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A characteristic feature of nondividing animal cells is the radial organization of microtubules (MTs), em-
anating from a single microtubule organizing center (MTOC). As generically these cells are not spherically
symmetric, this raises the question of the influence of cell geometry on the orientational distribution of
microtubules. We present a systematic study of this question in a simplified setting where MTs are nucleated
from a single fixed MTOC in the center of an elliptical cell geometry. Within this context we introduce four
models of increasing complexity, each one introducing additional mechanisms that govern the interaction of the
MTs with the cell boundary. In order, we consider the cases: MTs that can bind to the boundary with a fixed
mean residence time (M0), force-producing MTs that can slide on the boundary towards the cell poles (MS),
MTs that interact with a generic polarity factor that is transported and deposited at the boundary, and which
in turn stabilizes the MTs at the boundary (MP), and a final model in which both sliding and stabilization by
polarity factors is taken into account (MSP). In the baseline model (M0), the exponential length distribution of
MTs causes most of the interactions at the cell boundary to occur along the shorter transverse direction in the
cell, leading to transverse biaxial order. MT sliding (MS) is able to reorient the main axis of this biaxial order
along the longitudinal axis. The polarization mechanism introduced in MP and MSP overrules the geometric bias
towards bipolar order observed in M0 and MS, and allows the establishment of unipolar order either along the
short (MP) or the long cell axis (MSP). The behavior of the latter two models can be qualitatively reproduced by
a very simple toy model with discrete MT orientations.
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I. INTRODUCTION

In a typical animal cell, microtubules play a major role in
the intracellular bidirectional trafficking of molecules from
the vicinity of the cell nucleus to the cell periphery (for a
recent review see [1]). In support of this function, the mi-
crotubule cytoskeleton generically displays a radial spatial
organization governed by a single microtubule organizing
center (MTOC) which localizes to the nuclear envelope. The
MTOC is the locus of protein complexes, such as γ -tubulin
ring complexes, which serve to nucleate new MTs (for a
recent review see [2]). These MTs subsequently grow outward
towards the cell periphery in roughly uniformly distributed
directions. MTOCs, depending on cell type, can support up
to hundreds of MTs [3].

The question what happens when the MTs still connected
to the MTOC reach the cell boundary has to date mostly
been considered in the context of three biologically relevant
phenomena.

The first phenomenon is the role of these bound MTs play
in the localization of the MTOC itself. In the seminal work
by Tran et al. [4], it was shown that MTs, by virtue of the
polymerization forces they exert when in contact with the cell
membrane, are able to robustly center the nucleus in fission
yeast to which they are connected the so called by spin-
dle pole bodies on the nuclear envelope that act as multiple
MTOCs in this case. Later work focused on the question of the
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positioning of in vitro reconstituted MT-asters, the star-like
structure of MTs emerging from an MTOC, in litho-
graphically produced microchambers [5,6], with a view of
understanding spindle pole positioning in cells (see, e.g.,
[7,8]). An important insight gained from this work, is that in
more spherical cells pushing forces do not provide a robust
centering. Centering is only obtained if pulling forces, ex-
erted by, e.g., cortical dynein motor proteins, are also at play.
Related is the observation that in a nonspherical cell the poly-
merization force exerted by a growing MT at the membrane
inevitably has a tangential component causing MTs to slide,
and thus reshaping the MT distribution within the cell [9,10].

The second phenomenon is the role MTs play in the po-
sitioning and orientation of the mitotic spindle in metaphase
prior to division (for a review see [11]). In this situation there
are actually two MTOCs connected by a structure formed by
the subset of so-called polar MTs. The remaining MTs, called
astral, interact with the cell boundary in a process which again
involves both pushing and pulling forces, and a mechanical
redistribution of MTs over the surface.

The third phenomenon is the possible role of MTs in setting
up and maintaining cell polarity (for a recent review see, e.g.,
[12]). The paradigmatic example of a system of this type was
first discovered in fission yeast, in which the polarity marker
Tea1p is transported by the motor protein Tea2p along lon-
gitudinally oriented MTs and subsequently delivered on the
apical membrane aided by the MT-end binding protein Mal3p
[13,14]. As Tea1p is an example of a so-called microtubule
associated protein (MAP), a large class of proteins that bind
to MTs and are, e.g., able to alter their dynamics, it has
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been speculated that this could form the basis of a robust and
self-sustaining polarization mechanism in which MTs serve to
transport factors to the membrane, that subsequently stabilize
them and hence provide a positive feedback-loop maintaining
their localization [15,16].

The previous work described above strongly focused on
specific questions and geometries, and it is fair to say that
we do not yet have a comprehensive understanding of how
cell geometry influences the global distribution of MTs given
various types of potential interactions of the MTs with the cell
boundary. Here we aim to fill this gap by analyzing a number
of models in which we vary the cell geometry, both in absolute
size and relative to the mean length of the MTs and imple-
ment four distinct scenarios of MT-boundary interactions of
increasing complexity. While by design these models sacrifice
some elements of biological realism, they allow a systematic
comparative study of the interplay between MT dynamics, cell
shape and boundary effects.

Specifically, we consider the following models for MT-
boundary interactions: (M0) MTs that can bind to the
boundary with a fixed mean residence time, (MS) force-
producing MTs that can slide on the boundary towards the
cell poles, (MP) MTs that interact with a generic polarity
factor that is transported and deposited at the boundary, and
which in turn stabilizes the MTs at the boundary, and (MSP) a
final model in which both sliding and stabilization by polarity
factors is taken into account. In all cases we study these
models through stochastic simulations. However, for model
M0 we also obtain a full analytical solution, while for the
two models involving polarity (MP and MSP), we construct
stylized toy models that allow us to rationalize the observed
behavior. For the models involving force-induced MT sliding,
we employ a recently developed force-production mechanism
that explicitly accounts for the effect of force on the speed
of growth and the residence time of MTs at the membrane
[17]. The two main questions we focus on are (i) whether the
MTs are predominantly organized along the longer longitu-
dinal axis or the shorter transverse axis of the cell and (ii)
whether the symmetries of the cell shape are imposed on the
MT organization, or whether this symmetry can be broken,
yielding a polarized state.

To render the analysis tractable, we make a number of
simplifying assumptions. The first is to disregard the complex-
ities of MTOC positioning as discussed above. We therefore
consider only a single MTOC whose position is fixed to the
geometrical center of the cellular geometry. This implies that
we assume that an effective central positioning mechanism
is already in place and is not perturbed by the additional
mechanisms of MT-boundary interactions we implement. For
the two models in which force production is important (MS
and MSP), we can moreover show that given our model of
MT dynamics there is a net centering force in the steady state.
The main virtue of this assumption is that it allows us to more
straightforwardly disentangle the differential effects on the
global organization of the MTs due to differences in geometry
and/or boundary conditions. Second, we disregard the pos-
sibility of MT buckling. Including this effect would require
the implementation of a length-dependent buckling force and
a challenging analysis of the postbuckling force orientations.
For simplicity’s sake we decided to forego this additional level

of complexity. Finally, we restrict ourselves to a 2D elliptical
cell geometry. The choice for an elliptical shape is one of con-
venience, both analytically and computationally. An ellipse
shares the biaxial symmetry, generated by two orthogonal
reflections, common to the shape of many elongated cells.
It is therefore well suited to answer the symmetry-related
questions we pose. The choice for 2D affords computational
advantages that allow for a much more extensive range of
conditions to be addressed through stochastic simulations
than would be feasible in 3D. Moreover, our previous work
[16] has explicitly shown that the effect of dimensionality
on symmetry-breaking mechanisms involving polarity factors
(relevant to models MP and MSP) is weak. In the Discussion
we will revisit these assumptions.

