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Conformation and dynamics of a tethered active polymer chain
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The conformational and dynamical properties of a tethered semiflexible polymer chain under tangential active
force ( fa) are studied by using the Langevin dynamics simulation method. The head of the polymer is fixed near
an infinite flat surface at z = 0. The polymer is equilibrated first at fa = 0 and then subjected to the active force.
Under the influence of the active force, the polymer is gradually compressed. Specially, for large fa and large
bending rigidity (kb), the polymer is buckled into a quasihelical structure rotating around the z axis at the steady
state. It is found that both the radius of the quasihelical structure (R) and the angular velocity of the rotation (ω)
are nearly independent of the polymer length (N), but show scaling relations with fa and kb, i.e., R ∝ f −1/3

a k1/3
b

and ω ∝ f 4/3
a k−1/3

b , which are explained by simple dynamical models. Before reaching the steady state, it is
further found that the buckling velocity of the polymer is proportional to fa but roughly independent of kb and
N , then the buckling time (tb) can be described by a scaling relation tb ∝ N f −1

a . The underlying mechanism of
the buckling process is revealed.
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I. INTRODUCTION

In recent years, the conformational and dynamical prop-
erties of the natural or artificial active polymers have been
a topic with rapidly growing interest in the biological, the
physical, and the chemical communities. One important ex-
ample of active polymers is the microtubule which can exhibit
activity under the driving force exerted by motor proteins and
kinesin and dynein motors [1–6]. Another important example
of active polymers is the linear chain formed by connecting
active colloids [7,8]. The active polymer systems are inher-
ently nonequilibrium, and their properties are important in
biology and technological applications, such as DNA, RNA,
and microtubules under the force of molecular motors [9],
load transport by using self-propelled chains [10–12], and are
also useful for understanding the collective phenomena and
nonequilibrium statistical mechanics.

It was found that active polymers often show many in-
teresting features, which are different from that of passive
polymers. Ghosh and Gov studied the dynamics of semiflexi-
ble polymers with active force described by an exponentially
correlated colored noise, and found that the polymer can show
enhanced diffusion and spatial correlation of local displace-
ments depending on the thermal mode, the elastic mode of the
polymer, and the duration of the activity [13]. Osmanović and
Rabin found that the dynamics of the Rouse polymer is depen-
dent on the temporal and contour separation correlations of the
active fluctuation noise [14]. When the temporal correlations
are characterized by a single time scale, there is a transition
from normal diffusion to superdiffusion at intermediate time
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scales. While when multiple time scales are involved, there
is a transition from subdiffusion to normal diffusion at times
much shorter than the longest Rouse time of the polymer
[14]. For self-avoiding polymers formed by active Brownian
particles, it was found that the polymer initially shrinks and
then swells with increasing the active force, and shows faster
relaxation than the Rouse polymer at moderate active force
[15–21].

Theoretically and simulationally, active polymer with tan-
gential force is often adopted to study the conformation and
the dynamics of microtubules or filaments driven by protein
motors in gliding motility assays, in which the tails of the
motor proteins are firmly attached on the substrate, while
the heads of the proteins bind to the microtubules and exert
forces along the contour of the microtubules. It was found
that the conformation and the dynamics of the polymer often
exhibit remarkable dependence on the strength of the active
force. In two-dimensional (2D) system, active polymers can
spontaneously form stable spirals at strong active force and
small bending rigidity, and move along its own contour in
a railway-motion manner at weak active force [22]. When
the head of the active polymer is bound to a passive load,
the polymer can push the load with different conformational
states and motion types depending on the strength of the active
force and the hydrodynamic friction of the load, meanwhile,
the speed and the efficiency of load transport are dependent
on the dynamical conformation of the polymer [23,24]. In
three-dimensional (3D) system, linear flexible polymers were
found to undergo a coil-to-globule transition, and the diffusion
coefficient of the polymer becomes essentially independent of
the polymer length for long polymers or large active force
[25]. The conformation is also dependent on the topology
and the rigidity of the polymer. Locatelli et al. found that
ring polymers show an inflation-to-collapse transition with
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increasing polymer length at large active force [26]. For semi-
flexible polymers, the active force can decrease effectively the
stiffness of the polymer, leading to the monotonic decrease
of the polymer size with the active force [27]. Meanwhile, it
was found that the motion of the polymer shows three distinct
types, namely, translation, snaking, and rotation, depending
on the polymer rigidity and the active force, and the diffusion
coefficient grows linearly with a renormalized activity param-
eter [28,29]. Further studies indicated that the conformation
and the dynamics of the polymer are also dependent on the
orientation and the location of the active force along the poly-
mer [15,30–33].

