in Table I
to p2mg packings of equal density, indicating that the densest
cm packing configurations of n-gons are lower or equal to the
densest p2mg packing configurations. The 12k − 1 or 12k + 1
symmetry of the polygon where k ∈ N allows for a slightly
higher density in p2mg group than in the cm group.

Furthermore, the densities of the densest p2mg/cm pack-
ings are greater or equal to p4 packings with equality for
n-gons with 12-fold rotational symmetry, except in cases of
n-gons with 12k − 1 and 12k + 1 symmetries, where dens-
est p4 packing densities are above corresponding p2mg/cm
packing densities. These intricacies of p2mg/cm/p4 packing
configurations are visually presented as a colored rank table
in Fig. 1.

The highest packing density in groups p2mg and cm was
attained by the triangle and square where both polygons tile
the two-dimensional Euclidean plane, and the highest density
p4 packing configuration was attained by one of the uniform
tilings by a square. The lowest packing density in plane groups
p2mg and cm was observed in the case of the endecagon. The
lowest density p4 packing was attained by the triangle, al-
though higher than the densities of the densest packings of the
triangle in the p1 and p3 plane groups. From the convergence
of n-gon packings to the densest p2mg/cm/p4 configurations
of a disk, presented in Fig. 6, it is reasonable to assume that the
lowest densest packing in this plane group class is attained by
the endecagon in p2mg/cm and triangle in p4 for all n-gons.

C. Densest p4gm, c2mm, pm, and p2mm packings

Densest disk packings in groups p4gm, c2mm, pm, and
p2mm have an equal packing density of 0.7853981, consti-
tuting another class of plane groups. The equality between
packing density in this plane group class was also true when a
four-fold rotational symmetry was present in an n-gon. In fact,
all four configurations are isometric, as seen in the example of
an octagon in Fig. 7.

For all examined n-gons, the densities of the densest p2mm
and pm packings are equal. Visually comparing the p2mm
and pm, the densest packings in Fig. 7, the configurations
are clearly nonisometric except for n-gons with four-fold ro-

FIG. 6. Densities of the densest packings of examined n-gons in
the p2mg/cm/p4 plane groups class. The red line denotes the density
of the in this plane group class.

tational symmetry. However, the densest p2mm packing of
an arbitrary n-gon can be easily converted to a pm packing
of the same density as is demonstrated in Fig. 8. This con-
struction suggests that for n-gons without four-fold rotational
symmetry, the pm density landscape contains at least two
nonisometric global maxima and provides multiple densest
pm packing configurations. These rewritten pm configurations
are isometric to their corresponding densest p2mm packings
for n-gons with central symmetry.

The difference between these two alternative densest pm
configurations for centrally symmetric n-gons can be observed
by noticing contact edge length. The total length of edges with
nonzero contact of the decagon in Fig. 8 with its surrounding
decagons is clearly higher when compared to the manually
constructed configuration in Fig. 7. In the example of the
pentagon, the polygons in the pm configuration in Fig. 7 are
slightly rotated compared to Fig. 8 where one of the edges of
pentagons is parallel to the basic vector of the primitive cell.

Further, our results suggest that for n-gons with a central
symmetry, the densities of densest c2mm, p2mm, and pm
packings are equal. In fact, there are configurations where all
three packing configurations are isometric. Moreover, given
a p2mm/pm, it is possible to construct a c2mm structure
with the same density. However, these c2mm packings are not
optimal for centrally nonsymmetric n-gons.

The densest p4gm packings in our experiments are higher
for all centrally nonsymmetric n-gons than their correspond-
ing p2mm/pm packings. On the other hand, comparing p4gm
and c2mm configurations, n-gons with a 4k − 1 fold rotational
symmetry attained slightly higher packing densities in the
p4gm group than in c2mm, and for n-gons with a 4k + 1 fold
rotational symmetry c2mm packings were higher than those
in c2mm. For centrally symmetric n-gons, the p4gm dens-
est packings were lower or equal to their c2mm/p2mm/pm
densest configurations.

The lowest densities of the densest p4gm, c2mm, p2mm,
and pm packings were attained in the case of the regular
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FIG. 7. Densest configurations of (top) pentagon, (middle) octagon, and (bottom) decagon in plane groups p4gm, c2mm,
p2mm, and pm with the following densities: pentagon in p4gm � 0.71119, c2mm � 0.71714, and p2mm/pm � 0.69098; octagon in
p4gm/c2mm/p2mm/pm � 0.82842; decagon in p4gm � 0.77205 and c2mm/p2mm/pm � 0.77254. The blue parallelogram denotes the
primitive cell of the respective configuration. Colors represent symmetry operations modulo lattice translations.

triangle, and uniform square tilings attained the highest den-
sities in all four plane groups. From the evolution of densities
as the number of vertices increases, presented in Fig. 9, it is
reasonable to assume that the extremal values of densities of
densest p4gm, c2mm, p2mm, and pm packings among n-gons
are attained for the regular triangle and square.

