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Closed-form modeling of neuronal spike train statistics using multivariate Hawkes cumulants
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We derive exact analytical expressions for the cumulants of any orders of neuronal membrane potentials
driven by spike trains in a multivariate Hawkes process model with excitation and inhibition. Such expressions
can be used for the prediction and sensitivity analysis of the statistical behavior of the model over time and to
estimate the probability densities of neuronal membrane potentials using Gram-Charlier expansions. Our results
are shown to provide a better alternative to Monte Carlo estimates via stochastic simulations and computer codes

based on combinatorial recursions are included.
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I. INTRODUCTION

Hawkes processes [1] are self-exciting point processes that
have been applied to the modeling of random spike trains in
neuroscience in, e.g., Refs. [2-5]. Neuronal spike train activ-
ity has been modeled using multivariate Hawkes processes
in, e.g., Refs. [6-8], where filtered Hawkes processes have
been interpreted as free membrane potentials in the linear-
nonlinear cascade model. In this framework, the cumulants
of multivariate Hawkes processes yield important statistical
information. However, the analysis of statistical properties of
Hawkes processes is made difficult by their recursive nature,
in particular, computing the cumulants of Hawkes processes
involves technical difficulties due to the infinite recursions
involved.

Neuronal synaptic input has also been modeled using mul-
tiplicative Poisson shot noise driven by random current spikes,
in, e.g., Refs. [9,10], see also [11-14], for the analysis of
stationary limits in the case of constant Poisson arrival rates,
and [15,16], see also [17-19], for time-dependent Poisson
intensities modeling of time-inhomogeneous synaptic input.
In this framework, the time evolution of the probability den-
sity functions of membrane potentials has been described
in [20,21] by Gram-Charlier probability density expansions
based on moment and cumulant estimates.

The computation of the moments of Hawkes processes has
been the object of several approaches, see [22-24] for the
use of differential equations and [25] for stochastic calculus
methods applied to first and second order moments. Other
techniques have been introduced for linear and nonlinear
self-exciting processes, including Feynman diagrams [7], path
integrals [8], and tree-based methods [26] applied up to third
order cumulants. However, such methods appear difficult to
implement systematically for higher order cumulants and they
use finite order expansions that only approximate cumulants
even in the linear case.

In this paper, we provide a recursion for the closed-form
computation of the cumulants of multivariate Hawkes pro-
cesses, without involving approximations. For this, we extend
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the recursive algorithm of [27] to the computation of joint cu-
mulants of all orders of multivariate Hawkes processes. This
algorithm, based on a recursive relation for the probability
generating function (PGFI) of self-exciting point processes
started from a single point, relies on sums over partitions and
Bell polynomials. In what follows, we will apply this algo-
rithm to Hawkes processes with inhibition, by using negative
weights in their cluster point process construction. We note
that although our cumulant expressions are proved only for
non-negative weights, the results remain numerically accurate
and consistent with the sampled cumulants of Hawkes pro-
cesses with inhibition as long as the process does not become
inactive over long time intervals; see also Sec. 1 of [7].

In Proposition 1 and Corollary 2 we compute the joint
cumulants of membrane potentials modeled according to a
filtered Hawkes process as in [7]. In comparison with Monte
Carlo simulation estimates, explicit expressions allow for
immediate numerical evaluations over multiple ranges of pa-
rameters, whereas Monte Carlo estimations can be slow to
implement. In addition, such expressions are suitable for
algebraic manipulations and tabulation, e.g., they can be dif-
ferentiated in closed form with respect to time to yield the
dynamics of cumulants or with respect to any system param-
eter to yield sensitivity measures. Numerical applications of
our closed form expressions are presented in Sec. III, where
they are compared to Monte Carlo estimates. Although our
simulations in Figs. 3—-10 have been run with 10 million
samples, Monte Carlo estimates of higher-order cumulants
can be subject to numerical instabilities not observed with
closed-form expressions. In particular, they become degraded
starting with joint third cumulants (see Fig. 8) and fourth
cumulants (see Fig. 9), and they become clearly insufficient
for the estimation of fourth joint cumulants (see Fig. 10).

Closed-form cumulant expressions are then applied in
Sec. IV to the explicit derivation of cumulant-based Gram-
Charlier expansions for the probability density function of the
membrane potentials at any given time. showing that densities
are negatively skewed with positive excess kurtosis.

©2022 American Physical Society
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We proceed as follows. In Sec. II we present closed-form
recursions for the computation of cumulants of any order in
a multivariate Hawkes process model. Numerical results are
then presented in Sec. III with application to the modeling
of connectivity in spike train statistics. In Sec. IV we present
numerical experiments based on cumulants for the estima-
tion of probability densities of potentials by Gram-Charlier
expansions. In the Appendixes we present the derivation of
recursive cumulant and moment identities for the closed-form
computation of the moments of Hawkes processes, in the mul-
tivariate case, with the corresponding codes written in MAPLE
and MATHEMATICA.

