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Emerging diversity in a population of evolving intransitive dice
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Exploiting the mathematical curiosity of intransitive dice, we present a simple theoretical model for coevo-
lution that captures scales ranging from the genome of the individual to the system-wide emergence of species
diversity. We study a set of evolving agents that interact competitively in a closed system, in which both the
dynamics of mutations and competitive advantage emerge directly from interpreting a genome as the sides of
a die. The model demonstrates sympatric speciation where new species evolve from existing ones while in
contact with the entire ecosystem. Allowing free mutations both in the genomes and the mutation rates, we
find, in contrast to hierarchical models of fitness, the emergence of a metastable state of finite mutation rate and
diversity.
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I. INTRODUCTION

Evolution is the optimization scheme of the biological
realm: with the correct initial conditions and ample time, ran-
dom mutations and natural selection are sufficient to ensure
the emergence of highly complex organisms. But the nature
of what is being optimized is context-dependent. Even for
a fixed environment, evolution does not necessarily have a
single goal. If we were to rerun the “experiment” of evolution,
it is virtually guaranteed this would result in species distinct
from those that are alive today.

Evolution of specific biological features of a species de-
pend on properties of the other species in its environment
[1,2]. Such coevolution is believed to be central to describe
evolution on the large scale [3–7] as implied by the Red
Queen hypothesis of Van Valen [8,9]. Further, species inter-
actions are not necessarily ranked, as observed among corals,
plants and microbes [10–14]. Many studies have been devoted
to understanding and evolving such intransitive interactions,
ranging from molecular scale autocatalytic network [15–17]
to extensions of the competitive game of rock, paper and
scissors [14,18–27].

Nonhierarchical species dynamics can readily be studied
for a set of species whose interactions are fixed. Here, in con-
trast, we are interested in evolving systems where intransitive
interactions emerge ex nihilo. We suggest a minimal model for
such a system consisting of individuals that interact by rolling
dice.

II. MODEL

We define the characteristics of an individual in our system
by its genome as given by a list of n integers. We only consider
competitive interactions between species and settle these by
interpreting the genome of integers as the sides of dice that
are rolled. The outcome of a fight is stochastic, but certain
dice will tend to out-compete other dice. For instance, a fight
between A = (3, 3, 3, 3, 3, 6) and B = (2, 2, 2, 5, 5, 5) will

typically be won by A despite
∑

i Ai = ∑
i Bi. The probabil-

ity of A winning in the present example is n−2 ∑
i

∑
j[Ai >

Bj] = 7/12. What makes this particular interaction interesting
in the context of competing species is the fact that we can
introduce a species C such that both B � C and C � A, or
succinctly: A � B � C � A. This is for instance the case for
C = (1, 4, 4, 4, 4, 4). See Fig. 1 for a more complicating of
five nine-sided dice interacting intransitively. This intransitive
behavior of dice is well-known [28,29], but its applicability
and simplicity for modeling coevolution are unexplored.

A plethora of systems could be designed around the above
interaction rule. We choose to consider one of the simplest
and study k individuals that interact in a well-mixed scenario.
At each time step of our simulation, we let each individual
randomly attack another. Two individuals, X and Y , are con-
sidered to belong to the same species if

∑
i |Xi − Yi| < δ, in

which case they will not fight. Otherwise, the losing individual
of the competition will be replaced by a copy of the winner.
On ties, a random winner is chosen.

A crucial novelty of our model is that the dice interpreta-
tion not only sets the rules for interactions but also naturally
provides a genome space in which mutations may occur. In
our model, at each time step, each individual mutates with
probability μ. A mutation event is the random change (±1) of
one of its genome digits. As dice that are permutations of one
another have identical competitive advantages, we restrict our
genome space to that of ordered dice. Thus, we disallow mu-
tations that break the sorted nature of a genome. For instance,
A may mutate to (2, 3, 3, 3, 3, 6) but not to (3, 2, 3, 3, 3, 6).
In effect this accelerates the dynamics of our system, as most
neutral competitions are avoided that would otherwise have
to be settled by stochastic extinction. Further, naturally, it is
universally better for a species to mutate up in sum rather than
down. We set a fitness ceiling by only allowing mutations
that keep

∑
i Xi � n (n + 1)/2 (the sum of the standard die)

and any Xi � n; the latter of which excludes a large of set
of dice that are typically less competitive and allows efficient
enumeration of the set of allowed dice.
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FIG. 1. The intransitive interaction of five nine-sided proper dice.
Direction of the arrows indicate domination. The graph formed from
the interactions has two Hamiltonian paths, one of which is indicated
in the background. In other words, of the 4! = 24 orderings of the
dice, there are two that form an intransitive loop of dominance.