The paper is organized as follows: in Sec. II we introduce
our modeling framework, the cell geometry, the observables
used (Sec. II A), and introduce the four models we consider
(Sec. II B). In Sec. III we collect our results on the four models
in order: M0 (III A), MS (III B), MP (III C), and MSP (III D).
In Sec. III E we rationalize and compare the results on models
MP and MSP with the aid of a simple toy model. We end
with a discussion in Sec. IV. In three appendices we collect
a number of technical details on the derivation of the MT
dynamical equations underpinning model M0 (Appendix A),
the implementation of the polarization mechanism in the pres-
ence of force production in model MSP (Appendix D), and an
in-depth description of our toy model (Appendix E).

II. MODELING FRAMEWORK

A. Cell geometry and MT dynamics

We consider a pointlike idealized MTOC located at the
center of an elliptical cell, with a major axis of half-length
b, and minor axis of half-length a < b. Orientation of MTs in
this geometry is specified by the azimuthal angle ϕ, defined
with respect to the positive major half-axis. We will call the
direction along the major axis longitudinal and the one along
the minor axis transverse.

Each MT is nucleated by a nucleation complex located at
the MTOC, and we fix the total number of these complexes,
and hence the total number of MTs in the system, to be M. If
a nucleation site is unoccupied it will nucleate a new growing
MT with rate rn. It is conceptually convenient to consider an
unoccupied nucleation site as a dormant MT, waiting to be
nucleated. We will consider two assumptions on the distri-
bution of nucleation angles, both consistent with isotropicity
of the overall nucleation pattern. The first, the homogeneous
scenario, assumes each nucleation complex to fixedly point
in a given direction, and that these directions have constant
angular density m, and hence M = 2πm. The second, the
random scenario, does not assume a fixed orientation for the
nucleation complexes, but has them fire in a randomly selected
direction.

Once a MT has been nucleated, it follows the standard
MT dynamical instability model [18], with growth speed v+,

shrinking speed v−, catastrophe rate r+, and rescue rate r−.
When a MT hits the cell boundary it stalls, remaining there
until it detaches by switching to the shrinking state with a rate
ru. The length of a MT when it hits the boundary in a given
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direction is given by lb(ϕ), the latter function encoding all the
relevant information about the shape of the cell. For the ellipse
this length is given by

lb(ϕ) = ab√
a2 cos2 ϕ + b2 sin2 ϕ

. (1)

We focus on the steady state of these systems, in which the
orientational distribution of MTs can be described by the
following quantities:

m0(ϕ): The density (per angle) of dormant MTs pointing in
the direction ϕ at time t in the homogeneous nucleation
scenario.

M0: The number of dormant MTs in the random nucleation
scenario.

m+(l, ϕ): The density (per angle per unit length) of growing
MTs of length l .

m−(l, ϕ): The density (per angle per unit length) of shrink-
ing MTs of length l .

ma(l, ϕ) = m+(l, ϕ) + m−(l, ϕ): The density (per angle
per unit length) of active MTs of length l

mb(ϕ): The density (per angle) of MTs bound to the surface.

We also consider the associated length densities

La(ϕ) =
∫ ∞

0
dl l ma(l, ϕ), (2)

Lb(ϕ) = lb(ϕ)mb(ϕ), (3)

L(ϕ) = La(ϕ) + Lb(ϕ). (4)

To characterize the degree of orientational ordering of the
MTs, we use two order parameters. The first measures the
degree of polar ordering in the frame of the cell geometry.
It is defined as

S1 = (〈cos ϕ〉, 〈sin ϕ〉), (5)

where throughout the equilibrium average is defined through

〈 f (ϕ)〉 =
∫ 2π

0 dϕ f (ϕ) l (ϕ)∫ 2π

0 dϕ l (ϕ)
, (6)

i.e., we focus on the distribution of MT length, or equivalently
tubulin mass. When convenient, the scalar order parameter
S1 = |S1| can be used as a measure of the magnitude of po-
lar ordering, irrespective of its orientation. The second-order
parameter measures the degree of bipolar ordering and is
defined as

S2 =
(〈cos 2ϕ〉 〈sin 2ϕ〉

〈sin 2ϕ〉 −〈cos 2ϕ〉
)

. (7)

Here it is convenient to introduce the scalar order parameter
S2 = (S2)xx = 〈cos 2ϕ〉. When S2 > 0 the ordering is predom-
inantly along the major axis (longitudinal), while for S2 < 0
the ordering is along the minor axis (transverse).

slidingbinding

SM0M

MP MSP

stabilization + slidingstabilization

FIG. 1. Schematic of the four models considered. Microtubules
(blue lines) are nucleated from a fixed MTOC (gray circle) at the
center of the cell and extend towards the cell membrane (black
ellipse). Polarity factors (red circles) when present, can either be free
or bound to the microtubules and delivered to the membrane.

B. Models

We will consider four models of increasing complexity
describing the interactions of the MTs with the boundary of
our model cell. These models are schematically illustrated in
Fig. 1.

Model M0: In this model, a growing MT that hits the
boundary is stalled for a time set by an unbinding rate, after
which it unbinds into the shrinking state.

Model MS: In this model, a growing MT that hits the
boundary starts exerting a force. The tangential component of
the polymerization force exerted by the MT on the boundary
then causes the MT to slide towards the nearest cell pole,
an effect counteracted by an (effective) friction force. At the
same time, the rate at which the MT grows is slowed and
its catastrophe rate is increased, both in a force-dependent
manner.

Model MP: In this model we introduce a species of effector
molecules we dub polarity factors (PFs). The PFs can bind
to the MTs, which transport them towards the cell boundary.
Once deposited there, they diffuse away and can reenter the
cell interior at a given rate. The PFs in the boundary stabilize
the bound MTs in a density-dependent manner, in this way
creating a positive polarization-inducing feedback loop.

Model MSP: In this final model both the force-induced slid-
ing mechanism, and the PF-induced polarization mechanism
are active, yielding a model with maximal coupling to the cell
boundary and its geometry.

III. MODELS AND RESULTS

A. Model M0: Fixed mean residence time at boundary

In this first model, which will serve as the default case to
which the other models can be compared, the only effect on
MTs reaching the cell boundary is that they enter a bound
state, in which they are stalled. Release from this bound state
occurs at a constant location-independent unbinding rate ru.
This mimics a generic nonspecific interaction between the
MT tip and the membrane, which by varying the value of ru

ranges from repulsive (ru � 1) to (hyper)stabilizing (ru ∼ 0).
The model is schematically illustrated in Fig. 2.
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FIG. 2. Model M0: Dynamical MTs (blue lines) are isotropically
nucleated from a fixed MTOC (gray circle) at the center of the cell.
MTs remain bound to the membrane (black ellipse) with residence
time set by the unbinding rate ru. Also indicated are the coordinate
frame employed throughout and the two named directions character-
izing the cell geometry.