D. Densest p6, p31m, p3m1, p4mm, and p6mm packings

The last class corresponds to the plane groups for which
the optimal densest packings of a disk share no common
symmetries. All five plane groups can be therefore regarded
as separate classes by themselves. Moreover, the disk attains
the lowest density values when the packing configurations
are restricted to p6, p31m, p3m1, p4mm, and p6mm plane
groups.

Similarly to previous classes, we did not observe any clear
trend with the packing density oscillating around the respec-
tive densest disk packing density. Although the densest p6
packing of a disk is lower than the packings in previous plane

FIG. 8. Manually constructed pm packings of a (left) pentagon
and (right) decagon from their respective densest p2mm packing
configurations with approximately equal density as their p2mm coun-
terparts presented in Fig. 7.

group classes we examined, this is true for all n-gons for n >

18, where the distance of densest n-gon p6 packing density to
the p6 disk packing is sufficiently small to be separated from
the previous class. For instance, p6 packing configurations
of 5, 9, and 18-gon have higher densities than their cor-
responding densest packings in the p4gm/c2mm/p2mm/pm
class, visually demonstrated in the colored rank table in
Fig. 1.

FIG. 9. Densities of the densest packings of examined n-gons in
the p4gm/c2mm/p2mm/pm plane groups class. The red line denotes
the density of the densest disk packing in this plane group class.
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FIG. 10. Densest configurations of (from top to bottom) hexagon, octagon, and dodecagon in plane groups p6, p31m, p3m1, p4mm, and
p6mm with the following densities: hexagon in p6 � 0.85714, p31m � 0.71999, p3m1 � 0.66666, p4mm � 0.52148, and p6mm � 0.47999;
octagon in p6 � 0.76438, p31m � 0.71565, p3m1 � 0.57980, p4mm � 0.56854, and p6mm � 0.48235; dodecagon in p6 � 0.79560,
p31m � 0.74613, p3m1 � 0.61880, p4mm � 0.53589, and p6mm � 0.49742. The blue parallelogram denotes the primitive cell of the
respective configuration. Colors represent symmetry operations modulo lattice translations.

However, we observed correspondences between the dens-
est plane group packings in this density plane group class
and previous classes. For a hexagon, we computed the
following ratios of packing densities of respective densest
p2/p2gg/pg/p3/p1, p6, and p3m1 packing configurations
denoted Kp2/p2gg/pg/p3/p1max

, Kp6max
, and Kp3m1max

,

ρ
(
Kp2/p2gg/pg/p3/p1max

)

ρ
(
Kp6max

) = 7

6

and

ρ
(
Kp2/p2gg/pg/p3/p1max

)

ρ
(
Kp3m1max

) = 3

2
.

By numerical comparison, these ratios approximately hold for
all n-gons with six-fold rotational symmetry in Table I.

Second, by comparing densest p4mg/c2mm/pm/p2mm
and p4mm packing configurations of an octagon denoted
Kp4mg/c2mm/pm/p2mmmax

and Kp4mmmax
, we obtained the follow-

ing packing density ratio,

ρ
(
Kp4mg/c2mm/pm/p2mmmax

)

ρ
(
Kp4mmmax

) = 3 + 2
√

2

4
.

We compared this value against ratios of densest
p4mg/c2mm/pm/p2mm and p4mm packings in Table I
and observed an approximate equality for all n-gons
with eight-fold rotational symmetry. Interestingly, a local
eight-rotational symmetry is present in the octagonal octamers
of the p4mm packing configuration, shown in Fig. 10.

Lastly, we obtained the following packing density ratios
of densest p2mg/cm/p4, p31m, and p6mm packing configu-
rations of a dodecagon denoted Kp2mg/cm/p4max

, Kp31mmax
, and

Kp6mmmax
,

ρ
(
Kp2mg/cm/p4max

)

ρ
(
Kp31mmax

) = 2
√

3

3

and

ρ
(
Kp2mg/cm/p4max

)

ρ
(
Kp6mmmax

) =
√

3.

Compared to the p2mg/cm/p4, p31m, and p6mm densities in
Table I, these packing density ratios are approximately equal
for all n-gons with 12-fold rotational symmetry. Additionally,

FIG. 11. Densities of the densest packings of examined n-gons in
the p6/p31m/p3m1/p4mm/p6mm plane groups class. The colored
lines denote the density of the corresponding densest plane group
disk packings.
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by visual examination of the p2mg/cm/p4, p31m, and p6mm
configurations of a dodecagon in Fig. 10 and Fig. 4, all three
configurations contain local three-fold and four-fold rotational
symmetries in the dodecagonal trimers and tetramers.

Consequently, these relationships suggest that 24-fold
rotational symmetry of an n-gon constitutes the optimal con-
figurations of a disk in all plane groups. Considering that
the minimal symmetry containing six-fold, eight-fold, and
12-fold rotational symmetries is 24-fold rotational symme-
try and that the symmetries of densest p2/p2gg/pg/p3/p1,
p2mg/cm/p4, and p4mg/c2mm/pm/p2mm packings of n-
gons with 12-fold rotational symmetry coincide with the
symmetries of corresponding densest plane group packings of
a disk.