In total, we have thus created a mutation model where
universal fitness can be measured, but where, occasionally,
universally unfavorable mutations are preferred to adapt to
coexistent competitors.

Instead of defining the interaction as a single roll of the
dice, one might consider competitions of r rounds. As r →
∞, any slight competitive advantage will result in certain
overall wins. In this way, r can be chosen to control the
ruggedness of the fitness landscape [3]. Here, we limit our
attention to r = 1.

III. PROBABILITY OF INTRANSITIVITY

Before delving into the dynamics of the model, it is use-
ful to have a feeling for the prevalence of intransitivity in
random dice. Consider all dice such that

∑
Xi = n(n + 1)/2

and 1 � Xi � n. Figure 2 shows the probability that k such
dice contains at least one intransitive (Hamiltonian) k loop as

FIG. 2. Probability of intransitive (Hamiltonian) k loops in sets
of k proper dice as a function of the number of sides n on the dice.
Here, proper dice are sorted, has

∑
i Xi = n(n + 1)/2 and Xi � n.

A set of k dice {Xi} has a k loop if an ordering σ exists such that
Xσ1 ≺ Xσ2 ≺ · · · ≺ Xσk ≺ Xσ1 . Each point is the result of averaging
over 100 000 Monte Carlo samples with uniform probability for each
valid die.

function of the number of sides of the dice n. The plot shows
the fact that if you choose k = 3 random dice (with n < 15
sides), the probability that these dice interact intransitively
is less than ∼20%. With a larger set of dice, not only do
the probability of k loops increase, but so does probability
of smaller sub-cycles (see Supplemental Material [31] for a
version of Fig. 2 for loops of any size). In Fig. 2 we only
consider a small number of dice, but very long intransitive
cycles can also be found. For instance, in the set of k = 910
allowed nine-sided dice, the longest possible cycle is at least
891 (finding the precise length is NP-hard).

Thus, intransitivity is by no means rare, but (short) loops
are not the norm either. However, in the dynamics of our
model, it is much more unlikely for a species to go extinct in
an intransitive loop than when species interact in a dominant
manner. Thus, we expect one of two things to happen in the
long run: the system will be taken over by one species or will
be inhabited by a number of species that interact intransitively
and show oscillations.

There is also a large heterogeneity in the advantages of
the different dice. For instance, for n = 6, the die that has an
advantage over most other dice is (1, 3, 3, 4, 5, 5), beating on
average ∼60 % of the other dice. The worst is (1, 2, 2, 4, 6, 6),
which is better than only ∼40 %. In contrast, the standard die
(1, 2, 3, 4, 5, 6) has precisely a 50 % chance of beating any
other proper die. Similar conclusions can be made for all n.

We note that the precise statistics of Fig. 2 would be differ-
ent if we considered not only proper dice, as some dice have
many more permutations of their sides than others. The qual-
itative conclusions drawn would remain similar, nonetheless.

IV. FINITE MUTATION RATE UPHOLDS
SPECIES DIVERSITY

Random, well-mixed ecosystems of many competing
species interacting under demographic noise are unstable [32],
and competitive exclusion often leads to a collapse to only a
single or a few surviving species [33–35]. This, naturally, also
applies to the present dynamical system. However, since the
genome space of our model is not hierarchically organized,
a finite mutation rate can induce a perpetual coevolutionary
arms race.