1. Analytical approach

We focus on the behavior of the relevant MT densities
as introduced in Sec. II A in the steady state. The relevant
equations follow from the time-dependent ones, which are
presented in detail in Appendix A. For the growing, shrinking,
and bound MTs, respectively, we have the balance equations

v+∂lm+(l, ϕ) = r−m−(l, ϕ) − r+m+(l, ϕ), (8)

−v−∂lm−(l, ϕ) = −r−m−(l, ϕ) + r+m+(l, ϕ), (9)

v+m+(lb(ϕ), ϕ) = rumb(ϕ). (10)

The behavior of the dormant MTs depends on the nucleation
scenario, and we have

rnm0(ϕ) = v−m−(l = 0, ϕ), (11a)

rnM0 =
∫ 2π

0
dϕ v−m−(l = 0, ϕ), (11b)

where throughout the a-sublabeled equations will refer to
the homogeneous nucleation case, and the b-sublabeled ones
to the random nucleation case. These equations are supple-
mented by boundary conditions. At the cell boundary we must
have

v−m−(lb(ϕ)) = rumb(ϕ), (12)

while at l = 0 we have

v+m+(l = 0, ϕ) = rnm0(ϕ), (13a)

v+m+(l = 0, ϕ) = rn
M0

2π
. (13b)

Adding Eqs. (8) and (9) gives

∂l [v+m+(l, ϕ) − v−m−(l, ϕ)] = 0. (14)

Combining Eqs. (10) and (12), yields

v+m+(lb(ϕ), ϕ) = v−m−(lb(ϕ), ϕ), (15)

which shows that the constant of integration in Eq. (14) van-
ishes, and so we get

v+m+(l, ϕ) = v−m−(l, ϕ). (16)

This allows us to eliminate m−(l, ϕ) in Eq. (8) and solve it
using either Eq. (13a) or (13b), yielding

m+(l, ϕ) = rn

v+
m0(ϕ)e−l/l̄ , (17a)

m+(l, ϕ) = rn

v+

M0

2π
e−l/l̄ , (17b)

where

l̄ =
(

r+
v+

− r−
v−

)−1

(18)

is the mean length of free MTs i.e., in the absence of bound-
aries [18]. From Eq. (10) we immediately get

mb(ϕ) = v+
ru

m+(lb(ϕ), ϕ). (19)

The final unknowns, pertaining to the dormant MTs, can now
be obtained from the appropriate conservation laws, which
read

m = m0(ϕ) +
∫ lb(ϕ)

0
dl [m+(l, ϕ) + m−(l, ϕ)] + mb(ϕ),

(20a)

M = 2πm = M0 + Ma + Mb, (20b)

where

Ma =
∫ 2π

0
dϕ

∫ L(ϕ)

0
dl [m+(l, ϕ) + m−(l, ϕ)], (21)

Mb =
∫ 2π

0
dϕ mb(ϕ) (22)

are the total number of active and bound MTs in the system,
respectively. Inserting the results for m+(l, ϕ), m−(l, ϕ) and
mb(ϕ) in Eqs. (20a) and (20b) and introducing the convenient
single MT “partition function”

Z (ϕ) = 1 + rn

(
1

v+
+ 1

v−

)
l̄ (1 − e−lb(ϕ)/l̄ ) + rn

ru
e−lb(ϕ)/l̄ ,

(23)
we find

m = m0(ϕ)Z (ϕ), (24a)

M = M0 Z̃, (24b)

where throughout we use the tilde to denote the unweighted
average over angles, i.e.,

f̃ ≡ 1

2π

∫ 2π

0
dϕ f (ϕ).

These results have a natural interpretation in terms of the
following timescales: t0 = 1

rn
, the mean residence time in

the dormant state, t̄ = ( 1
v+

+ 1
v−

)l̄ , the mean lifetime of an

unperturbed MT, tb = 1
ru

, the mean residence time at the cell
boundary, and the quantity

Fb(ϕ) = e−lb(ϕ)/l̄ , (25)
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which can interpreted as the probability that a MT reaches
the boundary in the direction ϕ. With these definitions we can
write

Z (ϕ) = t0 + [1 − Fb(ϕ)]t̄ + Fb(ϕ)tb
t0

≡ ttot (ϕ)

t0
, (26a)

Z̃ ≡ t̃tot

t0
, (26b)

where ttot is interpreted as the total time spent in a single lifes-
pan of a MT starting in the dormant state (t0), spending a time
tb bound to the surface with probability Fb and behaving as an
unperturbed MT with probability 1 − Fb. We now readily find
the distribution of (i) the dormant MTs

m0(ϕ) = m
t0

ttot (ϕ)
, (27a)

M0 = M
t0
t̃tot

, (27b)

(ii) the active MTs

ma(l, ϕ) = m
t̄

ttot (ϕ)

e−l/l̄

l̄
, (28a)

ma(l, ϕ) = M

2π

t̄

t̃tot

e−l/l̄

l̄
, (28b)

and finally (iii) the bound MTs

mb(ϕ) = m
tb

ttot (ϕ)
Fb(ϕ), (29a)

mb(ϕ) = M

2π

tb
t̃tot

Fb(ϕ). (29b)

Intriguingly, when t̄ = tb, we have ttot (ϕ) = t̃tot = t0 + t̄ . In
this case the two nucleation scenarios lead to exactly the same
results. Intuitively this can be understood as follows. Due
to the fact that the MT dynamics is Markovian, the lifetime
t̄ is also equal to the return time, i.e., the time it takes on
average for a growing MT to return to its initial length in the
shrinking state. So, whether a MT is kept at the boundary in
the stalled state for a time t̄ , or is free to propagate beyond
the boundary and returning after a time t̄ , has no impact on the
distribution within the boundary. From the perspective of the
MTOC the dynamics of departing and returning MTs is as if
they are launched into unbounded space in which no direction
is favored, which removes the distinction between the two nu-
cleation scenarios. The resulting interior MT distributions are
simply those obtained by “cropping” the isotropic distribution
to the region defined by the cell, while the distribution on the
boundary is the radial projection of the distribution outside the
cell onto the surface.
With the results on the MT number distributions, we are
finally in a position to give the sought-after length distribution:

l (ϕ) = m
t̄{l̄ − [l̄ + lb(ϕ)]Fb(ϕ)} + tblb(ϕ)Fb(ϕ)

ttot (ϕ)
, (30a)

l (ϕ) = M

2π

t̄{l̄ − [l̄ + lb(ϕ)]Fb(ϕ)} + tblb(ϕ)Fb(ϕ)

t̃tot
. (30b)

TABLE I. Basic dynamical parameters of MTs used throughout.

Parameter Symbol Value Reference

Growth speed v+ 0.018 µms−1 [19]
Shrinkage speed v− 0.040 µms−1 [19]
Nucleation rate rn 0.05 s−1 [20]
Catastrophe rate r+ 0.0078 s−1 [19]
Rescue rate r− 0.0016 s−1 [19]

2. Predictions from the theory

We now use the theory derived above to map out the behav-
ior of model M0. As our focus throughout is on the influence
of the geometry and the boundary interactions, we a priori
fix the relevant dynamical parameters of the MTs to a set of
generic ones chosen on the basis of experimental data, and
shown in Table I. First, and foremost, these parameters fix
the mean length the MTs would have in the absence of any
confining boundary given by Eq. (18) to l̄ = 2.54 µm.

The first question we address is the influence of the overall
scale of the cell, as compared to l̄ , on the organization of the
MTs. Since the interactions of the MTs with the boundary do
not depend on the location on the boundary, we expect the
MT distributions to follow the biaxial symmetry of the cell.
We therefore compare the value of the bipolar order parameter
S2 for different values of the boundary residence time tb at a
fixed aspect ratio b/a = 4 for different absolute sizes of the
cell, chosen such that three distinct relevant cases are covered:
a < b < l̄ , a < l̄ < b, and l̄ < a < b.

