
PHYSICAL REVIEW E 106, 054413 (2022)

Picking winners in cell-cell collisions: Wetting, speed, and contact
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Groups of eukaryotic cells can coordinate their crawling motion to follow cues more effectively, stay together,
or invade new areas. This collective cell migration depends on cell-cell interactions, which are often studied by
colliding pairs of cells together. Can the outcome of these collisions be predicted? Recent experiments on trains
of colliding epithelial cells suggest that cells with a smaller contact angle to the surface or larger speeds are more
likely to maintain their direction (“win”) upon collision. When should we expect shape or speed to correlate
with the outcome of a collision? To investigate this question, we build a model for two-cell collisions within the
phase field framework, which allows for cell shape changes. We can reproduce the observation that cells with
high speed and small contact angles are more likely to win with two different assumptions for how cells interact:
(1) velocity aligning, in which we hypothesize that cells sense their own velocity and align to it over a finite
timescale, and (2) front-front contact repolarization, where cells polarize away from cell-cell contact, akin to
contact inhibition of locomotion. Surprisingly, though we simulate collisions between cells with widely varying
properties, in each case, the probability of a cell winning is completely captured by a single summary variable: its
relative speed (in the velocity-aligning model) or its relative contact angle (in the contact repolarization model).
Both models are currently consistent with reported experimental results, but they can be distinguished by varying
cell contact angle and speed through orthogonal perturbations.
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I. INTRODUCTION

Eukaryotic cells do not just live in isolation, but can
function in small clumps, sheets, or complex tissues. Under-
standing the collective cell migration of these groups of cells
is essential to the study of embryonic development, wound
healing, and cancer metastasis [1–4]. Groups of cells can
have different properties than single cells, including the ability
to sense shallow chemical or mechanical gradients [5–13],
the ability to amplify cues and develop guided migration
over long distances reminiscent of the swarming behavior in
insects [14,15], and an increased efficacy of cancer metasta-
sis [16]. These properties arise from intercellular interactions,
including in particular the effect of direct cell-cell contact.

A dramatic and well-studied example of an interaction
arising from direct cell-cell contact is “contact inhibition of
locomotion” (CIL), first observed decades ago by Abercrom-
bie and Heaysman [17] and later observed in neural crest
cells [18] and epithelial cells [19,20]. In CIL, cells that come
in contact with one another retract their local protrusions,
repolarize, and subsequently migrate away from contact. CIL
is regulated by transmembrane proteins such as cadherins and
Eph/ephrins, which regulate the Rho GTPases that ultimately
mediate the cell’s protrusive activity [18,21]. CIL and related
properties are essential for the collective chemotaxis of neural
crest cells in the developing embryo [5], as well as the spread-
ing of Drosophila hemocytes [22]. CIL has also been shown
to promote collective migration in epithelial cells in narrow
confinement by establishing cell trains [19].

Contact-based interactions can be affected by the geometry
of contact between cells, an example of the broader topic of
how confinement and geometry can control collective cell mi-
gration [23–25]. For instance, interactions may be asymmetric
between the head and tail of a polarized migrating cell [20,26].
In addition, cells crawling on suspended nanometer-scale
fibers, which can have very small amounts of cell-cell contact,
may crawl past one another instead of exhibiting CIL [27]. In
particular, we are motivated by recent work from the Ladoux
group [28], in which two trains of Madin-Darby canine kidney
(MDCK) cells collided head on within narrow confinement.
Interestingly, they reported that the train that maintained its di-
rection on collision (“won”) had a leading cell with a smaller
contact angle with the substrate [28].

How should we interpret the experimental observations
of correlations between collision outcome and geometry?
Cell geometry is correlated with cell-substrate adhesion and
cell speed [29,30], which both might separately influence
collisions. To understand the role of contact geometry in
controlling the outcome of cell collisions, we build a two-
dimensional model for cells within the phase field approach.
Here, we study head-on collisions between two cells on
adhesive substrates, and we characterize the contact geom-
etry by defining the contact angle as the angle formed by
the lamellipodium on the substrate. We control the cell’s
contact angle by varying interfacial energies and active
forces through cell-substrate adhesion, membrane tension,
and protrusion strength. Furthermore, we implement two dis-
tinct mechanisms for how cell polarity is influenced by the
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FIG. 1. A side view of two phase field cells wetting on an adhe-
sive substrate and migrating toward each other to undergo a head-on
collision. The wide range of accessible contact geometries are shown
by varying cell tension γ , adhesion A, and protrusion strength β in
the right cell (dark gray): (top) γ = 0.9γ0, A = 0.64γ0, β = 10γ0,
(middle) γ = 1.26γ0, A = 0.48γ0, β = 6γ0, (bottom) γ = 1.8γ0,
A = 0.32γ0, β = 4γ0. The left cell (light gray) has constant attributes
with the default values listed in Table I. The contact angle of the cell
is computed by fitting a line to a few points from the cell’s contour
[see Appendix A, Fig. 10(b) for more details].

cell-cell interaction: the velocity-aligning [31,32] and front-
front contact repolarization [27,33] models, both broadly used
to describe collective migration in different contexts [27,31–
36]. Although the models are fundamentally different, both
can produce results nominally consistent with experiment,
wherein cells with smaller contact angles and faster speeds
are more likely to win. Further analysis, however, could
distinguish these two approaches, as we find that within
the velocity-aligning model, outcomes are best predicted
by difference in speeds between cells, while in the contact
repolarization model, outcomes depend most strongly on dif-
ference in contact angles. Surprisingly, though we are varying
three independent parameters over a broad range of different
values, we find in both cases that a single relevant summary
parameter predicts the cell-cell collisions well.

II. MODEL

We build a model for cells within the phase field ap-
proach [29,33–35,37,38], which can describe cells with an
arbitrary deforming shape. Because the experiments of [28]
study cells tightly confined on a microstripe, we simplify
our model to two dimensions, a “side view” of the cell [29]
(Fig. 1). Our model includes cell self-propulsion, adhesion to
a substrate, cell tension, and cell-cell repulsion and adhesion.
Each cell is given a phase field φ(r, t ), which is zero outside
the cell and one inside the cell, implicitly defining the cell
boundary as φ = 1

2 . The evolution of the field for cell i is
governed by energy minimization and advection of the cell
boundary [34,39,40],

∂φi(r, t )

∂t
+ vi(r, t ) · ∇φi = −M δF

δφi
, (1)

where M is the transport coefficient and vi(r, t ) is the velocity
field of the cell.

The total free energy of the system of N cells
is F = ∑N

i=0[FCH,i + Farea,i + Fχ,i + Fadh,i + Frep,i]. The
Cahn-Hilliard energy [34]

FCH,i =
∫

dr
γ

λ

[
4φ2

i (1 − φi )
2 + λ2(∇φi )

2
]

(2)

has a double-well potential with minima at φi = 0, 1 (the out-
side and inside of the cell) and a gradient term that penalizes
interface deformations. γ controls the line tension of the cell,
and λ has units of length and sets the phase field interface
thickness (see Appendix B).

Additionally, we penalize deviations of the cell away from
a preferred area Ã = πR2

0 via [34]

Farea,i = μ

[
1 − 1

Ã

∫
dr φ2

i

]2

. (3)

Thus, in the absence of cell-cell interactions, motility forces,
and cell-substrate forces, cells relax to circles with radius R0.

To study lamellipodium contact angles, we must have
adhesive substrates onto which cells can wet and extend
lamellipodia. We introduce substrates through a static phase
field χ (y) that indicates the substrate, transitioning from zero
above the substrate surface to one below the substrate surface
(see Appendixes A and B). The energy of interaction with the
substrate is [29]

Fχ,i =
∫

dr φ2
i (2 − φi )

2

×
[
−36A

ξ
χ2(1 − χ )2 + g

2
χ (x, y + λ)

]
. (4)

The term proportional to A models adhesion. It is nonzero
at the boundaries of the cell and the substrate, and it favors
increased contact between these two interfaces by reducing
the total energy of the cell by an amount proportional to A.
The term proportional to g prevents the cell from penetrating
into the substrate. It is nonzero where the boundary of the cell
is in contact with the body of the substrate.

Lastly, we account for cell-cell interactions [33,34,37]:
cells are favored to adhere to each other when their interfaces
are in contact,

Fadh,i = −
∑
j �=i

ω

λ

∫
dr φ2

i (1 − φi )
2φ2

j (1 − φ j )
2, (5)

and they are discouraged from overlapping,

Frep,i =
∑
j �=i

κ

λ

∫
dr φ2

i φ
2
j , (6)

where ω and κ set the energy scale for each interaction, re-
spectively. We further note that because φ = 0 is the exterior
and φ = 1 is the interior of the cell, φ2

i (1 − φi )2 in Eq. (5) is
used to indicate the interface of cell i.

To complete the phase field description, we obtain the
velocity field vi by noting that cells are overdamped systems.
Balancing forces per unit area locally, we write [41]

ηvi = δF
δφi

∇φi + fmotility,i. (7)
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FIG. 2. Schematics for velocity-aligning (top) and front-front
contact repolarization (bottom) models. In the VA model, cell po-
larity aligns to the direction of center-of-mass velocity. In the FFCR
model, many vectors (light orange) are drawn from the contact region
(shaded area) through the center-of-mass of the cell. Cell polarity
then aligns to the repolarization vector r̂CR, which is calculated as
their average (dark orange).

The left hand side represents the friction force per area, with η

a friction coefficient, while the first term on the right dictates
the velocity of the cell boundary driven by energy minimiza-
tion. The last term, fmotility,i, is the motility force per area. The
motility force (Sec. II D) propels the front of the cell forward
and depends on cell polarity.

A. Defining cell polarity

Crawling cells are generally polarized, i.e., they have an
asymmetric distribution of proteins and cell shape. For in-
stance, in single cells, Rho GTPase proteins are asymmetric,
with Rac1 upregulated in the leading edge of the cell and
RhoA active in the cell rear [21]. Rather than explicitly model-
ing Rho GTPases [33,35,42–46], we summarize cell polarity
as a single direction ψ , with an associated unit vector p̂ =
(cos(ψ ), sin(ψ )).