II. CUMULANTS OF MULTIVARIATE
HAWKES PROCESSES

This section describes our algorithm for the computation
of cumulants. Let [H;(¢), ..., H,(t)];>0 denote a multivariate
linear Hawkes point process with self-exciting stochastic in-
tensities of the form

L) = vi(t) + Z/o vi,j(t —s)dH;(s), teR,, (1)
j=1

with Poisson offspring intensities y; ;j(dx) = y; j(x)dx and
possibly time inhomogeneous Poisson baseline intensities
vi(dt) = vi(t)dt,i =1, ..., m. The next proposition provides
a way to compute the joint cumulants of random sums by
an induction relation based on the Bell polynomials. In what
follows, we assume that y;(R;)+--- 4+ y,,(Ry) < 1, and
consider the integral operator I" defined as

(EHEDY /0 F&+y, Dy jdy),
j=1

withx € R,,i=1,...,m, and, letting I denote identity, the
inverse operator (I — I')~! given by

[ = T) 1, i) = Fo i)+ Y ("), i)

n=1
o m 00 00
=fei+y. Y / /
n=1 i, ju=1"0 0
Xf+yi+ - Yo Vi @y) - Vi, (dyn),

with xe Ry, i=1,...,m. The following statements
hold for the joint cumulants K((;:’)i)( fiyooos fn) of

QT Jo Sile, PAH;(), ... 320 5 fae, j)dH (1)),
given that the multidimensional Hawkes process is started
from a single jump located in H;(t) at time x € R,,
i=1,...,m.

Proposition 1. (1) The

S J5S £, )dH;(t) is given by
k() =1 = D)7 flx, )

=f(x,i)+i i /OOO.../OOO

n=1 j] ..... j,,=]
Xf(-x +y1 + - +yn» jn)yi,jl (dyl) e yj,lfl,jn(dyn)v

withx >0,i=1,...,m.

first cumulant K(()i’)i)( f) of

For n > 2, the joint cumulants K(”))( fi, ..., fn) are given

(x,i
by the induction relation

K (froe o )

Y ¥

k=2 mU---Um={1,..., n}

k
x ((1 -0)°'r ]‘[Ké'f.’;)[(ﬁ)leﬂ,,])(x, H, @

j=1

withx > 0,i =1, ..., m,n > 2, where the above sum is over
set partitions (7y, ..., ) of {1, ..., n} and |r;| denotes the
cardinality of the set m;, i =1, ..., k.

Proof. See Appendix A.

Standard (i.e., unconditional) cumulants can then be ob-
tained in the next corollary as a consequence of Proposition
1.

(2)  Corollary 2. The joint cumulants k™ (fy, ..., f,)
of (23;1 fooo fi(t, j)dH;(t))1<i<n are given by the relation

K(f1y oo )

Z /0 1_[ K&irif)‘)[(ﬁ)iem]vi(x)dx,

3)

withn > 1.
Proof. See Appendix A.

A. Exponential kernels

Joint cumulants will be computed using sums over par-
titions and Bell polynomials in the case of the exponential
offspring intensities

¥ij(@dx) = wi .oy (X)e Pdx, i j=1,...,m,

given by the m x m connectivity matrix W = (w;, j)1<i, j<ms
|w; ;| < b, and the constant Poisson intensities v;(dz) = vidz,
v; >0,i,j=1,...,m. In this case, the integral operator I"
satisfies

(0D =Y wi / F+y, ey,
Jj=1 0

withx e Ry, i=1,...,n The recursive calculation of joint
cumulants can be performed using the family of functions
epnt,j(X, 1) = 1=jxPe™ 1 (x), n < b, p > 0, by evaluat-
ing (I — ')~'T in Proposition 1 on the family of functions
ep,n.1,j as in the next lemma.

Lemma 3. For f in the linear span generated by the func-
tions e, ,,x, p 20, n <b, k=1,...,m, the operator (I —
I')~'T is given by

(=TT Al =) /  fl ety DIW &V ey,
=170

withx € [0,¢],i=1,...,m.
For f as in Lemma 3, by Proposition 1 the first cuamulant
of fooo fi(t, ))dH;(t) given that the multidimensional Hawkes
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process is started from a single jump located in H;(¢) at time
xeRi,i=1,...,m,is given by

KanlF O] = fe1i= /0 e fx+ W eV jdy,

with x € [0,¢],i=1,...,m, and for n > 2 we have the re-

cursion
e =3 [ erwem,
k=2 j=1
(n—k+1)
x By, k[ (x+) ,)(f) ():l+V h (f)]dy
The conditional multivariate joint cumulants of

Lo~ filt, j)dH;,()]1<i<n are given by

™
Koo il -« fadjosa i)

=ZZ 2

j=1 k=2 mU---Um={1,...,n}

min(zy,..., t)—X
X / e W eyw],-,j
0

|711)
x l_[K(x:-ly 7 (fl’lijp})pem]dy,

where ji, ...

@ m min(t,t;)—x
Ko S1hom s 2loe 1)) = Z/O
j=1

—by W (6] (6]
xe W e ]i,jK(ery,j)(fll{jl})K(x+y,j)(f21[jz})dy'

, jn = 1, with, forn = 2,

III. NUMERICAL EXAMPLES

_We con51der a nonlinear multivariate Hawkes process
[H1 (), ..., Huy(t)];er, with intensities

noa +
nilt) = (w(r>+2 /0 n,-(t—s)dH,(s)) )
Jj=1

t € R, with exponential offspring intensities

¥ij(@dx) = wi ooy (X)e X dx, i, j=1,...,m,

where (w; j)1<i, j<m 18 @ matrix of synaptic weights which are
possibly negative due to inhibition. The inputs

n t
v,(t)—i—Z/ iyt —s)dHi(s), i=1,...,m,
=10

have been interpreted in [7] as a family of free neuronal mem-
brane potentials, which have the ability to directly influence
the underlying spike rate.