The main takeaway of the results shown in Fig. 3(a) is
that in the random nucleation scenario the order parameter
S2 varies more strongly as a function of the residence time
than in the homogeneous nucleation scenario. This is readily
understood as in the random scenario the MTs can be effec-
tively redistributed over the possible orientations if they are
“sequestered” at the boundary, whereas in the homogeneous
scenario fixed numbers of MTs are apportioned to each inter-
val of angles. Another striking result is that in the largest cells,
where MTs will hardly ever reach the longitudinal poles, S2

will become negative in both scenarios as the distribution is
dominated by MTs captured at the boundary on the transverse
short axis. We thus have an ordered state for which S1 = 0
and S2 < 0. We denote the symmetry of this state D⊥

2 , where
D2 is the standard Schönfliess nomenclature for the symmetry
of a 2D rectangular shape, and the superscript ⊥ indicates that
the major axis of ordering is the transverse one. This state is
illustrated in the upper left panel of Fig. 11.

Since we are explicitly interested in the competition be-
tween the short and the long axis of the cell, we now
choose to fix the short semiaxis to a = 1 µm, and consider
three cases in which the probability of MTs reaching the
pole in the longitudinal direction is high (b < l̄), average
(b = l̄), and low (b > l̄), respectively. The results are given
in Fig. 3(b) showing once again that the random nucleation
scenario displays the largest sensitivity to the residence time
at the boundary.

On the basis of these results and the pragmatic need to
reduce the parameter space addressed by our study, we now
make the following choices which we will apply throughout
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FIG. 3. Model M0: Order parameter S2 as a function of the mean residence time at the cell boundary tb, in both nucleation scenarios:
homogeneous (blue) and random (red). The vertical line at tb = 204.8 s indicates the special value of the boundary residence time at which
the difference between the nucleation scenarios vanishes. (a) For a fixed aspect ratio b/a = 4. Cases: (i) a = 0.25 µm, b = 1 µm (solid),
(ii) a = 1 µm, b = 4 µm (dotted), (iii) a = 4 µm, b = 16 µm (dashed). (b) For different aspect ratios b/a setting a = 1 µm and cases (i)
b = 1.5 µm, (ii) b = l̄ = 2.54 µm and (iii) b = 4 µm. The symbols indicate the values obtained by simulations. Error bars in the simulations
are smaller than the symbols.

the rest of the study: (i) as it appears most sensitive probe of
changes in the MT organization due to changes in the geome-
try and/or the boundary residence time, we adopt the random
nucleation scenario, (ii) to explicitly address the competition
between the two axes of the cell, we adopt a = 1 µm ensuring
that the cell boundary in the transverse direction is readily
accessible to MTs, and (iii) as tb = 100 s lies in the middle
of the regime of largest sensitivity, we choose this value of
the boundary residence time to be our baseline, close to the
experimentally reported value of ≈90 s in fission yeast [4].

3. Comparison with simulations

In order to set up the core algorithm which will be used to
simulate the MT dynamics in the rest of the study, we perform
standard fixed time step stochastic simulations of model M0.
These simulations are then validated against the analytical
predictions of the previous section.

In the simulations, individual MTs are modeled as objects
in one of the possible states DORMANT, GROWING, SHRINKING,
and BOUND. At each time step the probability of transitioning
to another state is calculated and sampled. If the MT remains
in its state its length is updated as appropriate. The possible
transitions are DORMANT → GROWING, with rate rn, GROWING

→ BOUND, which occurs whenever the length of the MT is
equal to the distance between MTOC and cell boundary in the
direction in which it is growing, and BOUND → SHRINKING,
with rate ru, GROWING → SHRINKING (catastrophes), with
rate r+, SHRINKING → GROWING (rescues), with rate r−, and
finally, SHRINKING →DORMANT, which occurs whenever a
shrinking MT hits zero length. In the homogeneous nucleation
scenario, each MT is assigned a fixed angle ϕm = m 2π/M,

m = 0, 1, . . . , M − 1. In the random scenario, a random angle
is chosen upon a nucleation event. Here we chose to simu-
late M = 1000 MTs and use a time step of �t = 0.5 s. The

dynamical parameters of the MTs are the ones given in
Table I. Here, as in the rest of the study, we use the order
parameters defined in Sec. II A as reporters on the global
organization of the MTs. In Appendix B we show a single
representative comparison between the distribution function
l (ϕ) obtained by solving Eq. (30) and the distribution mea-
sured in simulations, from which the order parameters are then
derived.

B. Model MS: Force generation and boundary sliding

In this second model we take into account that, due to
continued polymerization, a MT stalled at the cell boundary
exerts a force in the direction in which it is oriented [21].
This force is counterbalanced by a normal force exerted by
the cell surface. The latter force has a component orthogonal
to the MT, causing it to slide along the surface [10]. At the
same time, one expects that the growth speed as well as the
catastrophe rate of bound MT are influenced by the loading
force [22]. Here we will take both these effects into account
using a recently developed model of dynamic force genera-
tion, which is parametrized using data on yeast cells [17]. A
generic friction parameter then controls the degree to which
sliding contributes to the overall MT organization. This model
is illustrated in Fig. 4.

1. Dynamic force generation mechanism

We adopt the force generation model described in [17].
This model is based on the phenomenological notion of
“stored length,” which is built up when the MT continues to
grow after coming into contact with the boundary. That MTs
are able to grow due to thermal fluctuations, in spite of the fact
that they are in contact with a boundary, is a key ingredient of
the standard Brownian ratchet model of polymerization forces
[23]. The stored length, defined as the difference between the
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sliding

FIG. 4. Model MS: The polymerization force Fpol due to growth
of the MT is counteracted by the normal force Freact. This force has
a component Frot which acts to rotate the filament, but is in turn
balanced by friction with the intracellular medium. This results in
a sliding motion along the cell boundary, driven by the tangential
force F‖ and counteracted by the effective friction force Ffriction. The
residence time of the MT at the boundary is influenced by their
degree of force loading, through a force-dependent catastrophe rate
r̂+(Fpol ).

length of MT and the distance between the nucleation point
and the point of contact with the boundary, is interpreted
as the source of a linear “expansion” force countering the
compression at the boundary given by

Fpol(l, L) = k(l − L), (31)

where l is the length of the MT, L the distance between MTOC
and the cell boundary and k an effective compression modulus
which governs the magnitude of the generated force. We next
assume that the microscopic dynamics of the MT, involving
the addition and removal of individual tubulin subunits, is fast
compared to the growth process, and that the off-rate by which
tubulin subunits detach from the MTs is small with respect
to the on-rate by which subunits attach to the MT. Under
these assumptions, the growth speed quasistatically decreases
as [24]

v̂+(Fpol) = v+e−βdFpol , (32)

where β = (kBT )−1 is the inverse temperature in units of
the Boltzmann constant and d is the microscopic step size
of the growth process. This parameter can be determined
phenomenologically on the basis of measured force-velocity
relations. The value suggested by Foethke et al. [25], in the
context of a similar model, is presented as βd = 1/ fs with the
characteristic force fs = 1.67 pN determining the sensitivity
of the MT growth to the opposing force. Throughout we will
denote quantities in the force-loaded state by a hat (·̂).