One complication in counting the number of species in a
system is due to the fact that the network of individuals is
very unlikely to organize into fully connected components.
This is a complication that is not unique to our system, but
indeed any problem related to speciation [36]. For each pair of
individuals, our genome distance rule specifies if they belong
to the same species. Denote by Ci the number of individuals
that individual i is considered the same species as (including i
itself). An effective measure for species richness is then given
by S = ∑

i C−1
i . In the case of fully connected species, with

no overlap between them, this measure coincides with sim-
ply counting the number of species. Likewise, we can define
a species diversity measure that also accounts for evenness
as D = k2(

∑
i Ci )−1. This is equal to the number of species

only if each species occupy the same fraction of the entire
system and thus small species contribute only negligibly to its
value.
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FIG. 3. Speciation. (a), (b) show 1 500 individuals of the system with links between them if they consider one another the same species.
(a) has n = 9 and (b) n = 14, and in both cases μ = 0.1. Nodes are colored, for visualization purposes only, using the Leiden community
detection algorithm [30] on the undirected, unweighted graph. (c)–(e) show species richness S (solid lines) and diversity D (dashed) stabilizing
in a simulations of varying genomic complexity n and mutation rate μ as indicated by the legend. Curves are averages over simulations with
initial conditions of all dice equaling the standard die. All simulation were run with δ = 3. k = 10 000.

Figure 3 shows that both the mutation rate μ and the
genome complexity n (dice size) set the number of species that
a system of a certain size can maintain. At low mutation rates,
the system is dominated by a small cloud of individuals that
form a quasispecies [37], since, in this case, a single species
can be locally dominant and no individuals can escape this
local optimum at the low mutation rate.

At higher mutation rates, however, intransitive interactions
appear and oscillatory dynamics of a high diversity system
emerges. The systems have intransitive loops of many lengths,
but the dynamics are dominated by short cycles (�5 in the
systems studied here). This is demonstrated and studied in
the Supplemental Material [31] by considering the mean-field
Lotka–Volterra equations of the system. In detail, the system
behaves oscillatory with a frequency that remain relatively
constant for multiple oscillation periods. On long time scales,
however, stochastic events can change the dynamics, such
as when a species in an intransitive loop stochastically goes
extinct or when an individual suddenly mutates to dominate
the existent intransitive interactions initiating a “punctuated
equilibrium” event causing a sudden shift in oscillation fre-
quency.

Figures 3(a) and 3(b) visualize species connectivity in the
steady-state ecosystems that evolve from the dynamics of the
model. In these graphs, an edge is drawn between two dice
if they consider each other to belong to the same species.
Despite starting with a single species, the system can evolve to
one that has many species that are genomically disconnected.
While no single measure can capture the complexity of these
inter-species connections, running community detection algo-
rithms on these graphs tend to find a number of clusters in
the same order of magnitude as our richness S and diversity
D measures. We note that for comparisons with other system
sizes k, the values of the mutation rates should be rescaled
accordingly, as the number of attempted mutation events per
step is ∼μk. Thus, systems with a higher number of individu-

als can support high diversity in spite of having a low mutation
rate per individual.

V. HETEROGENEOUS MUTATION RATES

Since a finite mutation rate is needed to maintain a finite
diversity, we have an ecosystem collapse if the mutation rate
is taken to zero. For instance, in a system of purely hierar-
chically interacting species, the dominant species will prefer
a low mutation rate thus leading to a collapse of ecosystem
diversity. In the present system, however, there is no global
optimum, and a high mutations rate means quick adaptability
and increases the chance of an individual to out-compete
others by an evolutionary advantage. A high mutation rate is
not strictly an advantage though, since it also means a high
rate of bad mutation events towards either locally or globally
worse genomes.

In Fig. 4 (inset), we show the competition between two
populations with μA = 0.2 and μB = 0.001, respectively. For
early times, a low mutation rate gives an advantage because
there is a low rate of genomic decay and thus we see pop-
ulation B winning initially. This reflects the advantage of
localizing a population around a local fitness maximum over
more diffuse quasispecies at higher mutation rates [37]. How-
ever, at some point population A finds a competitive advantage
over the slowly adapting population B and annihilates the
latter completely. Varying μA and μB, the average outcome of
these scenarios is shown in the main part of Fig. 4. The exact
results depend on the initialization of the dice, but in this case,
we see that μ ≈ 0.1 is generally advantageous.