In this paper, we model the membrane potentials V;(¢)
using the filtered processes

t
W(l):/gi(t—s)dHi(s), teRy, i=1,...,m,
0

where [H,(t), ..., H,(t)];>0 is the multivariate linear Hawkes
process defined in (1) and g;(¢) are impulse response functions

such that g;(u) =0 for u <0, i, j=1,...,m. We assume

that the kernel g;(¢) takes the form
gi(t) := 1j0.00)(t)e "™,

We note that although Proposition 1 and Corollary 2 are only
proved for [H;(2), ..., H,(t)],er, with non-negative weights
in the cluster process framework of [28], the results remain
numerically accurate and consistent with the sampled cumu-
lants of (4), provided that the inhibitory weights w; ; do not
become too negative; see Sec. 1 of [7].

Our cumulant expressions are compared to the
sampled cumulants of the nonlinear Hawkes process
[Hi(1), . H (*)l;er, in (4) in the presence of neg-
ative welghts The joint cumulant ((V;,(t1)--- Vi, (),
1<y, ..., I, <m,is evaluated in closed form by induction
by the command c(W, b, [g, ..., g], [11, ..., 1n], [t1, ..., tn])
in MAPLE or c[W,b,g, ...,g 11,...,1n,t1,...,tn] in
MATHEMATICA, defined in the code blocks presented in
Appendix B. Closed form expressions for higher order
joint moments and cumulants may involve thousands of
terms resulting of symbolic computations in MAPLE or
MATHEMATICA; nevertheless, their numerical implementation
remains attractive in terms of computation time and stability
properties.

In the following numerical examples we take m =
4 and consider the potentials [Vi(¢), Vo(2), V3(t), Va(t)] =
[VE1(2), VEa(2), VE3(2), Vi(2)], with three excitatory neurons
and one inhibitory neuron, parametrized by the weight matrix

El E2 E3 1

E1 ({10 O 10 0

E2 0 10 10 -8
W = (w; )i j<s =

E31 10 10 O —8

I 10 10 10 -10

i=1,...,m, telR.

Note that this example does not have resetlike effects. Al-
though this example is restricted to four neurons for the sake
of computation time, the algorithm is valid for any m > 1. The
connectivity of the network can be represented as follows:

10

Figures 1 and 2 present random simulations of the mem-
brane potentials Vg, (¢) and Vg4 () with T = 0.1 s with g(u) =
e‘“/ffl[o.oo)(u), with b = 50 Hz, 7y, = 0.01 s, and v; = 250 Hz,
i=1,2,3,4. We use the algorithm of [29] for the simula-
tion of multivariate Hawkes processes, and its implementation
given in [30].
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0 10 20 30 40 50 60 70 80 90 100
t (ms)

FIG. 1. Excitatory potential V,(¢) = Vg (2).

The following Figs. 3—10 present numerical cumulant es-
timates using closed form expression and compare them with
Monte Carlo simulations run with 10 million samples. Fig-
ures 3 and 4 present numerical estimates of first moment and
standard deviation, together with the mean obtained by Monte
Carlo simulations.

Figures 3—6 can be obtained from the MAPLE commands
listed below together with their run times on a standard lap-
top computer, after loading the function definitions listed in
Appendix B and the variable assignments of W and ju:

W := <<10, 0, 10, 10> | <0, 10, 10, 10> | <10, 10, O, 10> |
<0, -8, -8, -10>>;

mu := [t -> 250, t -> 250, t -> 250, t -> 250]; g := (x, t)
=> exp(-100*t + 100%x) ;

c(W, 50, [g]l, [2], [t], mu) # First cumulant of V2(t) -
comp. time one second

c(W, 50, [g,g], [4,4], [t,t], mu) # Second cumulant of V4(t)
- comp. time 7 seconds

c(W, 50, [g,gl, [4,2], [t,0.05], mu) # Covariance of
(V2(t1),V4(t)) for t<t1=0.05 - comp. time 12 seconds

c(W, 50, [g,gl, [2,4], [0.05,t], mu) # Covariance of
(V2(t1),V4(t)) for t>t1=0.05 - comp. time 15 seconds

Figures 5 and 6 present estimates of the cross correlations
Cor[VEa (1), VEa(t)] and Cor[Vga(t1), Vi(t)] with #; := 50 ms
andt € [0, 10 ms].

Figures 7 and 8 present time-dependent esti-
mates of the third cumulant of V() and third
joint cumulant of [Vgi(#), Vei(#1), Vi(#)] with 1 =
0.05, based on the exact moment expressions

0

0O 10 20 30 40 50 60 70 80 90 100
t (ms)

FIG. 2. Inhibitory potential V4(¢) = Vi(¢).