Choosing how cell polarity reacts to the presence of other
cells is an essential stage in modeling collective migration,
but there is no single established approach [2]. Here, we
implement two separate widely used alternatives (Fig. 2): a
“velocity-aligning” or “self-aligning” polarity, in which cells
sense and respond to their own velocity (Sec. II B), and a
“contact repolarization” model, in which cells sense cell-cell
contact and repolarize based on that contact (Sec. II C). We
keep the equations of motion between these two approaches
as closely analogous as possible.

B. Velocity-aligning cell polarity

The velocity-aligning (VA) model originates from the
flocking behavior observed in fish keratocytes [31], and has
been extensively used to capture collective migration in dif-
ferent contexts [31–34,36]. Here, we assume that cells can
sense their velocity and repolarize to align to it over a finite
timescale τVA (Fig. 2). That is, the evolution of the cell polarity
vector is [31,32]

d

dt
ψi = − 1

τVA
sin−1[(v̂c.m.,i × p̂i )z] + √

2Dψ �(t ), (8)

where v̂c.m.,i is a unit vector in the direction of cell i’s
center-of-mass velocity, Dψ is the angular diffusion constant,
and �(t ) is a Gaussian Langevin noise with 〈�(t )〉 = 0 and

〈�(t )�(t ′)〉 = δ(t − t ′). Given this mechanism, the cell po-
larity integrates information about cell-cell and cell-substrate
interactions through the center-of-mass velocity. The inverse
sine of the cross product will return the difference between
the angle of the center-of-mass velocity and ψ when these
two angles are close together, but correctly predicts no repo-
larization when these angles differ by 2π . Although each cell
only senses its own velocity, because cell-cell collisions lead
to correlated velocities, alignment to the cell’s own velocity
leads to correlated, coherent migration [31].

C. Front-front contact repolarization cell polarity

In contact inhibition of locomotion (CIL) [17–20], cells
polarize away from cell-cell contact and then migrate away
from one another. How do we describe “away from cell-cell
contact” in our phase field model? The direction away from
a contact point r′ is rc.m.,i − r′, where rc.m.,i is the centroid
of cell i. To define the repolarization direction of cell i due
to its contact-based interaction with cell j, we integrate over
all contact points within the contact region φiφ j > 0 and
constrained to cell i. This direction is captured by r̂CR,i =
rCR,i/|rCR,i| with

rCR,i =
∫

cell i
dr′ (rc.m.,i − r′)φi(r′)[φi(r′)φ j (r′)]. (9)

Contact repolarization should only occur when the cells are in
contact, which occurs when their phase fields overlap. We thus
evaluate Eq. (9) only when max(φiφ j ) > 0.1 and set rCR,i = 0
when cell i is not in contact with cell j. Moreover, we restrict
the integral to the region of space where φ j (r) > 0.2 to avoid
potential minor issues at high wetting when values of φ j

outside of the contour φ j = 1
2 may be relevant.

Because we are modeling cells that travel together as a
train, cells should no longer repolarize away from contact
after one cell has turned around. One possible mechanism is
having interactions between cell front and back be different,
as supported by [20]. We thus implement a modified version
of CIL, front-front contact repolarization (FFCR), in which
cells repolarize away from contact only if their fronts are
touching [27,33,35]. We implement this with a term aligning
the polarity of the cell toward the repolarization direction
r̂CR: −1/τCRsin−1[(r̂CR,i × p̂i )z]�(−px

i px
j )�(rx

CR,i p
x
j ), where

�(x) is the Heaviside step function, and p̂ j is the polarity of
the cell colliding with cell i. �(−px

i px
j ) is true when either the

fronts of cells or the rear of cells are pointing toward each
other. To restrict polarity repolarization to only front-front
contact, we use �(rx

CR,i p
x
j ), which is true when one cell’s

repolarization vector is pointing away from the other cell’s
front. Together, these two conditions activate contact repolar-
ization only when the fronts of cells are in contact.

With just the contact repolarization term, we would find
that the polarity of a single cell would not tend to align along
the direction of the substrate, but could point in any direction;
this is very different from the VA model. We address this
by creating a tendency for the cell to align its polarity along
the substrate (±x̂), a “contact guidance” term [21,27,47]. In
addition, we include an angular noise term �(t ) as in the VA
model.
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Together, the complete FFCR polarity model is

d

dt
ψi = − 1

τCG
sin−1[sgn(p̂i · x̂)(x̂ × p̂i )z]

− 1

τCR
sin−1[(r̂CR,i × p̂i )z]�

( − px
i px

j

)
�

(
rx

CR,i p
x
j

)

+ √
2Dψ �(t ), (10)

where sgn is the sign function. The contact guidance term [the
first term of Eq. (10)] aligns the polarity toward +x̂ for cells
moving to the right and −x̂ for those moving to the left.

D. Generating lamellipodiumlike protrusions via active forces

We introduce lamellipodialike protrusions via an active
force modeling actin polymerization [21,48] that is localized
to the leading edge of the cell near the substrate [29,49–51].
Mathematically,

fmotility,i = β(p̂i · x̂)|∇φi||∇χ |�(p̂i · n̂i )x̂. (11)

Cells extend lamellipodia on adhesive substrates, and
|∇φi||∇χ | ensures the active force acts only where the cell
is in contact with the substrate. To localize protrusions to the
leading edge, we compute the normal vector to the boundary,
n̂i ≡ −∇φi/|∇φi|, and only allow protrusions when p̂i · n̂i >

0. Thus, Eq. (11) yields a motility force that is at the front of
the cell, near the substrate, and has a strength proportional to
β; larger β values cause larger protrusions (Fig. 1).

E. Parameter setting

When possible, the value of a given parameter of the
simulation is calibrated to the typical value observed ex-
perimentally for trains of MDCK cells confined in narrow
channels [28]. Otherwise, values are chosen such that the
simulated behavior of cell trains confined in geometries
considered in [28] is comparable to what is observed exper-
imentally. The length and time scales of the simulation are
chosen such that typical cell sizes and cell speeds are on
the order of 40 μm and tens of microns per hour, respec-
tively [28].

Line tension γ has units of energy/length and sets the
energy scale. For living cells, tension consists of mainly two
components [52,53]: (1) membrane tension of the lipid bi-
layer, and (2) cortical tension from linkage to the actomyosin
cortex. We phrase our model so that we do not need to specify
γ , but only its value relative to some characteristic scale γ0,
which has units of energy/length. All phase field parameters
whose units match those of γ0 are then written as scalar mul-
tiples of it: γ ∼ γ0, A ∼ γ0, β ∼ γ0, ω ∼ γ0, and κ ∼ γ0. The
remaining parameters can be written in the following way:
M ∼ �/γ0τ , μ ∼ γ0�, g ∼ γ0/�, and η ∼ γ0τ/�, where � and
τ are our units of length and time (μm and min).

Table I outlines the default values used in the simulation.
We set the adhesion strength between cells ω, large enough
so that cells with different self-propulsion strengths can still
travel cohesively. We set the strength of cell-cell repulsion
κ low enough to ensure cell interfaces can wet against one
another to enable intercellular adhesion, yet large enough to
prevent cells from overlapping. Strength of repulsion between

TABLE I. Default values of all parameters used in the simu-
lation; any variation from these will be noted. In particular, the
values of cell tension γ , adhesion to the substrate A, and protrusion
strength β apply to the left cell, whose parameters remain unchanged
across all simulations. Numerical integration parameters are given in
Appendix D.

Parameter Value

γ 1.26γ0

A 0.48γ0

β 6γ0

ω 30γ0

κ 1γ0

λ 4.8 μm
R0 21 μm
ξ 3 μm
μ 6000γ0 μm
g 8.3γ0/μm
η 0.67γ0 min/μm
M 0.75 μm/γ0 min
τVA 24 min
τCG 24 min
τCR 12 min
Dψ 0.075 rad2/h

the cell and the substrate, g, is also set following this logic.
The constraint penalizing deviations from the preferred area
μ is set to ensure the area varies less than 0.1% from the
target area. The alignment time for the VA model is set close
to 30 min, the timescale over which the speed of HaCaT cells
correlates with their traction forces [54]. In the FFCR model,
we choose τCG = τVA, so that the single-cell behavior of the
two models will be as similar as possible. Lastly, we note
that the steady-state target direction in the FFCR model is
determined by a competition between the contact guidance
and repolarization terms: if contact guidance is too strong (τCG

too small), cells will have their polarity strongly constrained
to ±x̂ and be unable to repolarize on contact. Solving the
deterministic part of Eq. (10), we find that reversals in cell
polarity are possible when τCG � 2τCR (see Appendix E).

III. RESULTS

We simulate collisions between two cells, initialized with
a separation distance of 222 μm, migrating toward each
other on an adhesive substrate (see numerical methods in
Appendix D). In each of these simulations, the left cell has
constant parameters (Table I), while the right cell has its prop-
erties varied, ranging over (i) tension γ ∈ [0.9γ0, 1.8γ0], (ii)
strength of adhesion to the substrate A ∈ [0.32γ0, 0.64γ0], and
(iii) protrusion strength β ∈ [4γ0, 10γ0]. Each set contains
nγ = 7, nA = 11, and nβ = 6 equally spaced points. Together,
these form a three-dimensional grid of parameters for the right
cell with 462 cell attribute tuples (γ , A, β ).

We want to see if (1) we reproduce the experimental re-
sults showing that winning cells are flatter and faster, and
(2) we can understand and predict the outcomes of cell-cell
collisions by observing cell properties before collision. We
track the contact angle and speed of each cell prior to and

054413-4



PICKING WINNERS IN CELL-CELL COLLISIONS: … PHYSICAL REVIEW E 106, 054413 (2022)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 3. VA model: Winning probability and summary features plotted as a function of two cell attributes with fixed values of (a)–(c) tension
γ = 1.2γ0, (d)–(f) strength of adhesion to the substrate A = 0.48γ0, and (g)–(i) strength of protrusion β = 6.4γ0. Contour maps are constructed
by running 96 simulations with identical initialization for each parameter set, and the axes are the ratio of the varying cell’s attributes to the left
cell’s parameters, which are the default values listed in Table I. Cell polarity is modeled by the velocity-aligning mechanism with τVA = 24 min
and Dψ = 0.075 rad2/h.

during collisions. We also track the “winning probability”
Pwin, the probability that the cell on the right, whose prop-
erties are changing, remains persistent after the collision [28].
To observe this stochastic outcome, we need to run a large
number of simulations: we simulate N = 96 collisions for
each parameter combination (γ , A, β ) in the feature space.
We exclude rare simulations where a cell reverses prior to
colliding or both cells reverse.