We complete the design of our model by, finally, also per-
mitting mutations in the mutation rate itself. In a hierarchical
setting, this would lead to the immediate collapse of both the
mutation rates and diversity. Figure 4 indicates, however, that
in the present system there is also an advantage to having a
finite mutation rate. Each panel in Fig. 5 show realizations of
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FIG. 4. Annihilation statistics of two populations with different
mutation rates. Inset shows a simulation of 2 × 10 000 dice with
one half having μA = 0.2 and the other μB = 0.001. The time of
annihilation of population B is T = 130 time steps. Main plot shows
the average of 1/T measured with a negative sign if B wins. High
values thus indicate that B tends to be annihilated and negative values
that A tends to be annihilated. Values near zero indicate a system
dominated by stochastic extinction or one where annihilation takes
a very long time. All dice were initialized to (1,1,1,6,6,6) at the
beginning of the simulations.

a system of individuals, all initialized with the same genome
and an initial mutation rate of μ = 0.01. We observe two dis-
tinct outcomes: most trajectories reach a metastable state with
a high mutations rate (die size n = 6 never reaches this state,
but would do so if we instead started with initial μ = 0.1,
see Supplemental Material [31]), and some that decay towards
zero mutation rates.

A characteristic of the metastable state is the rare but
sudden decay events of both mutation rate and diversity of
the entire system [Figs. 5(b) and 5(c)]. As the mutation rate
decreases, it becomes less and less likely to escape the low
diversity situation thereby creating a positive feedback loop
for decreasing the mutation rate even further. Once collapsed,
very large perturbations are needed to bring the system out
of this situation. Even changing the mutation rate of half of
the collapsed system to μ = 0.1 is typically not enough to
return to the high diversity state (see Supplemental Material
[31]). In contrast, for the surviving high diversity ecosystems
the average number of mutations that separate two random
individuals is large. For instance, 〈∑i |Xi − Yi|〉X,Y ≈ 12 for
n = 14, which is about 2/3 of the average obtained between
random dice.

VI. PERSPECTIVE

We have presented a theoretical model that, on the one
hand, is exceedingly simple to define and, at the same time,
successfully describes a host of complex phenomena related
to coevolution. At fixed, finite mutation rates, the model per-
mits a state of finite diversity in coevolutionary balance. For

FIG. 5. Mutating the mutation rate. Simulations for which each
individual mutates its mutation rate with a 1% chance of a 1%
change per time step (Gaussian multiplicative noise). (a)–(c) Sim-
ulations for n = 6, 9, 14 showing the system average mutation rate
〈μ〉 as a function of time steps. Orange lines show average over all
simulations, whereas pink line shows an average over only those sim-
ulations that at t = 107 have 〈μ〉 > 10−3. The full distribution of μ is
narrowly peaked around 〈μ〉 (see Supplemental Material [31]). Inset
in panel (c) shows, for each realization, the average mutation rate
versus the system diversity D (dark curves) for t > 5 × 105, with two
trajectories emphasized, one of which collapses towards 〈μ〉 = 0.
All simulations use δ = 3, but obtain similar results for other δ.
The fraction of systems in the high mutation state depends greatly
on initial mutation rate, even for the n = 6 die (see Supplemental
Material [31]).

hierarchically interacting systems, allowing mutations in the
mutation rates themselves will lead to an ecosystem collapse.
In contrast, we find a metastable state of finite diversity,
whose stability increases quickly with genomic complexity,
measured by the number of sides of the dice n.

We only considered a well-mixed system, meaning that
at all times each individual could meet any other individual.
Introducing space to the model, e.g., putting the agents on
a lattice, will most likely stabilize the observed effects even
further; with spatial dynamics, intransitive relations will decay
very slowly [22], and thus the rate of species extinctions
decreases. Furthermore, speciation events should increase in
frequency as space allows for transient allopatric speciation.
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Precise quantification of intransitivity in the dynamical
system is another interesting avenue for further research:
despite being dominated by few intransitive cycles, a static
view of the systems at any given time will not reveal the
dominance of these cycles as at least one species will have a
low population count due to the oscillatory Lotka–Volterra-
like dynamics imposed by the dynamics of the intransitive
loops.

In conclusion, from the simple rules of competing dice
emerge a natural balance of mutation rates and diversity. Too
high a mutation rate risks genomic decay and the disintegra-

tion of quasispecies: “mutate and die.” Too few mutations are
disfavoured in analogy to the Red Queen hypothesis: “mutate
or die.”
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