To model the effect that the catastrophe rate should in-
crease when in contact with the boundary, the assumption is
made that the linear relation observed between growth speed
and mean time to catastrophe for freely growing MTs [22]
also holds instantaneously for loaded MTs. This implies that

t̂+(Fpol) = 1

r̂+(Fpol)
∝ v̂+(Fpol), (33)

which yields

r̂+(Fpol) = r+eFpol/ fs . (34)

Moreover, we assume that in the loaded state, l > L, no res-
cues are possible, so that once a catastrophe occurs in this

regime the MT will shrink to the unloaded state l � L and
that the shrinkage speed is unaffected by the loading.

For nonspherical cells, the growth-driven polymerization
force Fpol is generically not perpendicular to the boundary
(please refer to Fig. 4 for geometry of the forces involved).
In case there is no direct friction with the cell membrane, this
force is counteracted by a normal force Freact, which has a
component Frot perpendicular to the MT, causing it to rotate.
This latter force in turn is counteracted by the friction of the
motion of the MT through the intracellular medium. In prin-
ciple this friction force Ffriction is weakly length-dependent,
which we ignore here. As the MT rotates, it also expands re-
leasing the stored length, causing it to slide along the surface.
This motion appears to be driven by the tangential component
F‖ of the rotatory force, which by elementary geometry is
equal to the tangential component of the polymerization force.
Velocity and force of this sliding motion are then connected by
the viscous equation of motion

F‖ = −ξv‖, (35)

where ξ is an effective drag coefficient.

2. Implementation

In order to implement force production and sliding into
our stochastic simulations, we replace the BOUND state of
model M0, by the state PUSHING. In the latter state the MT
grows with speed v̂+(Fpol) given by Eq. (32) and experiences
a catastrophe rate given by r̂+(Fpol) given by Eq. (34), where
the polymerization force is found from the current length and
orientation through Eq. (31). If at the end of a time step
the MT remains in the PUSHING state, the tangential force
F‖ it experiences is calculated using Eq. (31) by projecting
onto the tangent line to the elliptical boundary at the point
of contact determined by its current orientation ϕ. The MT
is then rigidly rotated over an angle �ϕ = F‖/[ξL(ϕ)]�t .
Ignoring catastrophes, the stable points of this rotation are
the poles of the ellipse on the long axis, where the tangential
component of the forces disappears. By the same token, gener-
ically L(ϕ + �ϕ) > L(ϕ) so that this motion also relaxes the
magnitude of the driving force.

In order to facilitate comparison between the models MS
and M0, we must choose a suitable value for the effective
modulus k. We do this by requiring that in the absence of slid-
ing, the mean time until catastrophe of a pushing MT equals
the mean residence time set by the reference unbinding rate ru

discussed in Sec. III A 2. To be fully precise, the residence
time should also include the time it takes a loaded MT to
shrink to the unloaded state, but given that the shrinking speed
is significantly larger than the growing speed, this would only
amount to a small correction. The mean time to catastrophe in
the force production model works out as [17]

〈τc〉 = 1

r+

√
π

√
r+
er+
erfc(

√
r+
), (36)

where


 = fs

2kv+
, (37)

and erfc is the complementary error function (see Ref. [26],
table entry 8.250.4), and r+ and v+ are the force-free values
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FIG. 5. Model MS: Order parameter S2 for different aspect ratios
by changing the long semiaxis b and for different values of the sliding
drag coefficient ξ . Lines through the data points are guides to the eye.

of the catastrophe rate and the growth speed respectively. We
now adjust k to achieve 〈τc〉 = 1/ru for the reference case
ru = 0.01 s−1, which yields k = 0.3 pNμm−1.

3. Simulation results

We apply our algorithm to different aspect ratios b/a of the
cell and to different values of the sliding drag coefficients ξ .
The simulation results for the order parameter S2 are shown
in Fig. 5. In all cases, we see that the sliding mechanism
leads to robust biaxial order dominant along the longitudinal
axis (S2 > 0), with the degree of ordering increasing with
decreasing friction, and reaching values significantly above
those achieved in the reference Model M0 [cf. Fig. 3(b)]. We
denote the symmetry of this type of ordered state by D‖

2, and
illustrate it in the upper right panel of Fig. 11.

While we have assumed at the outset that our MTOC is
fixed in the geometrical center of the cell, it is of course
a legitimate question to ask whether this central positioning
is actually stable given that forces are at play that could
potentially displace the MTOC. We therefore performed sim-
ulations in which the MTOC is displaced from the center
and measured the resulting net force, showing that in our
elongated geometry this force is centering and increases with
increasing displacement from the center. We present these
results in Appendix C.

C. Model MP: Molecular polarization mechanism

In this third model we add a MT-configuration dependent
polarization mechanism to the basic model M0. The main
additional ingredient of this model is the presence of a pool of
effector proteins, which we dub polarity factors (henceforth
PFs). These PFs start out cytosolic, i.e., in the cell interior,
where they diffuse and bind to MTs. Bound PFs are trans-
ported in the plus-end direction along their host MTs towards
the cell periphery. If their host MT is at the cell boundary, they
can be delivered into the membrane, in which they diffuse
until they unbind and recycle into the cell interior. The key

MT stabilization

unbinding

delivery

binding

FIG. 6. Model MP: The effector species PF (red disks) binds to
MTs over which they are transported. Bound MTs deliver PFs to
the membrane, where they diffuse until they unbind to return to the
cell interior. The residence time of bound MTs depends on the local
density of PFs cb in the membrane through the unbinding rate ru(cb).

assumption of our polarization mechanism is that the resi-
dence time of the bound MTs depends on the local density of
membrane-bound PFs setting up a positive feedback loop: the
higher the local PF density, the longer a MT remains bound,
the more PFs it delivers. As the total pool of PFs is finite,
this also causes a global depletion effect, which represses
the polarizing propensity of MTs in other parts of the cell.
Conceptually this model thus belongs to the generic class of
activator-depletion models (see [27] for a general overview),
but distinguishes itself by employing the nondiffusible MTs
as a mediator species. The model is schematically illustrated
in Fig. 6.

1. Formalism and implementation

The model adopts the formalism developed in [16], where
it was applied in a spherical cell geometry. Conservation of
PFs implies that at any time

C = Cf (t ) + Cm(t ) + Cb(t ), (38)

where C is the total number of PFs, Cf (t ) the number of free
PFs in the interior, Cm(t ) the number of PFs bound to MTs and
Cb(t ) the number of PFs bound to the membrane. We assume
the diffusion of the PFs in the cell interior to be very fast, so
that their instantaneous distribution is spatially homogeneous,
and that the kinetics of binding and unbinding to the MTs
is so fast that an instantaneous binding equilibrium is estab-
lished, allowing the linear density of PFs bound to MTs to be
given by

cm(t ) = Cm(t )

L(t )
= 1

L(t ) + L 1
2

[C − Cb(t )], (39)

where L(t ) is the total length of all MTs in the system, and
L 1

2
a parameter that sets the affinity of the PFs for binding to

the MTs. Calling the constant transport speed of PFs bound
to MTs vm, each membrane-bound MT delivers vmcm(t )�t
PFs to the membrane per time step. Once in the membrane
the PFs perform a standard diffusion and can unbind at a rate
ku, in which case they return to the interior pool. The coupling
between membrane-bound PFs and membrane-bound MTs is
implemented by the nonlinear dose-response function, which
governs the MT unbinding rate as a function of the local PFs
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TABLE II. Parameters used in the implementation of the polar-
ization mechanism.