When the active polymer’s head is fixed, its behavior is
more complex than the free polymer. In 2D space, the polymer
shows spiral form and rotational motion when the head is fixed
by a frictionless pivot, and exhibits wave form and flapping
motion when the head is pinned by a clamp [34–37]. Both the
rotational frequency for the former and the flapping frequency
for the latter show the same dependence on the strength of the
active force and the bending rigidity of the polymer [34,37]. In
3D space, it was found that a nonthermal active polymer with
the head being clamped shows two distinct oscillaroty modes,
a nonplanar spining rotation at relatively small activity and a
planar beating motion at large activity, which is more complex
than that in 2D space [32,38].

Recent studies indicated that active polymers near spatial
boundaries also show interesting properties. Xu et al. studied
the dynamics of active polymers with chirality in a transversal
asymmetric channel, and found that the transport direction of
the polymer can be rectified and even show current reversals
due to the competition of the chirality of the polymer and the
properties of the channel [39]. Shen et al. studied the confor-
mation and dynamics of active polymers on the surface of a
cylinder, and found that there are three typical (spiral, helix-
like, and rodlike) conformations and three specific (rotational,
snakelike, and straight translational) motion types [40]. Moti-
vated by this, we here study the conformational and dynamical
properties of a semiflexible active polymer with the head fixed
at an infinite surface. The polymer is equilibrated first and
then subjected to a tangential active force along its contour.
Specially, for large active force and large bending rigidity, the
polymer chain is compressed and buckled into quasihelical
structures with rotational motion at the steady state. Moreover,
before reaching the final steady state, the polymer undergoes a
buckling process, during which the monomers of the polymer
are found to move in a railway-motion manner with a constant
velocity.

II. SIMULATION MODEL AND METHOD

Simulations are carried out in the 3D space. Figure 1 shows
a 2D sketch of the model system. In the space z > 0, there is a
polymer chain with its head fixed near an infinite flat surface
at z = 0. The surface is impenetrable for the polymer chain.

In our simulation, the polymer chain is mimicked by an
off-lattice bead-spring chain model, where the chain is com-
posed of sequentially connected monomers numbered from
1 to N . The total internal potential energy of a polymer
chain includes the repulsive energy between monomers, the
bond energy, and the bond bend energy. The repulsive en-

FIG. 1. A 2D sketch of the simulation model system. The head
monomer of the polymer chain is tethered near the surface at z = 0.
The ith monomer (1 < i < N) is subjected to a tangential force fa

along the vector ri−1,i+1 between the position of the monomers i−1
and i + 1.

ergy between monomers is described by the purely repulsive
Weeks-Chandler-Andersen (WCA) potential,

ULJ (r) =
{

4ε0
[(

σ
r

)12 − (
σ
r

)6] + ε0, r � 21/6σ

0, r > 21/6σ
, (1)

where r is the distance between two monomers, ε0 is the
interaction strength, σ is the diameter of monomers. The bond
energy between bonded monomers is described by the finitely
extensible nonlinear elastic (FENE) potential:

UFENE(r) = −k

2
R2

0 ln
[
1 −

( r

R0

)2]
, (2)

where k is the spring constant, and r and R0 represent the
bond length and the maximum bond length, respectively. The
bending energy between two adjacent bonds is described by

Ubend = kb(θ − θ0)2. (3)

Here θ is the angle between two neighboring bond vectors,
and kb is the bending rigidity. In our simulation we set θ0 =
0, i.e., Ubend = 0 when the two neighboring bonds are in a
straight line.