5
4 4
31 Closed form expression
Closed form expression s
2 A Simulation
1 -
0O 10 20 30 40 50 60 70 80 90 100
t (ms)
FIG. 3. Means of V,(t) = Vi, (¢) and V4(2) = Vi(¢).
2
1.57
1-
0.5 Closed form expression
Closed form expression
0 : ‘ . . . _Simulation .
0 10 20 30 40 50 60 70 80 90 100
t (ms)
FIG. 4. Standard deviations of Vi, (¢) and V;(2).
0.05 -
Closed form expression =
Simulation
0 4
-0.05 H
-0.1 1
-0.15 T w T T \ \ T . ‘
0O 10 20 30 40 50 60 70 80 90 100
t (ms)
FIG. 5. Cross correlation of [V, (¢), Vi(¢)].
0.05 .
Closed form expression
Simulation
0 4
-0.05 f
-0.1 1
-0.15 A

0 10 20 30 40 50 60 70 80 90 100
t (ms)

FIG. 6. Cross correlation of [V, (2), Vi(2)].
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0.6
0.5 1
0.4 1
0.3 1
0.2 1
0.1 Closed form expression
0 | . . . | Sjmulf;]ti0nl .
0 10 20 30 40 50 60 70 80 90 100
t (ms)
FIG. 7. Third cumulant of V,(t) = Vi(¢).
0.03
0.02 -
0.01 -
0 4
-0.01 -
-0.02 1 ¢josed form expression s
0.03 . __ Simulation — | . ,
0 10 20 30 40 50 60 70 80 90 100
t (ms)
FIG. 8. Joint cumulant of [V (¢1), V&1 (t1), Vi(?)].
0.4
0.3 1
0.2 T
0.1 1
Closed form expression
0 | . . . | Simulation . .
0 10 20 30 40 50 60 70 80 90 100
t (ms)
FIG. 9. Fourth cumulant of V,(¢) = Vi(¢).
0.001
0 - Fourth joint cumulant s
Simulation
-0.001 -

-0.002 -
-0.003 - V /\
-0.004 V
-0.005 . \ . ‘ . ‘ . ‘ .
0 10 20 30 40 50 60 70 80 90 100
t (ms)

FIG. 10. Joint cumulant of [V (¢), ..., Vs (1), Vi(0)].

0 T T T T T T T T T
0O 0.1 0.2 0.3 04 05 0.6 0.7 0.8 09 1
FIG. 11. Sensitivities of first and second cumulants.

computed in MAPLE by commands:

c(W, 50, [g,g,gl, [4,4,4], [t,t,t], mu) # Third cumulant of
V4(t) - comp. time 56 seconds

c(W, 50, [g,g,gl, [4,1,1], [t,0.05,0.05], mu) # Third joint
cumulant of (V1(t1),V1i(t1),V4(t)), t<t1=0.05 - comp.
time 239 seconds

c(w, 50, [g,g,gl, [1,1,4], [0.05,0.05,t], mu) # Third joint
cumulant of (V1(t1),V1(t1),V4(t)), t>0.05 - comp. time
473 seconds

the following

Figures 9 and 10 present estimates of the
fourth cumulant of Vi(r) and of the fourth joint
cumulant of [VE1(®), VE2(2), VE3(1), VI(1)] respec-
tively, computed by the following commands:

c(W, 50, [g,g,g,g], [4,4,4,4], [t,t,t,t], mu) # 4th cumulant
of V4(t) - comp. time 677 seconds

c(w, 50, [g,g,g,gl, [1,2,3,4], [t,t,t,t], mu) # 4th joint
cumulant of (V1(t),V2(t),V3(t),V4(t)) - comp. time
14917 seconds

One can check from Figs. 8 and 10 that the precision of
Monte Carlo estimation is degraded starting with joint third
cumulants and fourth cumulants, while it becomes clearly in-
sufficient for an accurate estimation of fourth joint cumulants
in Fig. 10. This phenomenon has also been observed in [21]
when modeling neuronal activity using Poisson processes and
can be attributed to the fact that the estimation of fourth-
order joint cumulants in terms of sampled moments involves
a multinomial expression of order four in four variables with
changing signs.

The knowledge of cumulants in explicit form also allows us
to study their behavior under the variation of other parameters.
In Figs. 11 and 12 we plot the respective evolutions of the first
four cumulants of Vg,(0.1) and V;(0.1) as a function of aW
with a € [0, 1].

IV. GRAM-CHARLIER EXPANSIONS

In this section we use our cumulant formulas for the esti-
mation of probability densities of potentials by Gram-Charlier
expansions. The Gram-Charlier expansion of the continuous
probability density function ¢y (x) of a random variable X is
given by

pe = o2
LV VS

L 3 cH(x_Kl) (x_’“) (5)
\/I(—zrl:3 n n \/K—Z (p \/K—2 £
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2.5

2_

0 T T T T T T T T T
0 0.1 0.2 03040506 0708909 1

FIG. 12. Sensitivities of third and fourth cumulants.

see Sec. 17.6 of [31], where (i) ¢(x):= \/#27@_’“2/2, xe
R, is the standard normal density function, (ii) H,(x) :=

%g;f (x), x € R, is the Hermite polynomial of degree

n >0, with Hy(x) = 1, H;(x) = x, H3(x) = x> — 3x, Hy(x) =
x* —6x? +3, and He(x) = x® — 15x* + 45x2 — 15, and (iii)
the sequence (c,),>3 is given from the cumulants (k,),> of
X as

1 [/3] K K,
I K,
Chp = ———> — n 2 3
/2 Z Z ml e L
(k2) m=1lj+-+ly=n ! Im!
lsees 23

In particular, c¢3 and c4 can be expressed from the skewness
Kk3/(k2)3/% and the excess kurtosis k4/(k2)?, with
K3 K4

(k3)*
2(3D)%(k2)*

Ks Ko
= ", C6 =
5w/ 6!(k2)?