Parameter Symbol Value

Binding affinity PFs to MTs L 1
2

150 µm

Transport speed PFs along MTs vm 0.81 µms−1

Base MT unbinding rate ru(0) 0.01 s−1

MT unbinding rate at PF saturation ru(∞) 0.001 s−1

Hill coefficient dose-response curve p 5
Cross-over density dose-response curve c∗ 20bin−1

Diffusion coefficient PFs D 0.035 µm2 s−1

PF unbinding rate ku 0.07 s−1

density cb,

ru(cb) = [ru(0) − ru(∞)]
1

1 + ( cb
c∗

)p + ru(∞), (40)

where ru(0) is the MT-unbinding rate in the absence of PFs,
ru(∞) the MT-unbinding rate at PF oversaturation, c∗ a cross-
over density and p a Hill coefficient, which governs the
steepness of the cross-over between the low- and high-density
regimes.

In the simulations, the diffusion of the PFs in the mem-
brane is implemented as a fixed time step continuous space
Brownian motion obtained by sampling from the appropri-
ate Gaussian propagator. The local density is evaluated by
binning the PFs in the boundary, with an additional discrete
noise suppressing averaging over a local neighborhood. For
further details the reader is referred to [16]. The values of the
additional parameters used are shown in Table II.

2. Simulation results

We simulated model MP for cellular geometries with two
different aspect ratios: a less elongated, and hence more
nearly circular, case with b/a = 1.5 and a more elongated
case b/a = 4. The results are shown in Figs. 7(a) and 7(b),

respectively. We see that in both cases there is a range of
values for C, the total number of PFs in the system, for which
polarization is observed. Since the number of MTs in contact
with the boundary is largest along the short, transverse axis
of the cell the polarization occurs along this axis. We there-
fore only plotted the component |S1,y| of the vectorial order
parameter S1. The absolute value is taken for convenience, as
by reflection symmetry in the x axis, the polarization in the
−y direction is as likely as in the +y direction. We denote the
symmetry of this type of ordered state by D⊥

1 , where D1 is the
Schönfliess notation for the symmetry of a 2D figure with a
single axis of reflection. The state is illustrated in the lower
left panel of Fig. 11.

The most striking result is observed for the nonpolarized
states in the more elongated cell [Fig. 7(b)]. For low values
of C, where the polarization mechanism has not yet kicked in,
the system responds to the geometry similarly to the reference
Model M0 [cf. Fig. 3(b)], i.e., with a slight preference for
longitudinal biaxial order (S2 > 0). However, at high values of
C when the polarization mechanism is no longer effective due
to oversaturation, the system actually retains an “imprint” of
the transverse polarization at intermediate values of C, by now
settling on a transverse biaxial ordered state (S2 < 0), with
the major mass of the MT-length distribution oriented along
the y axis.

D. Model MSP: Polarization mechanism and sliding

In this final model we combine the sliding mechanism of
Model MS with the polarization mechanism of Model MP.
We focus on the interplay between the tendency of sliding to
create a bipolar MT organization along the long axis of the
cell, and the tendency of the polarization mechanism to estab-
lish unipolar order. The model is schematically illustrated in
Fig. 8.

1. Combining force production with the polarization mechanism

In order to connect the force-production mechanism of
Model MS to the polarity-generation mechanism of Model

FIG. 7. Model MP: Order parameters |S1,y| and S2 as functions of the total number C of polarity factors in the system for (a) b = 1.5 µm
and (b) b = 4 µm.
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MT stabilization

unbinding

delivery

binding

sliding

FIG. 8. Model MSP: Model that combines the polarization
mechanism based on effector species PF (red circles) with
polymerization-force induced sliding. The residence time of bound
MTs depends on both the polymerization force and the local PF
density through the catastrophe rate r̂+(Fpol, cb).

MP, we chose to generalize the procedure adopted in
Sec. III B 2 to link model MS to M0 through the mean-
residence time. In this case we require that the mean time
to catastrophe due to the force production mechanism 〈τc〉
tracks the nonlinear dependence of the unbinding rate on the
PF density, i.e.,

〈τc〉(cb) = 1

ru(cb)
, (41)

where ru(cb) is given by Eq. (40). Recalling Eqs. (36) and
(37), we in principle have some freedom in which parameter
to use to enforce this identity. We argue, however, that the
most natural one is the unloaded catastrophe rate r+, which
most directly represents the intrinsic stability of the MT that
is modulated by the presence of the PFs. In practice, we
therefore solved [cf. Eq. (36)]

1

ru(cb)
= 1

r+(cb)

√
π

√
r+(cb)
er+(cb )
erfc[

√
r+(cb)
] (42)

for r+(cb) over a range of cb values, constructing a look-up
table from which the appropriate value can be retrieved by

interpolation when needed in the simulations. The details of
this procedure are given in Appendix D.

2. Simulation results

In Fig. 9 we show the results of the simulations for two
values of the aspect ratio of the cell plotting order parameters
as functions of C, the total number C of PFs in the cell, for
ξ = 30 pNsμm−1. Since in this case, due to the efficacy of
the sliding mechanism, the number of MTs in contact with
the boundary is largest along the longitudinal axis of the
cell, polarization, when it occurs, is along this axis. Here we
therefore plotted only the component |S1,x| of the vectorial
order parameter S1, where, again for symmetry reasons, the
absolute value is shown. We denote the symmetry of this
polarized ordered state as D‖

1. It is illustrated in the lower
right panel of Fig. 11. In comparison with Model MP, the
degree of polarization, which now piggybacks the intrinsic
preference for longitudinal order already displayed in Model
MS, is much more pronounced. At the same time, the impact
of the polarization mechanism in the postpolarization high-C
regime on the degree of biaxial order is significantly higher
than that achievable by geometry [cf. Fig. 3(b)] or sliding (cf.
Fig. 5) alone.

E. Toy models

Considering the observed behavior of the models MP and
MSP, we can readily discern the critical factor that distin-
guishes the two cases: whether or not the interaction of MTs
with the boundary is dominated, by virtue of the innate expo-
nential length distribution of the MTs, by the most accessible
shortest distance in the geometry, i.e., the transverse one in the
elliptical geometry. This suggests that the observed behavior
can be recapitulated in the setting of a highly simplified toy
model that captures the essential ingredients at play. This
model dispenses with the complexity due to to the continu-
ous distribution of MT angles, and considers only a discrete
number of directions. In the most generic case mimicking the

FIG. 9. Model MSP: Order parameters |S1,x| and S2 as functions of the total number C of polarity factors in the system for (a) b = 1.5 µm
and (b) b = 4 µm.
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FIG. 10. (a) Model TOY-MP: Predictions for the (local) number of PFs Ci in each of the four membrane sectors in each as a function of the
total number of PFs C of the toy model (below) compared to the full simulations (above). Here C∗ = 1000. (b) Model TOY-MSP: Predictions
for the (local) numbers of PFs Ci in the two halves of the membrane as a function of the total number of PFs C of the toy model (below)
compared to the full simulations with drag coefficient ξ = 1 pNsμm−1 (above).

behavior of model MP, we consider two opposing transverse
orientations with a membrane at a distance a, and two oppos-
ing longitudinal orientations with the membrane at a distance
b. Moreover, we remove any cross-talk due to PFs diffusing
from one delivery point to another, effectively cutting the el-
liptical membrane into four disconnected sectors (see Fig. 15).
The latter approximation is reasonable whenever the mean

FIG. 11. Radial density plots of the density of bound micro-
tubules mb(φ) in the four models we considered, showing the distinct
possible symmetries achievable. The average number of bound MTs
were binned in 50 angular bins and mapped to a grayscale with
black assigned to the maximum value. The geometry was a = 1 µm
and b = 1.5 µm. Details: Model M0: Unbinding rate ru = 0.01 s−1,
Model MS: Drag coefficient ξ = 50 pNsμm−1, Model MP: number
of PFs C = 30 000, Model MSP: number of PFs C = 60 000. All
other parameters as described in the main text.

free diffusion length of PFs in the membrane is smaller than
the distance between two delivery points, i.e., at a quarter of
the cell circumference. We will call this model TOY-MP. In
case we are mimicking the behavior of model MSP, where,
specifically when the friction coefficient is not too high, we
know that sliding will focus the majority of MTs along the
longitudinal axis of the cell, a toy model with just two orien-
tations opposing longitudinal directions can be expected to be
a fair approximation, which we dub TOY-MSP. The details of
the construction of these two toy models and our approach to
numerically solve them are given in Appendix E.