The head monomer of the polymer chain is fixed at
(0, 0, σ ). The interactions between other monomers (from 2
to N) and the surface at z = 0 are also described by the WCA
potential [Eq. (1)], where r represents the nearest distance
between monomers and the surface.

To model the active polymer chain, we assume that the ith
monomer (1 < i < N) is acted on by a tangential force,

F (i)
a = fa

ri−1,i+1

|ri−1,i+1| . (4)

Here, fa represents the strength of the active force,
ri−1,i+1 = ri−1 − ri+1 is the vector between the position of the
monomers i−1 and i + 1. According to Eq. (4), the tethered
polymer chain will be stretched when fa < 0, and it will be
compressed when fa > 0. It was found that semiflexible poly-
mers under compression often show complex conformational
and dynamical behaviors [32–35,41,42]. Motivated by this,
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we here only consider the case fa � 0, and study the confor-
mational and dynamical properties of the polymer under the
compression of the active force.

The motion of each monomer from 2 to N is described by
the Langevin equation:

m
dv

dt
= −�(ULJ + UFENE + Ubend ) + Fa − ηv + FT (5)

Here m is the mass of the monomer, η is the friction
coefficient, and FT is the random force with 〈FT (t )〉 = 0
and 〈FT (t ) · FT (t ′)〉 = 6ηkBT δ(t−t ′), where kB is the Boltz-
mann constant and T is the temperature. To calculate Eq. (5),
we adopt the velocity Verlet algorithm with a time step
�t = 0.005.

At the beginning of the simulation, the polymer is gen-
erated above the surface with the head monomer fixed at
(0, 0, σ ). We first set fa = 0 and run a long time (�106

steps) of Brownian motion to equilibrate the polymer. We
then switch on the active force and run a long steady time
(>1.5tb; tb is the buckling time which will be defined in
Sec. III B) to let the polymer reach the final steady state where
the average properties do not change obviously with time.
After that, we continue run a long sampling time (=106 time
steps), in which the conformational and the dynamical proper-
ties of the polymer at the steady state are sampled and studied.
All the statistical results in our work are averaged over 1000
independent runs. In each independent run, 20 samples are
collected at intervals of 5 × 104 time steps. Therefore, the
statistical quantities of the tethered active polymer chains are
averaged over 20 000 samples, and the errors of ensemble
averages are very small.

In this work, σ , m, and kBT are chosen as the units of
length, mass, and energy, respectively. So, the time scale and
the force scale are given by tLJ = (mσ 2/kBT )1/2 and f0 =
kBT /σ , respectively. In the simulation, we choose ε0 = 1,
k = 15, and R0 = 2, and set η = 10 to ensure the overdamped
motion of monomers [40]. Moreover, the polymer length is
taken to be N = 100, unless explicitly mentioned. We mainly
study the influence of fa and kb on the conformational and the
dynamical properties of the polymer chain.

III. SIMULATION RESULTS AND DISCUSSION

A. Steady properties

Since the interaction between the polymer and the sur-
face is purely repulsive, the polymer is stretched along the
z direction at fa = 0, while when fa > 0, monomers tend to
move towards the fixed monomer under the propulsion of the
tangential active force. Figure 2 shows the dependence of the
steady end-to-end distance, Res, on fa for different kb, where
N = 100. When fa is small, Res is nearly independent of fa,
meaning that the influence of the active force on the polymer
is negligible. When fa is moderate, Res decreases quickly
with increasing fa, indicating that the polymer is compressed.
The compression could cause the bend of the polymer. For
a given fa, the larger kb is the weaker the compression is,
leading to the monotonic increase of Res with increasing kb,
while when fa is very large ( fa > 10), the size of the polymer
is very small, and the excluded volume interaction between
monomers will prevent the polymer from being compressed

FIG. 2. The dependence of the steady end-to-end distance Res on
fa for different kb, where N = 100. The inset shows the dependence
of the ratio Res/Re0 on fa for different kb, where N = 100, and Re0

represents the value of Res at fa = 0.

further, resulting in Res tending to be the same constant value
for different kb, as shown in Fig. 2. The inset of Fig. 2 shows
the dependence of the ratio Res/Re0 on fa for different kb,
where Re0 represents the value of Res at fa = 0. At the small or
moderate fa region, it is interesting to see that all the curves
overlap with each other on a main curve, meaning that the
dependence of Res/Re0 on fa is independent of kb.