Cs

Figure 13 presents numerical estimates of skewness and
excess kurtosis of Vi(¢) obtained from exact cumulant expres-
sions.

As above, our results, which are only proved for non-
negative weights, remain accurate although the considered
Hawkes process allows for inhibition. In what follows, we use

2 10
Excess kurtosis
Skewness m—
Simulations
8
1.5
%]

3 1 £
3 P4 s
0.5 L,
(o T T T T T T T T 0
0O 10 20 30 40 50 60 70 80 90 100
t (ms)

FIG. 13. Skewness and kurtosis of V,(¢) = Vi(¢).

Fourth Gram-Charlier —
Gaussian diffusion —

Simulation
Third Gram-Charlier

0.4

0.3 -

0.2 A

0.1 -

Probability density

0

FIG. 14. t = 10 ms.

third- and fourth-order expansions given by

¢(3)(x)—L (x—K1>|:1+CH<x—K1)}
x W= s\ /e B\ /e

and

@) 1 X — K X — K
0= oo e ( )
X — K1 X — K1
+C4H4< \/K_z >+C(,H6< \/K_g ):|a

and compare them to the first-order expansion

() = L¢<x - K1>
which corresponds to a Gaussian diffusion approximation.
Figures 14 and 15 present second-, third-, and fourth-order
Gram-Charlier expansions (5) for the probability density func-
tion of the membrane potential Vi(¢), based on the exact
cumulant expressions computed at the times + = 10 ms and
t = 20 ms. The purple areas correspond to probability den-
sity estimates obtained by Monte Carlo simulations. The
second-order expansions correspond to the Gaussian diffusion
approximation obtained by matching first- and second-order
moments.

Figures 13 and 15 show that the actual probability density
estimates obtained by simulation are significantly different
from their Gaussian diffusion approximations when skewness
and kurtosis take large absolute values. In addition, in Figs. 14

Simulation Fourth Gram-Charlier —
Third Gram-Charlier Gaussian diffusion —
0.5 T T T T .

© ©
w £
L L

N
!

Probability density

©c ©
=
L

o

FIG. 15. t = 20 ms.

054410-6



CLOSED-FORM MODELING OF NEURONAL SPIKE TRAIN ...

PHYSICAL REVIEW E 106, 054410 (2022)

—_

4th Gram-Charlier
Simulation

0.6

N
~

Probability density
o
o

0

t (ms)

FIG. 16. Fourth-order Gram-Charlier expansions vs simulated
densities.

and 15 the fourth-order Gram-Charlier expansions appear to
give the best fit to the actual probability densities, which have
negative skewness and positive excess kurtosis, see Fig. 13,
and the impact of the fourth cumulant remains minimal.

Figure 16 presents time-dependent fourth-order Gram-
Charlier expansions (5) based on exact moment formulas at
different times for the probability density function of Vj(¢).

As can be checked from Fig. 16, the fourth-order
Gram-Charlier expansions fit the purple areas obtained by
Monte Carlo simulations. Figure 17 compares the Gaus-
sian diffusion (blue) approximation to the fourth-order
Gram-Charlier expansion (purple) for the probability den-
sity function of Vi(¢), while Fig. 18 represents the relative
difference between the Gaussian diffusion and fourth-order
approximations.

V. CONCLUSION

This paper presents closed-form expressions for the cu-
mulants of arbitrary orders of filtered multivariate Hawkes
processes with excitation and inhibition, for application to the
modeling of spike trains. Such expressions can be used for the

Probability density

FIG. 17. Gaussian diffusion vs fourth Gram-Charlier expansion.

Difference

0.1
0.05

-0.05

-0.1
50

t (ms) 10 6

FIG. 18. Difference between second and fourth expansions.

prediction and sensitivity analysis of the statistical behavior
of the model over time via immediate numerical evaluations
over multiple ranges of parameters, whereas Monte Carlo
estimations appear slower and less reliable. They are also used
to estimate the probability densities of neuronal membrane
potentials using Gram-Charlier density expansions.
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APPENDIX A: PROOFS OF JOINT CUMULANT
IDENTITIES

In this section we extend the algorithm of [27,32] for
the recursive calculation of the joint cumulants of Hawkes
point processes from the univariate to multivariate setting.
We consider a self-exciting point process on X := (R?) x
{1,...,m}, d > 1, with Poisson offspring intensities y;(dx x
{i}) = y1,j(dx) = y; j(x)dx and Poisson baseline intensity
v(dx x {j}) = vj(dx) = v;j(x)dx on each copy of R4, j=
1, ..., m. This process is built in the cluster process frame-
work of [28] on the space