We can directly compare the results of the toy models to the
full simulation, if we ensure that the fixed nucleation rate in
the toy models is adjusted to the observed steady-state overall
nucleation rate in the simulations. As observables, we take
the total number of PFs in each membrane sector. The results
for model TOY-MP are presented in Fig. 10(a) and show that
the toy model indeed reproduces the transverse polarization
transition, albeit at a significantly lower number of total PFs.
This stands to reason, as the PFs in the full model are far more
dispersed over the membrane, in contrast to the toy models
where they are highly focused, and hence act more strongly
to stabilize the bound MTs. Strikingly, the toy model also
predicts a possible longitudinal polarization transition, which
occurs far beyond the point where the transverse polarization
has already disappeared due to local saturation of the polar-
ization mechanism. We did not observe such a transition in

054408-11



PANAYIOTIS FOTEINOPOULOS AND BELA M. MULDER PHYSICAL REVIEW E 106, 054408 (2022)

the full simulations, possibly because it occurs for a much
higher number of PFs than we choose to simulate here. Model
TOY-MSP, with just two directions, appears even to semi-
quantitatively reproduce the full simulation data, as shown in
Fig. 10(b).

IV. DISCUSSION

We have presented an exploration of the effects of non-
spherical cell shape on the global distribution of MTs
isotropically nucleated from a centrally located MTOC, a
geometry that is a stylized version of the situation that pertains
to a generic interphase eukaryotic cell, using four different
models of increasing complexity. The main effect is revealed
in the simplest model M0 in which the MTs have a generic
interaction with the cell boundary that causes them to stall
for a variable amount of time. As in steady-state MTs have
an exponential length distribution, they are much more likely
to interact with the cell boundary in the transverse equatorial
direction, leading to a D⊥

2 symmetry. This intrinsic orienta-
tional selection mechanism can be overruled if we allow MTs
to slide driven by their intrinsic force-generating mechanism
(Model MS), in which case the distribution can be reoriented
towards the longitudinal direction, yielding a D‖

2 symmetry.
In both cases, the resulting distribution is bipolar with bi-
axial symmetry and conforms to the inversion symmetry of
the cell shape. This strong coupling between the cell shape
and MT distribution can itself be overridden by introduc-
ing an explicit polarization mechanism. This mechanism is
mediated by polarity factors that depend on MTs for their
delivery to the cell membrane and in turn stabilize the bound
MTs increasing their residence time at the boundary, hence
setting up a positive feedback loop. This breaks the inver-
sion symmetry and creates either a polarized distribution in
the transverse direction (Model MP) with symmetry D⊥

1 or
longitudinal direction (Model MSP) with symmetry D‖

1. The
various trade-offs involved are captured qualitatively, and in
some cases even semiquantitatively, by a very simple, and
potentially extendable, toy model that discretizes the orien-
tations. In Fig. 11 we present a graphical summary of the four
distinct MT organizations we have found. These are obtained
by visualizing the steady-state density of surface-bound MTs
as measured in simulations of the four models.

Obviously, the models presented here involve a number of
clear (over)simplifications. The first one concerns the nature
of the localization of the centrosome. In reality this structure
is (i) eccentrically connected to the nuclear envelope, so that
the nucleus will occlude a significant fraction of potential
orientations for MTs, and (ii) not at a preordained location,
but rather dynamically positioned. The latter effect has been
studied extensively [5,6,9,10] and likely involves the interplay
between pushing forces (generated by the MTs themselves)
and pulling forces (exerted by membrane-attached minus-end-
directed motor proteins). It is certainly feasible to include both
effects in a future version of these models. The second one,
and closely related to the first, is the neglect of MT buckling.
The simplest way to partially include this effect was pioneered
in Ref. [5] and consists of fixing the force exerted by the
MTs to be equal to the (length-dependent) buckling force. The
latter assumption, however, presupposes that the dimensions

of the cell are comparable to the buckling length given the
known magnitude of the polymerization forces, and therefore
less robust to scaling of the size of the cell. This effect could
be partially remedied by using our force production model, or
a variant such as the one proposed in Ref. [25], and cap the
force to the buckling force if this reached before the switch to
the shrinking state. However, as MTs do not physically buckle
in any of these variants, we believe the results might be quan-
titatively different, but not qualitatively. In all cases one would
observe more or less uniform sliding towards the longitudinal
axis of the cell. Including true physical buckling, in which
the postbuckling orientation with respect to the cell boundary
also becomes salient, is much more challenging, and would
require significantly more complex calculations. Finally, the
choice for a two-dimensional geometry. While we have argued
that for symmetry reasons this is reasonable approximation,
it should be both feasible and useful to extend our calcula-
tions to more general 3D cell shapes. The analytical theory
in model M0, which only requires the orientation-dependent
distance from the MTOC to the cell boundary as input, is
readily generalized, especially in the axially symmetric case.
The same holds for the simulations, albeit more care has to
be taken to avoid orientational artifacts due to nonisotropic
sampling of orientations and the homogeneity and isotropicity
of the surface mesh that keeps track of the bound MTs and the
diffusing PFs.

Returning to the biological significance of our results, we
note that while there is a surprising variety of ordered MT
structures in animal cells (for a recent review see [28]) and
many of the cell types involved are distinctly nonspherical
in shape, the dominant explanatory principles employed in
discussing the origin of these structures are the spatial location
of the nucleation sites (e.g., centrosomal or noncentrosomal
and localized to specific cell faces), selective modulation of
microtubule dynamics, the mechanical action of motor pro-
teins (see, e.g., [29] for the case of neurons), and polarization
mechanisms such as the one introduced in our model MP.
Strikingly, the effect of the cell geometry in shaping these
distributions in the first place appears to be disregarded. The
proposed mechanisms are generically good at explaining the
maintenance of a specific structure once it has been estab-
lished, but often beg the question of its creation. We hope
that our work provides a starting point for a reappraisal of
the role of geometrical confinement and how this interacts
with other mechanisms in shaping MT organization. A case
in point is our result that in the absence of other factors
the dominant form of induced polarization is predicted to
select the shortest axis available in the cell, in contrast to the
predominantly longitudinal organization found in elongated
cells. Here we show that polymerization-driven sliding is an
effective reorienting mechanisms that exploits the anisotropic
nature of the confining cell geometry. Finally, our results show
that mechanisms involving feedback loops based on PFs that
are transported by MTs to the cell boundary, predominantly
create a uniaxial polar structure, in spite of strong geometrical
cues towards a biaxial organization. It is therefore an interest-
ing question from a fundamental point of view whether it is
possible to create a polarization mechanism, likely involving
at least two polarity factors, that supports biaxial polarization
even in the absence of the sliding mechanism. The latter could
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contribute to our understanding of the longitudinal biaxial MT
organization found, e.g., in fission yeast.
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APPENDIX A: DERIVATION STATE-STEADY
EQUATIONS MODEL M0