It was found that the semiflexible polymer chain may form
helical or spiral conformation under the compression of the
spatial confinement or self-propelled active force [22,27,41].
In our work, the structure of the polymer at the steady state
is determined by the competition between the external active
force and the bending energy. When fa is very small, the
bending energy dominates, then the polymer often adopts
extended conformation and is nearly undisturbed by the active
force. While when fa is moderate, the active force becomes
comparable to the bending energy, causing a remarkable
compression of the polymer. To examine the conformational
property of the polymer chain under the compression of the
active force, we have studied the tangent-tangent correlation
function C(i) [27], which is defined as

C(i) = r1,3

|r1,3| · ri−1,i+1

|ri−1,i+1| (1 < i < N ), (6)

where r1,3

|r1,3| and ri−1,i+1

|ri−1,i+1| represent the unit tangent vectors at
monomers 2 and i, respectively.

Figure 3 shows the dependence of C(i) on i for different fa

and kb. For small fa [e.g., fa = 0.01 and 0.1 in Fig. 3(a)] or
small kb [e.g., kb = 10 and 20 in Fig. 3(b)], C(i) decays expo-
nentially or shows remarkable damping oscillation, indicating
that the correlation between tangent vectors at the second and
the ith monomer is weaker and weaker with increasing i, while
for large fa and large kb, C(i) shows periodical oscillation
with nearly constant amplitude, meaning that the correlation
between tangent vectors is strong and long range, which is
similar to that of the helical conformation structure [41].
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FIG. 3. The tangent-tangent correlation function C(i) for (a) dif-
ferent fa at N = 100 and kb = 100, (b) different kb at N = 100 and
fa = 4.

In the following, we will focus on the polymer properties
in the parameter region with fa � 1 and kb � 40, where the
polymer is compressed by the active force and the correla-
tions between tangent vectors are strong. We have specially
examined the configuration of the polymer chain at large fa

and large kb, and found that the polymer is often buckled into
a quasihelical structure. The typical snapshot of the quasihe-
lical structure is shown in Fig. 4 for N = 100, kb = 100, and

FIG. 4. The typical snapshot of the quasihelical structure of the
polymer chain at the steady state, where N = 100, kb = 100, and
fa = 4. (a) the positions of monomers in 3D space, (b) the projections
of monomers on the xoy plane.

FIG. 5. The dependence of radius of the quasihelical structure,
R, on fa for different kb and N . The inset shows the dependence of
the product Rk−1/3

b on fa for different kb, where N = 100.

fa = 4. We can see that the polymer chain winds around the
z axis, and the projections of monomers on the xoy plane dis-
tribute nearly symmetrically around the origin of coordinate
(the head monomer).

It is well known that passive semiflexible polymers con-
fined in the nanochannel can also form helical configurations
under a compressive axial force. In fact, the compression
deformations are dependent on the degree of confinement.
For strong confinement (small radius of the nanochannel), the
polymer shows complex structural phases upon longitudinal
compression force: random deflection along the channel at
small force, a helix going around the channel wall at moderate
force, and folded structures (double-folded random deflec-
tion, double-folded helix, or three-folded structures) at large
force [43,44], while for weak confinement (large radius of the
nanochannel), a relatively small compressive force can fold
the polymer, and then it is difficult for the polymer to form a
helical structure [44]. However, in our model, the tangential
active force can drive the polymer to form a helical structure
without nanochannel confinement, and meanwhile the helical
structure is still very stable at large active force.