For both models, we found that two characteristics of
a collision were crucial: the relative center-of-mass speed
δv ≡ vR − vL and the relative contact angle δθ ≡ θR − θL

(Fig. 1). Here, vR,L is the speed of the cell on the right
(left), averaged over the precollision time, and θR,L is the
contact angle averaged over the precollision time. The prec-
ollision time begins 80 min after the start of the simulation,
by which point the two cells have equilibrated on the
substrate, and ends at the time of collision, where col-
lision is identified with the conditional max(φiφ j ) > 0.1.
Figure 1 showcases three examples of cell collisions: the
top shows a cell pair with δv > 0 but δθ < 0, the middle

shows identical cells, so δv = δθ = 0, and the bottom has
δθ > 0 but δv < 0.

A. Relative cell speed controls the winning probability
under the VA model

We plot the winning probability as tension γ , adhesion A,
and protrusion strength β are varied in the VA model, showing
the variation of two parameters at a time, holding the third
fixed [Figs. 3(a), 3(d), and 3(g)]. Increasing the protrusion
strength β of a cell increases its probability to win, as does
increasing its adhesion to the substrate [Fig. 3(a)]. However,
in general, changes in cell tension do not affect the winning
probability significantly [Figs. 3(d) and 3(g)].

The tension γ , adhesion A, and protrusion strength β can
also strongly influence the relative speed and contact angle of
the two colliding cells. Increasing the right cell’s protrusion
strength pushes its front out further, making the cell on the
right flatter, leading to negative δθ , as does increasing the ad-
hesion to the substrate [Fig. 3(c)]. Meanwhile, increasing the
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(a) (b) (c)

(d) (e)

FIG. 4. VA model: (a) Pwin(δθ ), (b) Pwin(δv), and (c) (δv, δθ ) are plotted and colored based on whether δv and δθ correlate (true: blue,
purple; false: green, red). Each scatter point corresponds to different tuples of cell attributes from the feature space (γ , A, β ), and it is the
average value obtained from 96 simulations. L2-regularized logistic regressions of the form Pwin = [1 + exp(a0 + a1X )]−1 are performed on
the subspace in which δv and δθ do not correlate, where (d) X = δθ and (e) X = δv. The training data for these regressions are individual
simulations, in which a binary question of winning or losing is asked.

right cell’s tension rounds it up, increasing its contact angle
relative to the left cell, making δθ positive [Figs. 3(f) and 3(i)].
Increasing the protrusion strength increases the speed of the
cell, as does an increase in the substrate adhesion [Fig. 3(b)].
The latter effect can be explained by noting that a higher
degree of wetting increases the magnitude of |∇φ||∇χ |, and
thus results in a higher motility force density. Interestingly,
we see that the tension of the cell does not generally affect its
speed significantly [Figs. 3(e) and 3(h)].

Are flatter cells or faster cells the winners? When tension
is held fixed, the highest winning probabilities correspond to
the most negative differences in contact angles [compare top
right section of Figs. 3(a) and 3(c)] . That is, if we only vary
adhesion to the substrate and protrusion strength, we find that
flatter cells win more frequently. However, this trend is not
true universally: compare Pwin and δθ when we vary the cell’s
tension [Figs. 3(d) vs 3(f), 3(g) vs 3(i)]. Instead, the pattern
that holds true globally is the striking similarity between the
distributions of the winning probability and relative cell speed
(first and second columns of Fig. 3).

We replot the results of Fig. 3 in Fig. 4, showing how the
winning probability depends on δv and δθ as the parameters
γ , A, and β are varied. We find that, as we expected from
Fig. 3, winning probability is higher for flatter cells, i.e., Pwin

is larger when δθ is negative [Fig. 4(a)]. We also see that Pwin

correlates well with δv [Fig. 4(b)]. Consistent with [28], then,
we see that both flatter cells and faster cells are more likely
to win. This occurs, however, in part because the speed and
contact angle of a cell are highly correlated [Fig. 4(c)]; cells
with larger protrusive strengths in particular are both faster
and flatter on average. Comparing Figs. 4(a) and 4(b), relative
speed seems to be a better predictor. Does relative contact an-
gle also predict collision outcomes, or does it simply correlate
with relative speed? To address this question, we color the
points in Fig. 4 according to which quadrant of the δv-δθ plot
in Fig. 4(c) they are in. Parameters where δv and δθ have the
same sign are shown in blue and purple, while those where
δv and δθ have different signs are shown in red and green. For
the red and green points, the measured contact angle and speed
differences predict qualitatively different outcomes. When we
look at this subset of parameter values, we no longer observe
that flatter cells are more likely to win, but that faster cells
are still more likely to win [Figs. 4(d) and 4(e)]. In fact, if we
perform logistic regressions on Pwin(δv) and Pwin(δθ ) limited
to the subspace where δv and δθ anticorrelate, we would
predict that while faster cells are still more likely to win, cells
with smaller contact angles are more likely to lose. (We note
that here, and in all logistic regressions shown, the regressions
are done with SCIKIT-LEARN’s L2 regularization [55]). This
is opposite to what we see in the full parameter set. Based
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(a) (b) (c)

FIG. 5. Average winning probability is obtained from 96 simulations with τVA = 80 min (a), 24 min (b), and 4 min (c). While we observe
a sharpening in Pwin as the alignment time decreases, we uncover that at small τVA = 4 min, relative cell speed is no longer predictive of the
winning probability, with Pwin scattered far away from the logistic regression fit. Each scatter point corresponds to one tuple in the feature
space (γ , A, β ), colored as in Fig. 4.

on these results, we expect that, within the VA model of
cell polarity, relative cell speed is the essential controlling
factor while contact angle merely correlates with speed: when
contact angle and speed disagree, we should pay attention to
speed. It might seem unavoidable, from our assumptions of
the VA model, that cell speed is the controlling variable. How-
ever, as we will see in the next section, this is not guaranteed.

B. Relative speed controls the winning probability
only when alignment timescales are long

The alignment timescale τVA plays a large role in con-
trolling collective migration [31,32,56], with smaller values
of τVA promoting longer, more coherent “trains” of cells
in a self-propelled particle model [32]. However, we see a
more complex dependence of outcomes on alignment time. In
Fig. 5, we repeat the collision simulations for the whole range
of parameters β, γ , and A studied in Figs. 3 and 4, but vary
τVA over three values: 80 min, 24 min (our default value), and
4 min.

Decreasing τVA suppresses noise in the polarity angle ψ ,
and makes the cell’s polarity quickly repolarize to its velocity.
Our initial expectation about the results of Fig. 5 was that
when two cells collided, each cell’s velocity would quickly
reach the center-of-mass velocity of the cell pair, which would
point in the direction of the faster cell. We would then expect
that both cells would tend to polarize in the direction of the
faster cell, i.e., the faster cell would win nearly determinis-
tically, predicting that Pwin(δv) would be essentially a step
function. We do see, consistent with this view, that as we de-
crease τVA from 80 to 24 min, the transition becomes sharper
and more like a step function (Fig. 5). To some degree this
is inevitable: if we took τVA → ∞, each cell’s polarity angle
would be an unbiased random walk, and be independent of
cell-cell interactions. In this limit, we would expect Pwin = 1

2
independent of δv. However, when τVA = 4 min, instead of
a step function in δv we see that Pwin no longer collapses
neatly as a function of δv: there is a huge amount of scatter.
This indicates that at small τVA, we can no longer reliably

summarize all the varying properties of the cells A, γ , and
β solely by the difference in speeds between the two cells.

The scatter in Pwin is not just due to the finite number of
collisions simulated for each point. Suppose δv were the sole
predictor of the winning probability, such that Pwin = f (δv),
for some function f . How large a change in Pwin would we
expect to see due to the finite sample size of ncol = 96 colli-
sions? We plot in Fig. 5 the 95% binomial confidence intervals
for this binary outcome if Pwin(δv) were given by the logistic
regression fit. (We compute these intervals using the exact
Clopper-Pearson method [57].) For the shortest alignment
time, τVA = 4 min, the measured Pwin are far more scattered
than would be expected if δv were a good summary variable.
At the longest alignment time we study, τVA = 80 min, the
quality of the collapse is much stronger, and we are more
confident in arguing that δv is sufficient to completely predict
the outcome of the cell-cell collision.

Why is δv no longer a reasonable predictor of the collision
outcomes when τVA is small? δv is a measure of the difference
between cell speeds, averaged over the pre-collision time: it
reflects the relative speed in steady state. However, during
collision, each cell’s center-of-mass velocity can be altered
by local deformations in cell shape. This leads to a transient
relative speed during collision, which could be different from
δv depending on how much each cell deforms. When the
alignment time is short, cell polarity integrates velocity in-
formation quickly and is affected by instantaneous velocities
more strongly, i.e., cell velocity during collision matters more.
In this regime, the steady-state relative speed δv, which does
not properly reflect the transient relative speed present during
collision for some simulation parameters, can become a poor
predictor of collision outcome. Indeed, when the alignment
time is large, cell polarity is driven by cell velocity averaged
over that large timescale and, as such, δv is able to capture the
dynamics of cell collisions more robustly.

Timescales as short as τVA = 4 min are, however, much
shorter than current estimates. Recent work reported correla-
tions between the traction forces exerted by HaCaT cells and
their speed with a time lag of 30 min [54], and interpreted that
in terms of a alignment timescale of 30 min.
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FIG. 6. The contact region (dark orange) and contact repolariza-
tion vectors r̂CR (orange arrows) are drawn for two phase field cells
with different shapes. This schematic highlights how the shape of the
cell controls the repolarization vector, and how far its polarity (blue
arrow) must rotate to reach the desired target direction. While the
polarity of flatter cells has a larger angular difference to close, that of
rounder cells has a smaller one.