Q={={x D} CX:#ANE) <00
for all compact A € B(X)}

of locally finite configurations on X, whose elements & €
Q are identified with the Radon point measures &(dz) =
Z(x,i)eé €@.i)(dz), where €, ;) denotes the Dirac measure at
(x, i) € X. Any initial point (x, i) € X branches into a Pois-
son random sample on X, denoted by &,,(dz), with intensity
measure y; ;(y + dx) on every copy of R, i, j=1,...,mIn
case d = 1 and y; j(s) = 0 fors < 0,

NOE) = €101 x iD= " Ton(),

x:(x,i)e€

i=1,...,m, represents a multivariate Hawkes process with
stochastic intensities of the form

m t
W imvt Y [ e - an,
. 0
J=1
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witht € R, ,i =1, ..., m.For f asufficiently integrable real-
valued function on X, we let

Geein(f) = f(x, i)IE,-[ [T ro+x j)]

(. J)€é

denote the probability generating functional (PGFl) of the
branching process £ given that it is started from a single point
at (x, i) € X. The next proposition states a recursive property
for the probability generating functional G ;(f); see also
Theorem 1 in [33].

Proposition 4. The probability generating functional
G,i(f) satisfies

G (f) = f(x. i)exp (Z fR [Geers () = 1]y,-,,~<dy)>,
j=1 /R

with (x,i) € X, and the PGFl of the Hawkes process with
Poisson baseline intensity v on X is given by

G,(f) =exp (Z/R [Gu.n(f) — 1]Vi(x)dx)~
i—1 YR

Proof. Viewing the self-exciting point process & as a
marked point process we have, see, e.g., Lemma 6.4.VI of
[34],

Gun(f) = f(x, i)Ei|: [] ro+x j):|
()€

= e DE| ] (1‘[ f<z+y+x,k)>

| €8y, \z.k)eé

=fnE| ] ]E,»[ I f(x+y+z,k):|
| On))€8y; (z,k)eé

=f@DE| [] Gotyi(H)

L 0n))€dy;

21
_ ,—viX) ; _
=e f(x,l)E "

n=0 J1

m
D

..... ju=1

X Gy i) () Gy i) Vi (dy1) -+« i j, (dyn)

= f(x,i)exp (Z /Rd [ty p () — 1]J/i,j(d)’))
=1

[Rd »

XGy,, iy () Gy, ji (V) (dy1) -+ - vj, (dyn)

= exp (Z fR G () = l]vl-<x>dx).
i=1

and

Gy =e BTy
n=0 """ j

f1senes =1

Let
Mo (f) = Giy (ef)

= IE{eXp (f(x, D+ Y f(x+y,j)>}

(/)€

denote the moment generating functional (MGFI) of the ran-
dom sum Z(},’ jee J (v, J) given that the cluster process & starts
from a single point at (x, i) € X. The following corollary is an
immediate consequence of Proposition 4; see also Proposition
2.6 in [35] for Poisson cluster processes.

Corollary 5. The moment generating functional M, ;(f)
satisfies the recursive relation

Mo (f)=exp (f(x, D+y /R d [M<x+y,,>(f)—1]y,-,j(dy>>,
j=1

(AL)

with (x, i) € X. The MGFI of the Hawkes process with base-
line intensity v on X is given by

M,(f) = exp (Z /I; M () = l]v,-(x)dx). (A2)
i=1

Proof of Proposition 1. For simplicity, the proof is written
using Bell polynomials in the univariate case for /c((;,')i)( )=

K((;)i)(f, ..., f)with f = fi = --- = f,, and the general case
is deduced by polarization. By (Al), (C1), and the Faa di
Bruno formula (C2), we have

o0 tn .
Z ;"((x,)o(f) = InM (1 f)

n=1

=1+ 3 [ (et 1))
=1

=tf( i)+t /R Kk (i) (A3)
j=1

[o.¢] m
zdl
()] (n)
+ Z ; Z,éd Bn(K(ery’j)(f)’ RN} K(x+},,j)(f))yi,j(dy)~
n=2 j=1
At the first order, the expansion (A3) yields

ki (f) = flx, i) + /R ) > ki (Fvii@y)
j=1

=f<x,i>+i i /R/R

n=1 ji,....ja=1
X fx+yi+- o+ Y i)V dy) - Vi, (dYn),

while at the order n > 2 it shows that
= 3 [ Bl k() 7ist)
j=1

= [Tk (H)] (. i)
HA{T[Bule (). - k() = k(O] i)

054410-8



CLOSED-FORM MODELING OF NEURONAL SPIKE TRAIN ...

PHYSICAL REVIEW E 106, 054410 (2022)

The above relation rewrites as
[ = D (O], i)
= T[Bu(ic( () - () = k(D] i)
which yields
k()
={U = D)'T[Bue (). k() = (O]} D)

> / ./
p=l i, =1 VRO JRE
M ()
X [Bn("mxl+~--+x,,.,i,7>(f)’ s K g ip) ()

— gy iy D]V (@) - v, i, ()

oo
p=1

m n

3 Z/R/R

ityemip=1 k=2

(1) (n—k+1)
X Bn’k(K()H»xl+---+x,,,i,,)(f)’ U K(x+xl+---+xp,i,,)(f))

X Vi (dx1) -+ Vi, ,.i,(dxp),

n>=2. |
Proof of Corollary 2.
As above, the proof is only written using Bell polynomials
in the case f = f; = --- = f,. By (Cl), (A2), and the Faa di
Bruno formula (C2), we have
X n
e
D k) =My (1 f)
n=1

= Z/R (M i (tf) — 1]vi(x)dx
i=1 YR?