To describe the size of the quasihelical structure of the
polymer, we have calculated the average helical radius (R),
which is defined as the average distance between monomers

and the z axis, i.e., R = 1
N

∑N
i=1

√
x2

i + y2
i , where xi and yi

are the x and y coordinates of the ith monomer, respectively.
Figure 5 shows the dependence of R on fa and N for different
kb. With an increase in fa, R decreases monotonically, consis-
tent with the dependence of the steady end-to-end distance Res

on fa as shown in Fig. 2. R is also dependent on kb. R increases
monotonically with increasing kb, meaning that it is more and
more difficult to bend a stiffer polymer.

According to the theoretical model of Bourdieu et al. [37],
at the steady state, the bending moment M ∝ kb/R is balanced
by the torque 	 ∝ f R2 produced by the active force. Here,
f represents the active force per unit length, which can be
roughly expressed as f = fa/b0 with b0 ∼ 1.03 the average
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FIG. 6. Time series of the projection of the polymer chain on the xoy plane, where N = 100, kb = 100, and fa = 4. (a) Polymer with CW
mode undergoes anticlockwise rotation. (b) Polymer with ACW mode undergoes clockwise rotation.

bond length in our model. So, we can obtain from M = 	 that

R ∝ f −1/3
a k1/3

b , (7)

which is in good agreement with our simulation results, as
shown in the inset of Fig. 5. This scaling relation is the same
as that of the spiral structure of active polymer in 2D space
[37]. Moreover, we find that R is nearly independent of N , as
shown in Fig. 5. For the quasihelical structure, the polymer
spirals upward and around the z axis, and then the increase of
the polymer length can increase the length of the helix but not
affect the radius of the helix.

Under the driven of the active torque 	, the whole polymer
rotates around the z axis. The rotation direction is dependent
on the winding mode of the polymer round the z axis. Viewed
against the direction of the z axis, the quasihelical structure
has two different winding manners, the clockwise winding
mode (CW mode) and the anticlockwise winding mode (ACW
mode). For the CW mode, the polymer rotates anticlockwise,
while for the ACW mode, the polymer rotates clockwise, as
shown in Fig. 6. For each independent simulation, the winding
mode of the quasihelical structure is formed randomly, and
the emergence probability of each mode is about 50%. Mean-
while, due to the large bond bending rigidity, it is difficult
for the polymer to change the winding mode as well as the
rotation direction during the rotation process.

We have studied the angular velocity (ω) of the polymer ro-
tation. At large kb, the polymer chain behaves nearly as a rigid
body, and the monomers move nearly uniformly. Therefore,
we defined ω as

ω = |Lz|/J =
∣∣∣∣∣

N∑
i=1

(xiviy − yivix )

∣∣∣∣∣
/

N∑
i=1

(
x2

i + y2
i

)
, (8)

where Lz = ∑N
i=1 Liz = ∑N

i=1 m(xiviy − yivix ) represents the
z component of the polymer’s angular momentum, J =

m
∑N

i=1 (x2
i + y2

i ) represents the rotational inertia of the poly-
mer with respect to the z axis, m = 1 is the mass of the
monomer, xi and yi are the x and y coordinates of the ith
monomer, and vix and viy are the x and y components of the
velocity of the ith monomer, respectively. Figure 7 shows the
dependence of ω on fa for different N and kb. We find that ω

increases with increasing fa but decreases with increasing kb.
However, ω is roughly independent of N .

In the overdamped limit, the active force fa on each
monomer is balanced by the frictional force ηωR [37], i.e.,
fa = ηωR, then we have

ω = fa/(ηR)r (9)

FIG. 7. The dependence of the angular velocity ω on fa for
different N and kb.The inset shows the dependence of the product
ωk1/3

b on fa for different kb, where N = 100.
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FIG. 8. The evolution of the end-to-end distance Re and the re-
laxation function q(t), where N = 100, kb = 100, and fa = 4.

From Eqs. (7) and (9), we can get

ω ∝ f 4/3
a k−1/3

b (10)

This is in good agreement with our simulation results
shown in the inset of Fig. 7.