C. Relative contact angle controls the winning probability
under the FFCR model

We now switch to studying the contact-based FFCR model,
and repeat our simulations and analyses from Sec. II B using a
fundamentally different assumption: that cells repolarize away
from front-front contact [Eq. (10)].

How do relative cell speed and contact angle predict the
winning probability when we vary the parameters γ , β, and A
in the FFCR model? Given its definition in Eq. (9), the repolar-
ization vector rCR is affected by the contact angle of the cell.
Cells that extend further on the substrate and form smaller
contact angles are also flatter, placing their center-of-mass
closer to the substrate and resulting in a repolarization vector
closer to the horizontal (Fig. 6). Since contact angle controls
the repolarization vector, which is the target direction cell
polarity strives to reach, could it also dictate the persistence
of the cell and its chances to win?

To visualize the outcome of collisions within the feature
space spanned by γ , A, and β, we plot the average winning
probability of 96 simulations as a function of two features
with the third held constant [Figs. 7(a), 7(d), and 7(g)]. Similar
to the VA model, we see that increasing the protrusion strength
of the cell increases its probability to win, as does increasing
its adhesion to the substrate [Fig. 7(a)]. In direct contrast to
the VA model, however, we report that increasing the cell’s
tension decreases its chances to win [Figs. 7(d) and 7(g)].

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 7. FFCR model: Winning probability and summary features plotted as a function of two cell attributes with fixed values of (a)–
(c) tension γ = 1.2γ0, (d)–(f) strength of adhesion to the substrate A = 0.48γ0, and (g)–(i) strength of protrusion β = 6.4γ0. Contour maps
are constructed by running 96 simulations with identical initialization for each parameter set, and the axes are the ratio of the varying cell’s
attributes to the left cell’s parameters, which are the default values listed in Table I. Cell polarity is modeled by the front-front contact
repolarization mechanism with τCG = 24 min, τCR = 12 min, and Dψ = 0.075 rad2/h.
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(a) (b)

(d) (e)

(c)

FIG. 8. FFCR model: (a) Pwin(δθ ), (b) Pwin(δv), and (c) (δv, δθ ) are plotted and colored based on whether δv and δθ correlate (true: blue,
purple; false: green, red). Each scatter point corresponds to different tuples of cell attributes from the feature space (γ , A, β ), and it is the
average value obtained from 96 simulations. L2-regularized logistic regressions of the form Pwin = [1 + exp(a0 + a1X )]−1 are performed on
the subspace in which δv and δθ do not correlate, where (d) X = δθ and (e) X = δv. The training data for these regressions are individual
simulations, in which a binary question of winning or losing is asked.

We also visualize relative speed and contact angle of the
two colliding cells as a function of our varied parameters.
How the shape and speed of the cell depend on the parameters
is highly similar to the results of Fig. 3. Similar to the VA
model, we see that increasing the protrusion strength results
in flatter and faster cells, as does increasing the adhesion
to the substrate [Figs. 7(b) and 7(c)]. Moreover, increasing
the cell’s tension rounds it up [Figs. 7(f) and 7(i)], while it
does not significantly affect its speed [Figs. 7(e) and 7(h)].
This correspondence between Figs. 7 and 3 is unsurpris-
ing since δv and δθ are precollision properties. While in
principle changing properties of the polarity mechanism can
change single-cell properties [32,33], we chose our two mod-
els [Eqs. (8) and (10)] to be as close as possible in single-cell
behavior.

Similar to the VA model, we note that when tension is held
fixed, the highest winning probabilities correspond to the most
negative differences in contact angles [Figs. 7(a) and 7(c)].
In direct contrast to the VA model, however, flatter cells are
observed to have higher winning probabilities across the entire
feature space [Figs. 7(d) and 7(f), 7(g), and 7(i)]. Moreover,
the distribution of Pwin is not similar to that of relative speed,
but rather to the inverse of relative contact angle (first and third
columns of Fig. 7).

We replot the data from Fig. 7 as a function of δθ and δv

in Fig. 8. As in the experiments of [28] and in our earlier VA
model, winning probability is generally larger for the faster
cell [δv > 0, Fig. 8(b)] as well as for the flatter cell [δθ < 0,
Fig. 8(a)]. However, in this case it is clear that relative contact
angle is the better predictor: the winning probability plotted as
a function of δθ collapses to a single clear curve, while Pwin

only correlates loosely with δv.
As in Sec. III A above, we explore whether contact angle

or speed differences are more relevant in the subspace of
parameters where δθ and δv have opposite signs (red and
green points). Within this set of parameters, the winning prob-
ability’s dependence on δv is opposite to the full space: faster
cells are less likely to win when speed and contact angle dis-
agree [Fig. 8(e)]. However, even when speed and contact angle
disagree, flatter cells are more likely to win [Fig. 8(d)]. These
trends are supported by L2-regularized logistic regressions
(black line).

At a surface level, the contact-based FFCR model gives
similar predictions to the VA model: faster and flatter cells are
more likely to win. However, the underlying driving factor is
completely different: cell collision outcomes are completely
predicted by the relative contact angle, and the role of speed is
only relevant to the extent that it correlates with contact angle.
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FIG. 9. The winning probability plotted against the two summary parameters for different values of Dψ . L2-regularized logistic regression
curves and binomial confidence intervals are computed for each predictor. We note that lowering the angular diffusion coefficient sharpens the
winning probability curve and increases the scatter of points away from the regression curves. Each scatter point corresponds to one tuple in
the feature space (γ , A, β ), colored as above.

Why does the FFCR model, Eq. (10), give such a strong
dependence on contact angle? At the collision, both cells
are being repolarized away from contact, and the cell which
turns around first “loses” the collision, as the other cell is
no longer in contact with a cell front. We then have to un-
derstand why, on average, flatter cells repolarize slower on
contact. The FFCR model describes cells repolarizing toward
the direction r̂CR, which is strongly influenced by the contact
angle of the cells (Fig. 6). Within Eq. (10), the rate of change
of cell polarity due to contact repolarization is controlled by
a term sin−1[(r̂CR × p̂)z] = sin−1[sin(�)], where � = ψ −
ψCR with ψ ≡ ∠(p̂) and ψCR ≡ ∠(r̂CR) (this term is essen-
tially used to compute the distance between the two angles
without giving unphysical results when one angle wraps past
2π [31,32]). sin−1[sin(�)] is a sawtooth-shaped graph, which
decreases monotonically for � ∈ [−π,−π/2) and increases
monotonically for � ∈ [−π/2, 0]. This means that when the
angle from r̂CR to p̂ is larger than π/2, i.e., � < −π/2, the
rate of repolarization decreases as � becomes more nega-
tive. As an extreme case, if � = −π and p̂ = −r̂CR, there
would be no repolarization; like a pendulum exactly opposed
to gravity, this is an unstable equilibrium. For our colliding
cells, � ∈ (−π,−π/2). In a typical collision, we see that the
flatter cell is repolarized toward a direction r̂CR nearly π away
from its polarity, while the rounder cell has r̂CR closer to its
polarity (Fig. 6). This means that �flatter < �rounder < −π/2.
Therefore, the rate of repolarization for flatter cells is smaller

and we would expect them to repolarize more slowly and be
more likely to win. We can make this argument more explicit
by solving a simplified FFCR model [Eq. (10)], neglecting
stochastic noise and assuming a fixed repolarization direction
r̂CR. We compute the cell’s repolarization time as a function of
the repolarization orientation (see Appendix E). For the most
part, this deterministic toy model exhibits a repolarization
time that increases with increasing ψCR, supporting the notion
that flatter cells turn more slowly. However, we do find in
some cases that the deterministic model predicts flatter cells
can lose because of a complicated dependence on the angle
ψCR (see Appendix E for a more detailed discussion). We will
see in Fig. 9 that, as we make the model more deterministic by
decreasing the angular diffusion coefficient Dψ , contact angle
differences do become less predictive of collision outcomes.

Our argument above suggests that the outcomes of cell-cell
collisions can be sensitive not only to cell geometry, but also
to the detailed assumptions of the cell polarity model. This
makes cell-pair collisions potentially quite a sensitive test of
these assumptions.

D. Angular noise controls how strongly relative speed
and contact angle predict Pwin

In both the VA and FFCR models, we include an angular
Brownian noise: in the absence of polarity mechanisms, the
polarity would diffuse with orientational diffusion coefficient
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Dψ . These random reorientations model stochasticity arising
from finite numbers of molecules in the polarity pathway and
from other sources [33,58–60]. As we have found cell-cell
collisions to have stochastic outcomes [19,28], we would ex-
pect this noise, the only random driver in the problem, to play
a large role. How does altering Dψ change outcomes?

We simulated cell collisions at Dψ = 0.15 rad2/h,
0.075 rad2/h, and 0.0075 rad2/h, with all other parameters
kept fixed. Similar to lowering the alignment time, lowering
the angular diffusion coefficient makes Pwin a sharper, more
steplike function of its relevant predictor, while increasing
the scatter of Pwin away from the logistic regression curves
(Fig. 9). Similar to our results at small alignment time (Fig. 5),
at small Dψ , these points can be far outside the scatter ex-
pected from finite sampling error, as computed by binomial
confidence intervals (dashed lines in Fig. 9). As Dψ decreases,
and our model becomes more deterministic, we see that we
can no longer summarize the winning probability as a function
of a single variable. Again, this indicates that other factors
like cell deformability, shape beyond the contact angle, etc.,
become relevant in this limit.