= Z (™M@ _ 1)y, (x)dx
— JRd

—ijfizs(“)() o (wix)d

= p "K(x.i)f""’K(x,i)f vi(x)dx,
i=1 n=1

and therefore

m

(=3 fR B () k),

i=1

n>=2. |
Proof of Lemma 3. Here we take d = 1. For all p,n > 0
we have the equalities

[(I — D) 'Tepyrxlx, i)

epnr k(X +x1 4+ x,)
n=1 ji,.jp—1=1

XY dxy) - v, x(dxy)

o0
Wik [ ) n—1 —
ZZ—(H_S,/; (x + )Pyl dy
n=1 :

1—x
=" / (x+ )W Wik dy
0

t—x
- / epmix &AW Vg Pdy,  x € (0,1,
0

where we used the fact that the sum 7, + - - - 4 7, of n expo-
nential random variables with parameter b > 0 has a gamma
distribution with shape parameter n > 1 and scaling parame-
ter b > 0. ]

APPENDIX B: COMPUTER CODES

The recursion (2) and Eq. (3) can be implemented for any
family (gy,..., g,) of functions defined on R, in the fol-
lowing MAPLE code. The joint cumulants ((V;, (¢1) - - -V}, (#,)))
are obtained for 1 </y,...,[, <m using the command
c(W,b,gl,...,gn,11,...,1n,t1, ..., tn,mu) in the code be-
low:

with(LinearAlgebra):

a := proc(y) option remember; return evalf(Multiply(W,
MatrixExponential(W, y))); end proc;

h := proc(z, j, W, b, g::list, 1l::list, t::1list) local P> 9,
r, s, y, i, m, n, k, c; option remember; n := nops(t);
if n = 1 then return evalf(g[1](z,
t[1])*charfen[j1(1[1]) + int(gl1l(z + vy,
t[1])*exp(-b*y)*a(y) [j, 1[11]1, y = 0.. t[1] - 2)); end
if; s := 0; r := Iterator:-SetPartitions(n); for q in r
do p := r:-ToSets(q); if 2 <= nops(p) then for k to
Dimension(W) [1] do ¢ := exp(-bxy)*a(y)[j, kl; for i to
nops(p) do ¢ := cxh(z + y, k, W, b, map(op,
convert(p[il, list), g), map(op, convert(pl[il, list),
1), map(op, convert(p[i], list), t)); end do; s := s +
c; end do; end if; end do; return int(s, y = 0.. t[1] -
z); end proc;

c := proc(W, b, g::1list, 1::1list, t::1list, mu::1list) local
y, e, p, 9, r, s, i, j, m, n; option remember; n :=
nops(t); s := 0; for j to Dimension(W)[1] do s :=s +
mulj] (y)*h(y, j, W, b, g, 1, t); if 2 <= n then r :=
Iterator:-SetPartitions(n); for q in r do p :=
r:-ToSets(q); if 2 <= nops(p) then e := 1; for i to
nops(p) do e := exh(y, j, W, b, map(op, convert(p[il,
list), g), map(op, convert(p[il, list), 1), map(op,
convert(p[il, list), t)); end do; s := s + mul[j](y)*e;
end if; end do; end if; end do; return int(s, y=0..
t[11); end proc;

Joint moments can be computed in MAPLE using the com-
mand m(W, b, g1, ...., gn, j1,..., j1, t1, ..., tn, mu) defined in
the following code:

m := proc(W, b, f::1list, 1::list, t::list, mu::1list) local
e, u, p, 9, r, s, i, n; option remember; n := nops(t);
s :=c(W, b, £, 1, t, mu); if 2 <= n then r :=
Iterator:-SetPartitions(n); for q in r do p :=
r:-ToSets(q); if 2 <= nops(p) then e := 1; for i to
nops(p) do e := exc(W, b, map(op, convert(pl[il, list),
f), map(op, convert(p[il, list), 1), map(op,
convert(p[il, list), t), mu); end do; s := s + e; end
if; end do; end if; return s; end proc;

Alternatively, the
lants can Dbe

computation of joint cumu-
carried out wusing the command
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c[W, b, [gl, ..., gn], [11, ..., 1n], [t1, ..., tn],mu] in the
following MATHEMATICA codes:

Needs["Combinatorica™"]

aly_] := W . MatrixExpl[y*W];

hlz_, j_Integer, W_, b_, g__, 1__, t__] := hlz, j, W, b, g,
1, t] = (Modulel{y, k, i, ¢, n, m, s}, n = Length[t];
If[n == 1, Return[g[[11]1[z, t[[1]]1]1*Boole[j == 1[[1]]]
+ Integratelgl[1]11[z + y, t[[1]111*E"~(-b*xy)*alyl[[j,
10011111, {y, O, t[[111 - z}111; s = 0; Dolc = 1;
If [Length[p] >= 2, For[i = 1, i <= Length[p], i++, c *=
Block[{u =y + z, w = gllpl[i]111], r = 1[[p[[i]]]], v =
t[[p[[i1111}, hlu, k, W, b, w, r, vl11]l; s += cl, {p,
SetPartitions[n]}];
Return[Sum[Integrate[E~ (-b*y)*aly]l [[j, kl]l*s, {y, O,
t[[1]1] - z}], {k, 1, Dimensions[W][[1]113}111);