B. Buckling process

In the above section, we have shown that the polymer chain
is buckled into quasihelical structures at the steady state for
large fa and kb. In this section, we will focus on the dy-
namics of the polymer chain before reaching the final steady
state. In our simulation, the polymer chain is first equilibrated
with fa = 0 and then subjected to the tangential active force
( fa > 0) at t = 0. Then, the polymer undergoes a buckling
process during which the polymer is compressed gradually
and finally forms quasihelical structures. Figure 8 shows the
evolution of the end-to-end distance (Re) of the polymer. The
buckling process is characterized by the quick decrease of
Re when t is small, while when t is large, the polymer is at
the steady state and then Re reaches the steady value Res. To
roughly determine the elapsed time of the buckling process,
we have calculated the relaxation function q(t ) = Re(0)−Re(t )

Re(0)−Res
,

and defined the buckling time tb at which q(t ) = 0.98, as
shown in Fig. 8. Based on tb, the evolution of the polymer
can be specifically divided into two stages: (1) the buckling
stage at t < tb, where the polymer is compressed and then Re

decreases gradually, and (2) the steady stage at t > tb, where
Re reaches the steady value, as shown in Fig. 8.

Figures 9(a) and 9(b) show the dependence of the buckling
time tb on the active force fa and the polymer length N ,
respectively. We can see that tb increases monotonically with
decreasing fa or increasing N . Specially, tb as a function of
N and fa can be expressed by a scaling relation tb ∝ Nα f −β

a
with α = 1 and β = 1. Intuitively, the polymer is compressed
and bended during the buckling process, and then the buck-
ling time tb should increase monotonically with increasing
the polymer rigidity kb. However, we find that tb is roughly
independent of kb for any given fa, as shown in Fig. 9(a).
The mechanism of the buckling process of tethered active
polymers is different from that of the adsorption process of
passive polymers onto attractive surfaces. A significant dif-

FIG. 9. (a) The dependence of the buckling time tb on fa for
different kb, where N = 100. (b) The dependence of the buckling
time tb on N for different fa, where kb = 100. Solid lines are given
by Eq. (16).

ference is that the adsorption time τads of a passive polymer
chain is strongly dependent on the polymer rigidity kb, i.e.,
τads increases monotonically with increasing kb [45].

To understand the dependence of tb on fa, N , and kb, we
have studied the details of the buckling process. Figure 10
shows a sequence of snapshots of the polymer during the
buckling process of a simulation with N = 100, kb = 100,
and fa = 4, where t = 0 represents the time when the active
force is just switched on. We can see that the polymer chain
at the buckling stage can be roughly divided into two parts,
the quasistraight part above the substrate and the quasihelical
part near the substrate. As time increases, the length of the
quasistraight part decreases, while the length of the quasiheli-
cal part increases. We can also see that the quasistraight parts
at different times nearly overlap with each other, indicating
that the quasistraight part nearly moves along its contour and
shows railway motion during the buckling process, which is
quite similar to the railway motion of the active polymer in 2D
free space or through a narrow pore [22,46]. Accompanied by
the railway motion of the quasistraight part, the quasihelical
part of the polymer also rotates around the z axis with the
increase of its length, as shown in Fig. 10.

The railway motion of the quasistraight part of the
polymer during the buckling process can be verified
further by the evolution of the mean displacement
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FIG. 10. A sequence of snapshots of the polymer during the
buckling process of a simulation, where N = 100, kb = 100, and
fa = 4.

�r =
√

(xi+ j − xi0)2 + (yi+ j − yi0)2 + (zi+ j − zi0)2 of
monomer i + j relative to the position of monomer i at t = 0,
(xi0, yi0, zi0) [22,46], as shown in Fig. 11, where N = 100,
kb = 100, fa = 4, and i = 40. With t increasing, monomer
i + j moves along the contour of the polymer and approaches
(xi0, yi0, zi0), resulting that �r decreases gradually and
reaches the minimum value �rmin when monomer i + j is
closest to (xi0, yi0, zi0). With t increasing further, monomer
i + j leaves (xi0, yi0, zi0), leading to the increase of �r.
When t is large, monomer i + j belongs to the quasihelical
part and rotates around the z axis, resulting in �r showing
periodical oscillation. We can see from Fig. 11 that �rmin

is very small, meaning that monomer j + i nearly passes
through (xi0, yi0, zi0) perfectly during the railway motion.
More importantly, we find that �r varies nearly linearly
with t as monomer i + j approaches or leaves (xi0, yi0, zi0),
as shown in Fig. 11. Specifically, �r as a function of t
can be expressed as �r = −vbt + c1 when monomer i + j