These results are very similar to those seen in Fig. 5,
and likely have a similar origin. We can construct a simple
toy model that explains these features qualitatively. A sin-
gle cell will, because of the angular noise, have a range of
possible polarity angles ψ . If we linearize the equation of
motion of a noncolliding cell’s polarity [Eqs. (8) or (10)]
around its equilibrium direction (ψ = 0 for a cell traveling
to the right), we find an Ornstein-Uhlenbeck process d

dt ψ =
− 1

τeff
ψ + √

2Dψ�(t ), with τeff being τVA or τCG for the VA
or FFCR models, respectively. This means that the steady-
state probability distribution P(ψ ) for a single cell traveling
to the right will be a Gaussian with mean zero and vari-
ance proportional to Dψτeff [61]. If this variance is large,
then even if the cell on the right has a larger speed than
the one on the left on average, at the time of the collision,
its speed might be quite different due to the fluctuations in
cell polarity. What, then, is the distribution of cell velocities
entering the collision? Suppose we have two colliding cells
with precollision average speeds v̄R and v̄L. We can model
the speeds at collision by adding some fluctuations around the
mean: vR = v̄R + ζR, vL = v̄L + ζL. Then, the true difference
in speeds at the time of contact will be δvtrue ≡ vR − vL =
v̄R − v̄L + ζR − ζL = δv + (ζR − ζL ), where δv is the relative
speed averaged over the precollision time. Instead of solving
the full VA dynamics, we make a simple assumption that
the right cell wins when δvtrue > 0 (we can make a similar
argument for the FFCR model with δθtrue < 0). With this
toy model, the winning probability is then the probability of
observing positive true relative speeds: Pwin = P(δvtrue > 0).
If ζR and ζL are Gaussian with mean zero and standard devia-
tion σ , then P(δvtrue ) = N (δv, 2σ 2). Then, Pwin = P(δvtrue >

0) = ∫ ∞
0 N (δv, 2σ 2)dδvtrue = 1

2 erfc(− δv
2σ

), which transitions
from 0 to 1 as δv moves over a region of order σ . If the
noise σ is small, we would expect even a small change in
δv = v̄R − v̄L to lead to a large change in Pwin. However,
if the noise σ is large compared to δv, then Pwin will not
depend much on δv. So far, this argument predicts that at
low noise levels (small values of Dψτeff), we would expect

Pwin to become more switchlike and sharper as a function
of its relevant variable δv or δθ . We do see this in Figs. 5
and 9, but we also see that the scatter away from the switchlike
curve increases. This can be explained by factors that weaken
the correlation between outcome and the predictor, e.g., the
deformability at short times or, in case of the FFCR model,
the contact angle not correlating with collision outcome in
certain cases (see Appendix E). Whatever these factors may
be, we can characterize their effect by adding some systematic
shift to the relevant variable. For instance, in the VA model,
the relevant parameter δvtrue → δvtrue + ε, and the winning
probability becomes Pwin = 1

2 erfc(− δv+ε
2σ

). We see that these
small, systematic shifts ε, that differ from parameter set to
parameter set, begin to matter more at small values of noise
σ 2 ∼ Dψτeff. Additionally, we would predict that as Dψτeff in-
creases, Pwin becomes more weakly dependent on these shifts.
Further increasing Dψτeff to very large levels, we expect Pwin

to weakly depend on the predictors and reach a constant value.
In this limit, we expect cell polarity to evolve at random and
anticipate the outcome of collisions to tend toward 50-50. For
instance, the smoothening of the logistic curves we observe in
Fig. 5 as the alignment time increases can be explained by the
corresponding increase in the variance of P(ψ ).

E. Predictability of individual cell-cell collisions

Cell-cell collisions are often viewed as entirely stochastic,
and models assuming no ability to predict collisions have
been successful in understanding some elements of collective
migration [19]. However, in our models, we have seen in
Figs. 4 and 8 that for a broad range of parameters β, A,
and γ , we can reliably predict the probability of outcome
by knowing only the relative speed (for the VA model) or
only the relative contact angle (for the FFCR model). Suppose
we observe a single pair of cells prior to their collision and
measure the differences in speeds and contact angles averaged
over the precollision time δv and δθ , respectively. Given this
knowledge and our fits above, how reliably can we predict the
outcome of this cell-cell collision?

The simplest way to quantify a binary prediction is with
a percentage associated with successful labeling of the out-
come. We used logistic regression to find a prediction for
the winning probability Pwin = [1 + exp(a0 + a1X )]−1, where
X = δv or δθ (see curves in Figs. 4 and 8). If, for an individual
collision in the VA model, we measure δv and predict a win if
Pwin > 1

2 , what percentage of the time are we correct? We find
that (79.5 ± 0.8)% of the time, we can predict the outcome of
the VA model with the logistic regression (see Appendix F
for details). How does this compare with the simpler, and
experimentally accessible, approach of just predicting a win
if δv > 0? With this criterion, we find that (79.6 ± 0.4)%
of the time, we can predict the outcome correctly. Similarly,
for the FFCR model, if we use the logistic regression on
δθ , we can predict the outcome of an individual simulation
(72.1 ± 0.7)% of the time, while simply choosing the cell
with the smaller contact angle, i.e., δθ < 0, is successful
(71.7 ± 0.7)% of the time. We see in both the FFCR and VA
models, outcomes are far from a coin flip.

While simply choosing the cell with the faster speed or
smaller contact angle to win predicts outcomes well, it does

054413-11



PEDROM ZADEH AND BRIAN A. CAMLEY PHYSICAL REVIEW E 106, 054413 (2022)

not provide a reliable probability of an outcome, essentially
assuming Pwin = �(δv) for VA and �(−δθ ) for FFCR. A
widely used metric for assessing the “goodness of the fit” of
a probabilistic binary classifier is the Brier score, the mean
squared error between the observed and predicted probabil-
ities B = 1

N

∑
n(pn,pred − outcomen)2, where outcomen = 1

for a win and 0 for a loss, and the sum is over all the
N collisions in the test set (see Appendix F). This penal-
izes the classifier more if it is overconfident: e.g., for a loss
with outcome = 0, B is larger when the predicted probability
is p = 1 than if p = 1

2 . Lower Brier scores correspond to
better classifiers. For the VA model, the logistic regression
has a Brier score of 0.140 ± 0.003, while the step func-
tion, assuming Pwin = �(δv), scores 0.204 ± 0.004. For the
FFCR model, the logistic regression has a Brier score of
0.182 ± 0.003, while Pwin = �(−δθ ) scores 0.283 ± 0.007.
This signifies that a logistic regression is better at capturing
the outcome of simulated collisions with either model than
naively choosing the faster or flatter cell.

IV. DISCUSSION

Cell-cell collisions are broadly used to probe how cells
interact and test biochemical regulators of cell interac-
tions [19,20,27,28,35,62–65]. To what extent are cell-cell
collisions predictable vs purely stochastic? Do cell-cell colli-
sions unavoidably reflect biochemical interactions [18], or do
physical properties such as cell shape provide any universal
guideline, as is observed in unjamming [66,67]? How can
we use cell-cell collisions to discriminate between compet-
ing models of cell interactions? Here, we have focused on
answering these questions with a minimal model of cell-pair
collisions motivated by experiments of Jain et al. [28], who
found that in trains of colliding cells, the winning cell was
more likely to have a smaller contact angle and a higher speed.
In our framework, we controlled cell speed and contact angle
through tension, adhesion to the substrate, and strength of
lamellipodium protrusion. We further employed two distinct
mechanisms for cell polarity, the velocity-aligning (VA) and
front-front contact repolarization (FFCR) models, and showed
that both capture the experimentally observed results of [28]:
faster and flatter cells are more likely to win. Interestingly,
we showed that for sufficiently stochastic systems (those with
large Dψ or large τVA), the effects of tension, adhesion, and
protrusion strength on the cell’s chances to win can be reliably
summarized by a single variable. This predictor of winning
probability was relative speed δv for the VA model and rela-
tive contact angle δθ for the FFCR model. When the system
nears a deterministic regime, however, subtle, short-timescale
fluctuations begin to affect the long-timescale behavior of the
cell, as discussed in Sec. III D and Appendix E. This behav-
ior might be expected: in a deterministic simulation between
two near-identical cells, the outcome of a collision would
be determined by, e.g., rounding error. This limit, though,
is unphysical: cells will inevitably have large amounts of
stochasticity in their motility.

Our results show that, in order to discriminate between
potential polarity mechanisms, it may be essential to study
varying multiple cell attributes simultaneously. Our simula-
tions can qualitatively reproduce the results of [28] on cell

speed and contact angle with two opposed assumptions, in
part because relative cell speed and relative contact angle
are correlated in our model. We would be unable to discern
whether cell shape is playing an important role in the collision
solely based on the result that collision outcome and contact
angle are related. To understand this in our modeling, we had
to use the multivariable approach of Figs. 4 and 8. Altering pa-
rameters like cell-substrate adhesion and protrusion strength
simultaneously changed cell speed and contact angle, while
altering cell tension allowed us to understand the influence
of contact angle independent of speed. Similar approaches
could be implemented in cell-cell collision experiments, ei-
ther via multiple modulations of tension, adhesion, etc., or
by exploiting natural cell-to-cell variability. These manipu-
lations might include altering tension via the RhoA-ROCK
pathway, adhesion via regulating the concentration of surface
proteins or integrin affinity, or lamellipodium protrusion by
modulating the activity of membrane-bound Rac [21]. Surface
treatment, for instance, has already been seen to regulate con-
tact angle [29,30]. However, these correlations may be more
complex in experimental systems and vary from cell type to
cell type. Our minimal model leads to faster cells generally
being flatter and more in contact with the substrate; some
experiments show shorter cells tending to be faster [68]. Cell-
cell collision outcomes may also differ depending on cell type
and environment: cell speed and outcome were not noticeably
correlated in fibroblast cell-cell collisions on nanofibers [27].