clWw_, b_, g__, 1__, t__, mu_] := (Module[{y, e, n, i, j, m,
s}, n = Lengthlgl; s = 0; For[j =1, j <=
Dimensions[W] [[1]], j++, Dole = mulyl[[j]1]; Forl[i = 1,
i <= Length[p], i++, e *= Block[{u =y, w =
gllpllil11], r = 1[[p[[i111], v = t[[p[[i11113}, hlu, j,
W, b, w, r, vl1]; s += Flatten[{e}][[11], {p,
SetPartitions[n]}]]; Return[Integratels, {y, O,
t[[111311D);

Figures 3—10 can also be plotted from the following MATH-
EMATICA commands:!

w := {{10, 0, 10, 03}, {0, 10, 10, -8}, {10, 10, O, -8}, {10,
10, 10, -10}};

glu_, t_] := E°(-(t - w)/0.01); mul[t_] := {250, 250, 250,

clw, 50, {g}, {2}, {t}, mu] (*First cumulant of V2(t) -

comp. time one secondx)

50, {g,g}, {4,4}, {t,t}, mu] (*Second cumulant of V4(t)

- comp. time 122 seconds*)

clw, 50, {g,g}, {4,2}, {t,0.05}, mu] (*Covariance of
(V2(t1),V4(t)) for t<t1=0.05 - comp. time 250 seconds*)

clw, 50, {g,g}, {2,4}, {0.05,t}, mu] (*¥Covariance of
(V2(t1),V4(t)) for t>t1=0.05 - comp. time 250 seconds*)

clw, 50, {g,g,g}, {4,4,4}, {t,t,t}, mu] (*¥Third cumulant of
V4(t) - comp. time 3057 seconds*)

clw, 50, {g,g,g}, {4,1,1}, {t,0.05,0.05}, mul (*Third joint
cumulant of (V1(t1),Vi(t1),V4(t)), t<t1=0.05%)

clv, 50, {g,g.g}, {1,1,4}, {0.05,0.05,t}, mu] (*Third joint
cumulant of (V1(t1),V1i(t1),V4(t)), t>t1=0.05%)

clw, 50, {g,g,g,g}, {4,4,4,4}, {t,t,t,t}, mu] (*Fourth
cumulant of V4(t)*)

clw, 50, {g,g,g,g}, {1,2,3,4}, {t,t,t,t}, mu]l (*xFourth joint
cumulant of (V1(t),V2(t),V3(t),V4(t))*)

clw

Standard moments of order n>1 can be
computed in MATHEMATICA using the command
m[W, b, [g1, ..., gn], [11, ..., In], [t1, ..., tn], mu] defined

below:

mW_, b_, g__, 1__, t__, mu_] := (Module[{n, e, i, s}, s =
0; n = Length[t]; If[n == 0, Return[1]]; Dole = 1;
For[i = 1, i <= Length[ppl, it++, e *= c[W, b,
gllppl[i111], 1[[ppl[i]11], t[[ppl[[i]]1], mull; s += e,
{pp, SetPartitions[n]}]; Flatten[{s}][[1111);

The codes listed in this section are available for download
as a MAPLE worksheet and MATHEMATICA notebook; see [36].

APPENDIX C: JOINT CUMULANTS AND FAA DI BRUNO
FORMULA

We refer to, e.g., Ref. [37] or [38] for the background
combinatorics recalled in this section. The joint cumulants

'MATHEMATICA computation times are significantly higher, proba-
bly due to the way recursions are carried out.

of orders (I, ...,1,) of a random vector X = (X1, ..., X,),
1<04,..., 1, < m,are the coefficients ((Xll‘ . ~X,f")> appear-
ing in the log-moment generating (MGF) expansion

b /
RS
In(e ) =) ) P G X, (€D

ooy >1
for (t1, ..., t,) in a neighborhood of zero in R”. Recall that if

f(¢) admits the formal series expansion
2. a
foy=3 "

n=1

by the Faa di Bruno formula we have

o0
tn
V1= —Buar, .. an), (€2)
n=1
where
n
Bn(ala B an) = ZBn,k(ah B an—k+l)
k=1

is the complete Bell polynomial of degree n > 1 and

Bn,k(ala ey an—k+l)

= > X)) apmX),

mU---Ume={1,...,n}

where 1 < k < n, is the partial Bell polynomial of order
(n, k), where the sum runs over the partitions my, ..., 7wy of
the set {1, ..., n} and |m;| denotes the cardinality of ;. Joint
moments can be obtained from the joint moment-cumulant
relation

7|

Vi)V, = > [TH{[Tv@)),  (©3)

wellln] j=1 iem;

where the above sum is over the set [1[n] of partitions 7 of
{1, ..., n}. Joint cuamulants can also be recovered from joint
moments from the relation

(Vi () -+~ Vi, (@)

7|

= Y (=l = DD T T v ).

mel[n] j=1 \ien;

where the above sum is over the set I1[n] of partitions 7 of
{1, ..., n}, which can be obtained by Mobius inversion of the
moment-cumulant relation (C3).
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