FIG. 11. The evolution of the mean displacement �r of
monomer i + j relative to the position of monomer i at t = 0, where
N = 100, kb = 100, fa = 4, and i = 40.

FIG. 12. The dependence of the buckling velocity vb on fa for
different kb and N .

approaches (xi0, yi0, zi0), and �r = vbt + c2 when monomer
i + j leaves (xi0, yi0, zi0). The slope vb is nearly independent
of j. This indicates that all the monomers of the quasistraight
part of the polymer move along its contour with the same
buckling velocity vb during the buckling process. Figure 12
shows the dependence of the vb on fa for different kb and N .
We can see that vb increases with fa increasing, but is nearly
independent of kb and N . Specially, vb as a function of fa can
be described by

vb = 0.092 fa. (11)

During the buckling process, the energy supplied by the
active force can be roughly divided into two parts. One part
is converted into the bond bend energy, and the other part
is dissipated by the viscous force. Since the polymer chain
behaves nearly as a rigid body at large kb, all the monomers
of the polymer move nearly synchronously with velocity v,
then both the decrement of the length of the quasistraight part
and the increment of the length of the quasihelical part of the
polymer in a small time interval dt are vdt . So, we have

N favdt = Nηvvdt + kb

2R2
vdt . (12)

Here, the first term is the active energy input into the
system, the second term is the energy dissipated by the vis-
cous force, and the third term is the increment of the bond
bend energy ( kb

2R2 represents the bond bend energy stored in
a polymer fragment of one unit length, and R is the steady
radius of the quasihelical structure). From Eq. (12), we can
get

v = fa

η
− kb

2ηNR2
. (13)

By using the theoretical result of R [Eq. (7)], Eq. (13) can
be written as

v = fa

η
− k1/3

b f 2/3
a

2ηN
. (14)

For the parameters chosen in our work, the value of the
second term on the right is much smaller than that of the first
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term, and then Eq. (14) can be expressed approximately as

v ≈ fa

η
, (15)

i.e., the velocity v is proportional to fa, but is nearly indepen-
dent of kb and N . Since η = 10 in our simulation, we can get
from Eq. (16) that v ≈ 0.1 fa, which is in good agreement with
the simulation result shown in Fig. 12.

Based on the buckling velocity vb, the buckling time tb can
be roughly calculated by

tb ≈ Nb0/vb ≈ ηN f −1
a (16)

with b0(∼1.03) the average bond length in our model, which
is in good agreement with the simulation results, as shown by
the solid lines in Fig. 9.

We would like to note that the pathway of the quasistraight
part at the buckling stage might depend on the method of
relaxation. In our simulation, the active force is switched on
immediately after the polymer reaching the equilibrium state,
and the polymer is compressed quickly. This means that the
quasistraight part does not have enough time to relax, and then
it nearly moves along its own contour under the active force,
leading to the railway motion manner. So, if fa is ramped
up very slowly, there is long enough time for the polymer to
relax, and then the quasistraight part at different time will not
overlap with each other, i.e., the move of the quasistraight part
will no longer show railway motion manner.