Concerning the extrema of the densest plane group pack-
ings, the regular triangle attained the highest packing density
in all five plane groups, where in p6 and p3m1, we have
regular triangular tilings. ETRPA obtained the lowest packing
densities in our experiments in the case of a square in all five
groups. The evolution of packing density as the number of
vertices increases, shown in Fig. 11, suggests that the triangle
and pentagon attain the extremal densities among all n-gons
in this plane group class.

IV. DISCUSSION AND CONCLUSIONS

Using the ETRPA, we obtained and analyzed the densest
packings in all 17 plane groups of various n-gons. Although
ETRPA is a stochastic search algorithm and the plane group
packing problem has multiple local and global optima, our
results indicate that we indeed acquired approximations of
densest n-gon packing configurations subject to CSG restric-
tions.

Since two-dimensional CSGs are inherently periodic and
combined with the fact that the p2 plane group is a local
optimum in the space of all packings [29], further confirmed
by our results, it can be stated that the p2 plane group realizes
the densest plane group packings for all n-gons among all 17
plane group. Moreover, depending on the symmetries of an
n-gon, the densest known packings can be realized in multiple
plane groups. In the densest known configuration of a pen-
tagon and heptagon, one of the mirror symmetry planes of the
polygon is parallel to one of the primitive cell’s basic vectors.
This symmetry plane, in fact, coincides with one of the glide
reflection planes in the p2gg group and is orthogonal to the pg
glide reflection plane. Thus, the densest known configurations
can be realized using glide reflections in p2gg and pg plane
groups.

In the densest known packing configuration of the regular
enneagon, the mirror symmetry plane of a polygon is slightly
rotated in relation to the primitive cell basic vectors [27] and,
therefore, cannot be constructed using a glide reflection. We
have observed this property for all n-gons containing a three-
fold rotational symmetry but no central symmetry.

One of the methods to construct the densest double-lattice
configurations of a convex polygon is based on finding the
minimum area of a type of inscribed parallelogram called a
half-length parallelogram [32]. In line with our results, the
enneagon’s diameter given by the minimum area half-length
parallelogram has a nonzero slope and the local optimum

FIG. 12. p3/p1 packing of the enneagon with a packing den-
sity of approximately 0.87358, manually constructed from the
enneagon’s densest p2 packing configuration in Fig. 2.

corresponds to the densest pg packing, contrary to the pen-
tagon and heptagon cases where the diameter corresponding
to the global optima coincides with the mirror symmetry of
both polygons [29].

An intuition to why the n-gons with three-fold rotational
symmetry are exceptional can be obtained from the optimal
configuration of a disk as an approximation of the enneagon.
The densest packing configuration of a disk is also referred
to as a hexagonal close-packed configuration and can be con-
structed using the plane group p3 with the hexagonal crystal
system. The hexagonal crystal system induces a six-fold ro-
tational symmetry on the crystal lattice with the three-fold
rotational symmetry as a subgroup. We observed this six-fold
rotational packing symmetry in all n-gons with six-fold rota-
tional symmetry.

Additionally, there is a quasi-six-fold rotational packing
symmetry [33] in the densest p2 configurations of all centrally
nonsymmetric n-gons with a three-fold rotational symmetry
which is not present in densest p2 configurations of n-gons
without three-fold rotational symmetry. This quasi-six-fold
rotational symmetry is realized by lattice translations in a
p2 configuration. Two polygons related to each other by a
lattice translation are also related by a three-fold rotational
symmetry. Moreover, because of this relation, it is possible to
construct a p3/p1 packing, as is demonstrated on a packing
with p3 and p1 symmetries constructed from the densest p2
packing of an enneagon in Fig. 12. Here the blue polygons are
unchanged polygons from p2 packing of enneagon in Fig. 2.
However, this packing has lower density than the densest
p3/p1 packing of an enneagon.

Since the crystallographic restriction theorem does not al-
low higher than six-fold rotational symmetries in a crystal
[25], our results strongly suggest that centrally non-symmetric
n-gons with a three-fold rotational symmetry are an exception
to general densest plane group configuration symmetries of
n-gons, and it is reasonable to state the following conjectures.

Conjecture 1. Densities of the densest p2, pg, and p2gg
packings are equal for all, but centrally nonsymmetric n-gons
with three-fold rotational symmetry and n � 9, densities of
the densest p2, pg, p2gg, and p1 packings are equal for all
centrally symmetric n-gons, and densities of the densest p2,
pg, p2gg, p1, and p3 packings are equal for all n-gons con-
taining a six-fold rotational symmetry.
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Conjecture 2. Densities of the densest p2mg and cm pack-
ings are equal for all but n-gons with a 12k − 1 and 12k + 1
rotational symmetry where k ∈ N and densities of densest
p2mg, cm, and p4 packings are equal for all n-gons containing
a 12-fold rotational symmetry.

Conjecture 3. Densities of the densest pm and p2mm pack-
ings are equal for all n-gons, densities of the densest c2mm,
pm, and p2mm packings are equal for all centrally symmetric
n-gons, and densities of the densest p4gm, c2mm, pm, and

p2mm packings are equal for all n-gons containing a four-fold
rotational symmetry.
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