The two polarity mechanisms employed here are relatively
simple mathematical caricatures of a complex biological
process, but they are commonly employed in modeling col-
lective cell migration [27,31,32,34–36,69]. Our work shows
that these mechanisms can reproduce some essential features
of cell-cell collisions. However, in particular for the FFCR
model, our results depend not only on the general qualitative
structure of the interaction but the specific mathematical de-
tails of the mechanism. In particular, we modeled cell polarity
as a rigid rotor, such that when given a repolarization cue,
it has to traverse a continuum of angles to reach the target
direction. The commonly used arcsin approach for handling
this sort of cue [31,32,70] also controls the outcome, as it
ensures stronger responses when the target polarity orienta-
tion is closer to the current direction and weaker responses
otherwise. These assumptions should ideally be further tested
in different contexts. Experimental observations inform us
that cell polarity can behave both as an in-plane switch and
as a rigid rotor, depending on the cell type and context.
Dictyostelium cells are reported to experience a switchlike,
in-plane reorientation of their polarity when the source of
chemoattractant cAMP is suddenly moved from facing the
front of the cells to the back of the cells [71,72]. Meanwhile,
HL-60 cells and neutrophils have been observed maintaining
their polarity and instead executing U turns to follow the
reversal cues [73,74]. The type of reversal and repolariza-
tion can also depend on the amplitude and timescale of the
changing signal. The limits of these minimal models can also
be better understood by detailed reaction-diffusion modeling
of, e.g., Rho GTPases like Rac1 and RhoA on the cell sur-
face [33,35,42,45,46,75,76].

Our result that cell-cell collisions may be predictable, and
that varying multiple parameters may be summarized in a
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single controlling factor, suggests a tantalizing possibility that
there may be some degree of universality in cell-cell collision
response. To be confident in this idea, experimental tests to
see if outcome collisions truly collapse as a function of δv

or δθ are necessary. The key caveat of our results is that, if
this universality exists, it is only true to the extent that the
underlying repolarization mechanism is conserved.

ACKNOWLEDGMENTS

The authors acknowledge support from NIH Grant No.
R35GM142847 and NSF Grant No. PHY 1915491. The au-
thors also acknowledge the computational resources provided
by the Maryland Advanced Research Computing Center. The
authors thank E. Perez Ipiña and W. Wang for a close reading
of the paper and useful comments.

APPENDIX A: PHASE FIELD MODEL

In Figure 10, we schematically outline the elements of our
phase field model, as well as the energetic terms used to define
cell-substrate and cell-cell interactions. We also show in this
figure how we employ the cell’s contour to estimate its contact
angle.

APPENDIX B: CAHN-HILLIARD ENERGY: WHAT DO λ

AND γ MEAN?

The Cahn-Hilliard energy

FCH =
∫

dr
γ

λ
[4φ2(1 − φ)2 + λ2(∇φ)2] (B1)

serves to stabilize the outside and inside of the cell and pe-
nalizes interface deformations. From dimensional analysis,

FIG. 10. (a) Elements of the model: the cell is represented by a smooth, two-dimensional phase field φ(r, t ), which is 1 inside the cell
and 0 outside the cell. The body of the cell is shown in a gray color map, and its boundary is drawn in black at φ = 1

2 . The black dot marks

the cell’s center of mass rc.m. ≡
∫

d2r φ(r)r∫
d2r φ

, and the arrows depict cell velocity (red) and polarity (blue). The adhesive substrate is defined via

the phase field χ (y) = 1
2 [1 − tanh( y−y0

ξ
)], where y0 defines the location of its interface [χ (y0) = 1

2 drawn in black]. Note that ŷ points in the
direction above the substrate. The plot below the cell shows the profile of the cell’s field along the x dimension by considering a y slice passing
through its center of mass. (b) Contact angle computation: we compute the contact angle of the cell θ formed at the cell-substrate interface
by first discretizing the boundary of the cell, located at φ = 1

2 . These contour points (blue circles) are readily obtained from the SCIKIT-image
package [77]. A subset of these points, which are appropriately located at the front of the cell (orange circles), are selected and a line is fitted
through them. Then, the slope m is calculated, and θ = arctan m. To select the required subset of contour points, we visually inspected the
measured contact angle across many simulation parameters and chose the range of points that yielded the most accurate measurements. We
then used the same, fixed range across all simulations. (c) Assumptions of the model: we model the cell based on the physics of liquid droplets.
The cell is incompressible, which in 2D amounts to maintaining a preferred area, and experiences tension across its membrane. It can also
wet over an adhesive substrate to lower its energy. Cells interact with each other through cell-cell adhesion, which favors the wetting of their
interfaces across one another, and volume exclusion, which penalizes overlap.
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we conclude that λ has units of length and γ has units of
energy per length. But what length and line tension are they
exactly describing? We briefly derive the energy here; see
also [78].

Consider the one-dimensional profile of the cell’s phase
field taken across a segment perpendicular to its surface
[Fig. 10(a)]. Since φ(x) = 0 outside the cell and transitions
smoothly to φ(x) = 1 inside the cell, we can postulate the
field to be proportional to a sigmoid function around the cell
interface: φ(x) = 1

2 + 1
2 tanh[(x − x0)/ξ ], with ξ setting the

interfacial thickness. To minimize the Cahn-Hilliard energy,
this functional form must satisfy the condition δFCH/δφ = 0.
With fCH denoting the integrand in Eq. (B1),

δFCH

δφ
= ∂ fCH

∂φ
− ∇ · ∂ fCH

∂∇φ

= γ

λ
[8φ(1 − φ)2 − 8φ2(1 − φ)] − 2λγ∇2φ. (B2)

Plugging in the sigmoid function, we obtain ξ = λ. Thus, we
conclude that λ sets the thickness of the cell’s interface.

Moreover, we can compute the total energy of the cell
by slicing its boundary into infinitesimally small segments of
width dy, each of which is perpendicular to the cell interface,
such that φ(r) = φ(x) for that segment. Then,

FCH =
∫ ∞

−∞
dx

γ

λ

[
4φ(x)2[1 − φ(x)]2 + λ2

(
d

dx
φ(x)

)2]

×
∫ L

0
dy = 2

3
γ L, (B3)

where the integral over x computes the energy associated
with each segment, and the integral over y runs over the total
length of the interface L. Note that although φ(x) is only valid
near the interface of the cell, we can consider the integration
bounds {−∞, ∞} for each segment without any issues since
the integrand is uniquely zero away from the interface. No-
tably, we conclude that 2/3γ is the line tension of the cell.

APPENDIX C: EXPLICITLY WRITING THE PHASE FIELD
EQUATIONS OF MOTION

The phase field equations of motion for cell i are

∂φi(r, t )

∂t
+ vi(r, t ) · ∇φi = −M δF

δφi
,

ηvi = δF
δφi

∇φi + fmotility,i, (C1)

where the total free energy of the system of N cells is F =∑N
i=0 FCH,i + Farea,i + Fχ,i + Fadh,i + Frep,i. The functional

form of each term is given in the main text, and here we will
focus on computing δF/δφi term by term. Focusing on the
Cahn-Hilliard energy term,

FCH =
N∑

i=0

FCH,i

∴ δFCH

δφi
= δFCH,i

δφi

= 8
γ

λ
φi(2φi − 1)(φi − 1) − 2λγ∇2φi. (C2)

Focusing on the area constraint term,

Farea =
N∑

i=0

Farea,i

∴ δFarea

δφi
= δFarea,i

δφi

= 2μG[φi]
δG

δφi

= 2μ

[
1 − 1

Ã

∫
dr φ2

i

][
− 2

Ã
φi

]
. (C3)

Here, Farea,i = μG[φi]2, with G[φi] = 1 − 1/Ã
∫

dr φ2
i . Fo-

cusing on the cell-substrate energy term,

Fχ =
N∑

i=0

Fχ,i

∴ δFχ

δφi
= δFχ,i

δφi

= 4φi(φi − 1)(φi − 2)W [χ ], (C4)

where W [χ ] = − 36A
ξ

χ2(1 − χ )2 + g
2χ (x, y + λ). Focusing

on the cell-cell adhesion term,

Fadh =
N∑

i=0

N∑
j �=i

−ω

λ

∫
dr φ2

i (1 − φi )
2φ2

j (1 − φ j )
2. (C5)

Unlike the previous energy terms, where minimizing the total
energy was equivalent to minimizing the energy of the ith cell,
interaction energies involve cell pairs. If we expand the terms
in Eq. (C5), we would find that the integrand appears twice:
once when the outer sum is over i and once with the outer
sum is over j �= i and the inner sum picks i. This is due to the
integrand being symmetric under i → j. Thus,

δFadh

δφi
= 2

δFadh,i

δφi
(C6)

= −4
ω

λ
[φi(2φi − 1)(φi − 1)]

N∑
j �=i

φ2
j (1 − φ j )

2.

Focusing on the cell-cell repulsion term,

Frep =
N∑

i=0

N∑
j �=i

κ

λ

∫
dr φ2

i φ
2
j . (C7)

Similar to the cell-cell adhesion energy, the pairwise nature
of this term and the symmetry of its integrand under i → j
results in an extra factor of 2. Thus,

δFrep

δφi
= 2

δFrep,i

δφi
= 4

κ

λ
φi

N∑
j �=i

φ2
j . (C8)

054413-14



PICKING WINNERS IN CELL-CELL COLLISIONS: … PHYSICAL REVIEW E 106, 054413 (2022)

Finally,

δF
δφi

= δFCH

δφi
+ δFarea

δφi
+ δFχ

δφi
+ δFadh

δφi
+ δFrep

δφi
, (C9)

and we have a complete description of the phase field equa-
tions of motion [Eq. (C1)] that we can solve numerically.

APPENDIX D: NUMERICAL IMPLEMENTATION
OF THE MODEL

Code to implement the model is available
at https://github.com/pedromzadeh/collider or
https://zenodo.org/record/7249510. We numerically solve
the phase field equations of motion [Eq. (C1)] within a
simulation box of size 300 μm × 300 μm using the explicit
finite difference method. With a sufficiently small time step
�t , the temporal evolution of the phase field is discretized
and approximated as

∂φ

∂t
≈ φn+1 − φn

�t
= −vn · (∇φ)n − M

(
δF
δφ

)n

, (D1)

where (·)n denotes the value of the quantity at time t = n�t .
The gradient operator ∇ ≡ (∂x, ∂y) is discretized in space at a
fixed time as follows, given sufficiently small lattice spacings
�x = �y:

(∇φ)n(x, y) =
(

φn(x + �x, y) − φn(x − �x, y)

2�x
,

φn(x, y + �y) − φn(x, y − �y)

2�y

)
, (D2)

and the Laplacian ∇2 ≡ ∂xx + ∂yy is discretized using the four-
point nearest neighbor stencil:

(∇2φ
)n

(x, y) = 1

�x2
[φn(x + �x, y) + φn(x − �x, y)

+φn(x, y + �y) + φn(x, y − �y)

−4φn(x, y)], (D3)

where (∇φ)n(x, y) and (∇2φ)n(x, y) are the gradient and
Laplacian of the field at time t = n�t evaluated at the coordi-
nate (x, y). In our simulations, we use �t = 0.96 s, and with
a resolution of 200 × 200 grid points, �x = 1.5 μm.