IV. CONCLUSION

The conformational and dynamical properties of a tethered
active polymer chain are studied by using Langevin dynamics.
The polymer is modeled by a self-avoiding bead-spring chain
with each bead being propelled by a tangential active force

( fa) along the contour of the chain. The head of the polymer is
fixed near an infinite flat substrate at z = 0. In our simulation,
the polymer is equilibrated first at fa = 0 and then subjected
to the active force. Under the drive of the active force, the
polymer relaxes and reaches the final steady state gradually.
It was found that the steady size of the polymer shows mono-
tonic decrease with fa increasing, due to the compression of
the active force. Specially, when the active force ( fa) and the
bending rigidity (kb) are large, the polymer at steady state
forms a quasihelical structure, and rotates around the z axis.
Both the radius of the quasihelical structure (R) and the angu-
lar velocity of the rotation (ω) are nearly independent of the
polymer length (N), but show scaling relations with fa and
kb, i.e., R ∝ f −1/3

a k1/3
b and ω ∝ f 4/3

a k−1/3
b , which can be well

understood by simple dynamical models.
Before reaching the steady state, the polymer undergoes

a buckling process, during which the polymer is compressed
and buckled into a quasihelical structure gradually by the
active force. At the buckling stage, the polymer can be roughly
divided into a quasistraight part above the substrate and a
quasihelical part near the substrate. During the buckling pro-
cess, the length of the quasistraight part decreases, while the
length of the quasihelical part increases gradually. Interest-
ingly, the quasistraight part moves in a railway-motion manner
with a constant buckling velocity (vb). It was found that vb

is only proportional to the active force fa, resulting that the
buckling time (tb) is nearly independent of kb but shows a
simple scaling relation with fa and N , i.e., tb ∝ N f −1

a .

ACKNOWLEDGMENTS

This work was supported by Zhejiang Provincial Natural
Science Foundation of China Grant No. LY20A040004 and
by National Natural Science Foundation of China Grants No.
11604232 and No. 11974305.

[1] S. J. Kron and J. A. Spudich, Fluorescent actin filaments move
on myosin fixed to a glass surface, Proc. Natl. Acad. Sci. USA
83, 6272 (1986).

[2] J. Borejdo and S. Burlacu, Velocity of movement of actin fil-
aments in in vitro motility assay: Measured by fluorescence
correlation spectroscopy, Biophys. J. 61, 1267 (1992).

[3] L. Liu, E. Tüzel, and J. L. Ross, Loop formation of microtubules
during gliding at high density, J. Phys.: Condens. Matter 23,
374104 (2011).

[4] A. Maloney, L. J. Herskowitz, and S. J. Koch, Effects of surface
passivation on gliding motility assays, PLoS One 6, e19522
(2011).

[5] H. Palacci, O. Idan, M. J. Armstrong, A. Agarwal, T. Nitta,
and H. Hess, Velocity fluctuations in kinesin-1 gliding motil-
ity assays originate in motor attachment geometry variations,
Langmuir 32, 7943 (2016).

[6] A. Lam, C. Curschellas, D. Krovvidi, and H. Hess, Controlling
self-assembly of microtubule spools via kinesin motor density,
Soft Matter 10, 8731 (2014).

[7] D. Nishiguchi, J. Iwasawa, H. R. Jiang, and M. Sano, Flagellar
dynamics of chains of active janus particles fueled by an ac
electric field, New J. Phys. 20, 015002 (2018).

[8] Y. Sasaki, Y. Takikawa, V. S. R. Jampani, H. Hoshikawa, T.
Seto, C. Bahr, S. Herminghaus, Y. Hidaka, and H. Orihara,
Colloidal caterpillars for cargo transportation, Soft Matter 10,
8813 (2014).

[9] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P.
Walter, Molecular Biology of the Cell (Garland Science, Oxford,
2007).

[10] A. S. Bhadwal, N. J. Mottram, A. Saxena, I. C. Sage,
and C. V. Brown, Electrically controlled topological
micro cargo transportation, Soft Matter 12, 2961
(2020).

[11] A. F. Demirörs, M. T. Akan, E. Poloni, and A. R. Studart,
Active cargo transport with janus colloidal shuttles us-
ing electric and magnetic fields, Soft Matter 14, 4741
(2018).

[12] J. Elgeti, R. G. Winkler, and G. Gompper, Physics of
microswimmers-single particle motion and collective behavior:
a review, Rep. Prog. Phys. 78, 056601 (2015).

[13] A. Ghosh and N. S. Gov, Dynamics of active semiflexible
polymers, Biophys. J. 107, 1065 (2014).
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