We further assess the stability of our numerical solutions
by monitoring how the conclusions depend on the time step
�t . For this, we simulate a single cell-pair collision at differ-
ent time steps for both the velocity-aligning and front-front
contact repolarization models. We repeat runs at each time
step 384 times and plot the average winning probability in
Fig. 11. In particular, we note that the main simulation uses
�t = 0.96 s, which is at least a healthy factor of 2 smaller
than a time step at which convergence can become an issue.

APPENDIX E: SOLVING A SIMPLIFIED CONTACT
REPOLARIZATION MODEL

We can solve a simplified version of the contact repolar-
ization model analytically, determining the time it takes each
cell to turn around. To do this, we neglect stochastic noise, as

FIG. 11. The average winning probability associated with a par-
ticular cell-pair collision is plotted against the time step used in
solving the equations of motion numerically. We see that the numeri-
cal solutions are stable over a healthy range of time steps for both
the (a) velocity-aligning and (b) front-front contact repolarization
models. The averages are over n = 384 trials, and the error bars are
the 95% binomial confidence intervals. �t = 0.96 s is used in the
main simulation.

well as assuming that cell shapes (and hence the repolarization
directions r̂CR) stay constant over the collision. We have de-
fined cell polarity with an angle ψ associated with the vector
p̂ = ( cos(ψ ), sin(ψ )), and contact repolarization by aligning
the polarity of the cell toward the repolarization vector r̂CR

over a finite timescale, and we limit this interaction to only
front-front contact. Mathematically, we describe this process
with

d

dt
ψ = − 1

τCG
sin−1[sgn(p̂ · x̂)(x̂ × p̂)z]

− 1

τCR
sin−1[(r̂CR × p̂)z]�(−px p′x )�

(
rx

CR p′x)

+ √
2Dψ �(t ). (E1)

The first term is the contact guidance term ensuring the po-
larity of the cell remains parallel to the substrate. The second
term models repolarization due to interactions with another
cell with polarity p̂′, and the last term introduces Gaussian
noise. �(·) is the Heaviside step function and the two step
functions here are used to limit contact repolarization to only
happen when cells are in front-front contact.

Here, we consider the deterministic case with Dψ = 0
and solve Eq. (E1) analytically. Note that for unit vectors
â and b̂, (â × b̂)z = sin(ψb − ψa), where ψa ≡ ∠(â) is the
orientation of the unit vector â, and similarly ψb ≡ ∠(b̂).
Now, consider a cell with polarity p̂ traveling to the right
and about to collide head on with another cell with polarity
p̂′ traveling to the left. Let ψ denote the direction of cell
polarity, and ψCG ≡ ∠[sgn(p̂ · x̂)x̂] and ψCR ≡ ∠(r̂CR) de-
note the contact guidance and contact repolarization angles,
respectively. The contact guidance angle will be ∠(+x̂) = 0
when ψ < π/2, then switch to ∠(−x̂) = π for ψ > π/2.
Because the collision takes place between the cell fronts,
�(−px p′x )�(rx

CR p′x ) = 1. Lastly, we assume the repolariza-
tion vector r̂CR for the cell remains constant in time. Then,
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FIG. 12. A schematic showing the time evolution of cell polarity
ψ (t ) within each of the three segments derived in Eq. (E3). Here, the
cell starts at ψ0 = 0 and has a fixed repolarization vector r̂CR. The
color of each region refers to its analytical solution in Fig. 13(a).

Eq. (E1) becomes

d

dt
ψ = − 1

τCG
sin−1[sin(ψ − ψCG)]

− 1

τCR
sin−1[sin(ψ − ψCR)]. (E2)

For � ∈ [−π/2, π/2], sin−1[sin(�)] = �. However, given
the initial condition ψ (t = 0) = 0 and ψCR > π/2, during the
repolarization process, regions exist where � ≡ ψ − ψCR <

−π/2 (Fig. 12: segment 1). For such cases, sin−1[sin(�)] =
−π − �. We can then rewrite Eq. (E2) piecewise in terms of
the value of ψ (t ):

d

dt
ψ =

⎧⎪⎨
⎪⎩

− 1
τCG

ψ + 1
τCR

(ψ − ψCR + π ) if ψCR − π/2 > ψ and ψ � π/2 (segment 1 in Fig. 12),

− 1
τCG

ψ − 1
τCR

(ψ − ψCR) if ψCR − π/2 � ψ and ψ � π/2 (segment 2 in Fig. 12),

− 1
τCG

(ψ − π ) if ψ > π/2 (segment 3 in Fig. 12).

(E3)

Note that when ψ > π/2, the cell has repolarized and its front is no longer in contact with the front of the other cell, and the
repolarization term turns off, i.e., τCR → ∞, and cell polarity relaxes toward ψCG = π with the time constant τCG.

With a little algebra, we can write Eq. (E3) more clearly and reveal the effective timescales and steady-state angles for each
segment:

d

dt
ψ =

⎧⎪⎪⎨
⎪⎪⎩

− τCR−τCG
τCRτCG

[
ψ − τCG (π−ψCR )

τCR−τCG

]
if ψCR − π/2 > ψ and ψ � π/2,

− τCR+τCG
τCRτCG

[
ψ − τCGψCR

τCR+τCG

]
if ψCR − π/2 � ψ and ψ � π/2,

− 1
τCG

[ψ − π ] if ψ > π/2.

(E4)

Each segment admits a solution of the form ψi(t ) = �i +
ci exp[−t/τi], where �i, τi, and ci are the steady-state angle,
time constant, and constant of integration for each segment
i = [1, 2, 3] (Fig. 12). Let us now focus on each segment
individually.

When ψCR − π/2 > ψ andψ � π/2 (segment 1 in
Fig. 12), we have ψ1(t = 0) = 0. Thus, c1 = −�1 and

ψ1(t ) = �1
(
1 − e−t/τ1

)
, (E5)

with �1 = τCG (π−ψCR )
τCR−τCG

and τ−1
1 = τCR−τCG

τCRτCG
. To ensure we pro-

ceed to the second region, we must have �1 � ψCR − π/2.
This condition translates to a constraint on the timescales:

τCG

τCR
� 2

π

(
ψCR − π

2

)
. (Condition 1)

Lastly, we calculate the time at which the dynamics of cell
polarity switches to that of the next segment, i.e., t ′, such that
ψ1(t ′) = ψCR − π/2:

t ′ = τCGτCR

τCG − τCR
ln

[
π (τCG + τCR) − 2τCRψCR

2τCG(π − ψCR)

]
. (E6)

When ψCR − π/2 � ψ andψ � π/2 (segment 2 in
Fig. 12), the initial condition is ψ2(t = t ′) = ψCR − π/2.
Instead of plugging this directly into the exponential
form and solving for c2, it would be easier to shift the
solution temporally and let it begin at t ′: t → t − t ′. Then,
c2 = ψCR − π/2 − �2, and

ψ2(t ) = �2 + (ψCR − π/2 − �2) e−(t−t ′ )/τ2 , (E7)

where �2 = τCGψCR

τCR+τCG
and τ−1

2 = τCR+τCG
τCRτCG

. To ensure the cell can
properly repolarize away from contact, we require �2 > π/2.
This condition places another constraint on the timescales:

τCG

τCR
>

π/2

ψCR − π/2
. (Condition 2)

Lastly, we compute the time at which the dynamics of the
cell polarity switches to that of the next segment, i.e., the
repolarization time t ′′, such that ψ2(t ′′) = π/2:

t ′′ = t ′ + τCGτCR

τCG + τCR
ln

[
π (τCG + τCR) − 2τCRψCR

2ψCRτCG − π (τCR + τCG)

]
. (E8)

When ψ > π/2 (segment 3 in Fig. 12), the initial con-
dition is ψ3(t = t ′′) = π/2. Again, if we shift this solution
temporally by an amount t ′′, we can effortlessly compute the
constant of integration, c3 = π/2 − �3. Then,

ψ3(t ) = �3 + (π/2 − �3) e−(t−t ′′ )/τCG , (E9)

where �3 = π . Note that since the cell’s front is no longer
in contact, the repolarization term turns off and cell polarity
relaxes toward �3 with the time constant τCG.

At last, we have found the full piecewise solution to
Eq. (E3):

ψ (t ) =
⎧⎨
⎩

�1(1 − e−t/τ1 ), t � t ′

�2 + (ψCR − π/2 − �2) e−(t−t ′ )/τ2 , t ′ < t � t ′′

�3 + (π/2 − �3) e−(t−t ′′ )/τCG , t > t ′′.
(E10)
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(a) (b)

FIG. 13. (a) Analytical solutions to the FFCR model are plotted for each segment against the numerical solution. Here, we consider a cell
traveling to the right with ψ (t = 0) = 0, τCG = 2τCR, and ψCR = 140◦. Note that the angle ψ3(t ) has not yet reached its steady state in this
plot: it will asymptotically approach π at long times. (b) The time it takes cell polarity to reach ψ = π/2 starting from ψ = 0 [t ′′ in Eq. (E8)]
is plotted as a function of the repolarization direction ψCR.

Here, t ′ denotes the first transition point in time with ψ (t ′) =
ψCR − π/2, and t ′′ defines the time it takes the cell to repolar-
ize, that is, ψ (t ′′) = π/2. Figure 13(a) plots these analytical
solutions against the numerical solution of Eq. (E2).

The above derivation serves two main purposes. First, it
allows us to choose the timescales of the model properly.
As detailed above, Condition 1 and Condition 2 must be
satisfied to ensure the polarity of the cell can trace through
the appropriate angular range to undergo a proper repolariza-
tion. With some algebra, one can prove that Condition 2 is
stricter than Condition 1. Thus, it suffices to satisfy the former.
In our simulations, the roundest cells, which determine the
lowest bound on the inequality, have a repolarization vector
with ψCR ≈ 140◦ on average. Plugging this into Condition
2, we see that we must satisfy τCG/τCR > 1.8 to ensure all
cells deterministically repolarize. This restriction informed
our choice of τCG = 2τCR.

Moreover, the analytical solutions have allowed us to ex-
plicitly calculate the repolarization time for a cell whose
polarity begins at ψ = 0. More precisely, this is the time
it takes cell polarity to reach ψ = π/2, which is denoted
by t ′′ in Eq. (E8). How does this repolarization time de-
pend on the repolarization angle ψCR? Consider the extreme,
albeit unphysical, case of ψCR = π/2. Then, according to
ψ2(t ) from Eq. (E7), it would take an infinitely long time
to reach π/2. As ψCR moves away from the vertical, cell
polarity can reach π/2 more quickly. As an analogy, think
of an overdamped harmonic oscillator that would take an
infinitely long time to reach its equilibrium point. If a new
equilibrium point is chosen past the previous one, then the
former point can be reached in finite time. However, we do
not expect t ′′ to decrease monotonically with increasing ψCR.
Consider another extreme case of ψCR = π . This puts us in the
region where ψCR − π/2 > ψ andψ � π/2, and according
to Eq. (E4), dψ/dt = 0. This is indeed a point of unstable
equilibrium for the cell’s polarity, exactly like a pendulum
perfectly balanced to point “North” is stationary, but unstable.
In this case, it would again take an infinitely long time to reach
π/2. Thus, we would expect t ′′(ψCR) to decrease from infinity
as ψCR grows away from π/2, reach a minimum at an angle

determined by the timescales, and grow toward infinity as ψCR

nears π . The exact behavior of t ′′ is plotted in Fig. 13(b)
for timescales used in simulation and for a subset of repo-
larization angles that were observed within our simulations,
ψCR ∈ [140◦, 170◦].

What insight can we gain from t ′′(ψCR)? Recall
sin−1[sin(�)] = −π − � when � ∈ [−π,−π/2), which
arises from the sawtooth nature of the function. In our simula-
tions, the center of mass of flatter cells and the repolarization
vector passing through it lie closer to the horizontal. Con-
sequently, flatter cells have larger repolarization angles, and
compared to rounder cells, they have an angular difference
� ≡ ψ − ψCR that is more negative. Citing the sawtooth
shape of sin−1[sin(�)], we have argued that flatter cells take
longer to repolarize as compared to rounder cells because
the strength of their repolarization term is weaker. This has
been our core justification for why flatter cells are more
likely to win collisions under the front-front contact repo-
larization model. The repolarization time as a function of
repolarization angle, which is plotted using simulation param-
eters, supports this notion to some extent: for ψCR > 150◦,
time to repolarize monotonically increases with increasing
repolarization angle [Fig. 13(b)]. This means that flatter cells
take longer to flip, and when colliding with rounder cells,
which repolarize sooner, they will emerge as the “winner.”
The function t ′′(ψCR) also tells us something very interest-
ing: a flat cell with ψCR ≈ 150◦ will, deterministically, flip
sooner and lose to a rounder cell with ψCR ≈ 140◦. Do we
have simulation points of this nature? Yes. Are they evidence
against the notion that collision outcome correlates with how
flat a cell is? That depends on how important the dip in
t ′′(ψCR) is. Our phase field simulations are not deterministic,
but rather noisy. For two cells to have repolarization angles
ψCR ∈ (140◦, 150◦), they would have to be very similar in
their physical properties. In addition, the difference in the
time to reach π/2 observed in Fig. 13(b) between ψCR = 140◦
and 150◦ is much smaller than that between 150◦ and 170◦.
Repolarization will also depend strongly on the initial polarity
direction ψ at collision; when the angular diffusion coefficient
Dψ is nonzero, this will vary stochastically. Which cell turns
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TABLE II. VA model, Dψ = 0.075 rad2/h.

Predictor δv δθ

Score 79.5 ± 0.8% 70.5 ± 0.6%
Brier score 0.140 ± 0.003 0.196 ± 0.003

around first will also be affected by stochastic fluctuations
in the polarity angle’s trajectory. Even though the flatter cell
with ψCR = 150◦ would deterministically turn first and lose
to the rounder cell with ψCR = 140◦, angular noise will tend
to wash out the small differences in repolarization time and
drive the collision closer to a 50-50 outcome. This means that
sufficiently large levels of noise can mask the influence of the
dip in t ′′, and we would observe that flatter cells are generally
slower to turn and more likely to win. However, if the system
has low levels of noise, then it behaves more deterministically,
and the dip in the repolarization time matters more. This is
a potential reason for why relative contact angle, a measure
of how flat a cell is, becomes a poor predictor of collision
outcome when Dψ is very small (bottom row of Fig. 9 in main
text).

APPENDIX F: HOW ACCURATELY DO δV AND δθ

PREDICT PWIN?

One question motivating our work has been whether the
outcome of collision can be predicted. We have shown that a
single observable, relative speed δv or relative contact angle
δθ , can robustly characterize the outcome of collision between
cells with widely varying attributes. Given a value for one of
these observables, how accurately can we predict the winning
probability?

Tables II–V show two assessment metrics for each lo-
gistic regression performed on either of the predictors. A
particular table (e.g., Table II) focuses on a given polarity
mechanism [velocity-aligning (VA) or front-front contact re-
polarization (FFCR)] and angular diffusion coefficient Dψ .
To compute a given assessment metric, we employ the k-fold
cross-validation method. Here, we randomly shuffle and split
the entire data set obtained from simulations into k = 10
equally sized segments. We then train the regression model
on nine segments (ntrain = 39 917 points), and we compute
the assessment metric on the remaining one segment (ntest =
4435 points). At the end, we have k = 10 assessment metrics,
from which we report the average and standard deviation
(Tables II–V).

One widely used assessment metric is the score function,
the percentage of correctly labeled points. Here, the class
label of a point is determined by applying a binary threshold
to the predicted winning probability: the class label of point
δv is “win” if Pwin(δv) � 0.5, else it is “loss.” Shown in

TABLE III. VA model, Dψ = 0.0075 rad2/h.

Predictor δv δθ

Score 88.2 ± 0.3% 73.8 ± 0.4%
Brier score 0.082 ± 0.002 0.172 ± 0.002

TABLE IV. FFCR model, Dψ = 0.075 rad2/h.

Predictor δv δθ

Score 64.3 ± 0.7% 72.1 ± 0.7%
Brier score 0.222 ± 0.002 0.182 ± 0.003

the first row of Tables II–V, this metric yields a percentage
value characterizing how successfully the model classifies
observations. We find that when the velocity-aligning model is
employed, relative cell speed predicts collision outcomes with
(79.5 ± 0.8)% (Dψ = 0.075 rad2/h) success rate, and it is
significantly better at predicting the winning probability com-
pared to relative contact angle. Moreover, under the contact
repolarization model, relative contact angle predicts collision
outcomes with (72.1 ± 0.7)% (Dψ = 0.075 rad2/h) success
rate, and it is significantly the better predictor compared to
relative speed. Additionally, as detailed in Sec. III D of the
main text, as Dψ decreases, the winning probability tends
toward a step function, and we expect the score to increase.
Comparing Tables III and V with Tables II and IV, we see a
large increase in the score values of the appropriate predictor
(δv for VA model, δθ for FFCR model).

We also compute the Brier score, which is the mean
squared error between the predicted probability and the class
label (1: “win,” 0: “loss”) and avoids the binary threshold alto-
gether. This metric is a cost function penalizing the classifier
according to how incorrectly it labels points. As such, lower
values correspond to better models. According to the Brier
score, δv is the robust predictor of collision outcome under the
VA model, while δθ best captures Pwin under the FFCR model.
Brier scores show that prediction is better (lower Brier score)
at smaller values of Dψ for both models (compare Tables III
and V with Tables II and IV).

APPENDIX G: SUPPLEMENTAL MOVIES

Here we present movies (see Supplemental Material [79])
of typical phase field collisions between two cells with differ-
ent attributes. In each movie, the top panel tracks the evolution
of the cells, while the bottom panels track the center-of-mass
speed and contact angle of each cell as a function of time,
respectively. Note that upon collision, we no longer compute
these statistics and so the time series stop. In the follow-
ing movies, the values of tension, adhesion to the substrate,
and protrusion strength of the left cell are γ = 1.46γ0, A =
0.48γ0, and β = 5γ0, respectively. Meanwhile, the right cell
has attributes γ = 1.1γ0, A = 0.4γ0, and β = 10γ0. These
movies are primarily meant to be illustrative; note that the
left cell’s parameters are not the default parameters. We have
also set the angular diffusion coefficient to a small value,

TABLE V. FFCR model, Dψ = 0.0075 rad2/h.

Predictor δv δθ

Score 68.1 ± 0.7% 84.2 ± 0.3%
Brier score 0.199 ± 0.003 0.107 ± 0.002
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Dψ = 0.0075 rad2/h, so the collision is simpler to follow by
eye.

(i) Movie S1. Collision of two cells whose polarity is
modeled by the velocity-aligning (VA) mechanism with the
alignment timescale τVA = 24 min.

(ii) Movie S2. Collision of two cells whose polarity is
modeled by the front-front contact repolarization (FFCR)

mechanism with the alignment times τCG = 24 min and τCR =
12 min. When the cells approach each other head on and form
contact, the repolarization vector rCR is computed according
to Eq. (9) and plotted with a black arrow. Once one of the cells
turns, head-head contact is lost and contact repolarization is
turned off. The cells continue to travel as a train with their
newly formed head-tail contact.
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