In order to derive the steady-state equations for the MT
length distributions for model M0, we start from the time-
dependent equations. For the active and bound MTs these read

∂t m+(l, ϕ, t ) = − v+∂lm+(l, ϕ, t ) + r−m−(l, ϕ, t )

− r+m+(l, ϕ, t ), (A1)

∂t m−(l, ϕ, t ) = v−∂lm−(l, ϕ, t ) − r−m−(l, ϕ, t )

+ r+m+(l, ϕ, t ), (A2)

∂t mb(ϕ, t ) = −rumb(ϕ, t ) + v+m+(lb(ϕ), ϕ, t ). (A3)

The equations for the dormant ones now depend on the chosen
nucleation scenario. For the homogeneous scenario there is
a density m0(ϕ, t ) of dormant MTs per angle, while in the
random scenario there is just a single pool of dormant MTs
M0(t ). We thus have

∂t m0(ϕ, t ) = −rnm0(ϕ, t ) + v−m−(l = 0, ϕ, t ), (A4a)

dt M0(t ) = −rnM0(t ) + v−
∫ 2π

0
dϕ m−(l = 0, ϕ, t ),

(A4b)

where throughout the a-sublabeled equations will refer to the
homogeneous case, and the b-sublabeled ones to the random
case. These equations need to be supplemented with boundary
conditions. At the cell boundary these are

rumb(ϕ, t ) = v−m−(lb(ϕ), ϕ, t ), (A5)

while at l = 0 they again depend on the nucleation scenario

v+m+(l = 0, ϕ, t ) = rnm0(ϕ, t ), (A6a)

v+m+(l = 0, ϕ, t ) = 1

2π
rnM0(t ). (A6b)

We now introduce a number of integrated quantities. First, the
total number of growing, shrinking, and active MTs in a given
direction in the interior,

m+(ϕ, t ) =
∫ lb(ϕ)

0
dl m+(l, ϕ, t ), (A7)

m−(ϕ, t ) =
∫ lb(ϕ)

0
dl m−(l, ϕ, t ), (A8)

ma(ϕ, t ) = m+(ϕ, t ) + m−(ϕ, t ), (A9)

and next the total number of active and bound MTs in the
system

Ma(t ) =
∫ 2π

0
dϕ ma(ϕ, t ), (A10)

Mb(t ) =
∫ 2π

0
dϕ mb(ϕ, t ). (A11)

Adding Eqs. (A1) and (A2) and integrating over the relevant
lengths yields

∂t ma(ϕ, t ) = [v−m−(lb(ϕ), ϕ, t ) − v+m+(lb(ϕ), ϕ, t )]

− [v−m−(l = 0, ϕ, t ) − v+m+(l = 0, ϕ, t )].

(A12)

Adding this identity to Eq. (A3) and taking into account
Eq. (12) then gives

∂t ma(ϕ, t ) + ∂t mb(ϕ, t )

= v+m+(l = 0, ϕ, t ) − v−m−(l = 0, ϕ, t ). (A13)

For the homogeneous nucleation scenario, this can immedi-
ately be combined with Eq. to yield

∂t m0(ϕ, t ) + ∂t ma(ϕ, t ) + ∂t mb(ϕ, t ) = 0, (A14)

while for the random scenario, we first need to integrate
Eq. (A13) over all angles, and then combine with Eqs. and
to get

d

dt
[M0(t ) + Ma(t ) + Mb(t )] = 0, (A15)

which given our definitions lead to the conservation equations

m = m0(ϕ, t ) + ma(ϕ, t ) + mb(ϕ, t ), (A16a)

M = M0(t ) + Ma(t ) + Mb(t ). (A16b)

The steady-state equations used in the main text now follow
by assuming all unknowns are independent on time.

APPENDIX B: VALIDATION OF THE MT LENGTH
DISTRIBUTION AS MEASURED IN THE SIMULATIONS

We compare the MT length distribution as measured in
the simulations to the analytical predictions following from
Eqs. (30) for both nucleation scenarios in model M0. Fig-
ure 12 shows the high level of agreement achieved. Error bars
in these simulations are smaller than the plotting symbols.
That the order parameter values are then also accurately re-
produced is shown in the right panel of Fig. 3.

APPENDIX C: CENTERING FORCE IN MODEL MS

To check whether it is reasonable to assume that the central
position of the MTOC is stable in model MS (and by extension
in model MSP) where forces are exerted by the MTs, we
performed simulations in which the MTOC was displaced
along the long axis and measured the resultant average force
on the MTOC. As the results shown in Fig. 13 show, we find
that in all cases there is a robust restoring force that increases
with increasing distance from the center.
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FIG. 12. Model M0: Length distribution l (ϕ). Solid lines: the-
oretical prediction, symbols: simulations, for the random nucleation
scenario (red symbols) and the the homogeneous scenario (blue sym-
bols). Parameters: long semiaxis b = 4 µm, ru = 0.01 s−1, average
taken over 20 × 106 time steps.

APPENDIX D: PF DENSITY-DEPENDENT CATASTROPHE
RATE IN MODEL MSP

We implement the influence of the PFs on the force-
dependent catastrophe mechanism of model MS through the
unloaded catastrophe rate r+ by making it dependent on the
PF density through imposing the constraint Eq. (42). To that
end we use the previously determined for the compression
modulus k = 0.3 pNμm−1 and unloaded growth speed v+ =
0.018 µms−1, and take the unloaded catastrophe rate r+(cb =
0) = 0.0078 s−1, which matches the value of ru = 0.01 s−1,
i.e., 〈τc〉(cb = 0) = 100 s, used in model MP. Using these
values, we then solve Eq. (42) for a range of cb values. We
show the results after translating the density to a number of

FIG. 13. Longitudinal (red) and transverse (blue) components of
the average force on the MTOC, when displaced to the left of the
origin along the x axis, by an amount δx in two geometries, showing
that there is a net restoring force to the geometrical center.

FIG. 14. Force-free catastrophe rate r+ (in s−1) as a function
of the number of polarity factors cb per simulation bin at the cell
boundary.

PFs per length bin on the surface in the simulation for the
case c∗ = 60 in Fig. 14.

APPENDIX E: TOY MODEL
OF THE POLARIZATION MECHANISM

1. Assumptions

We develop a simple and analytically tractable toy model
to aid the analysis of the results of the two models that
involve the polarization mechanism, Model MP (Sec. III C)
and Model MSP (Sec. III D). The first simplifying assump-
tion is to focus exclusively on the competition between the
shorter transverse axis, with length scale a and the longer
longitudinal axis with length scale b > a. Instead of consid-
ering isotropically nucleated MTs, we therefore consider a
discrete direction model where MTs are nucleated only in the
directions ϕ = 0 and ϕ = π , corresponding to the longitudi-
nal direction, and ϕ = π/2 and ϕ = 3π/2, corresponding to
the transverse direction. The second assumption is that if the
diffusion length of the PFs in the membrane, which is given
by λ = √

D/ku is small compared to a quarter of the circum-
ference of the cell, we can neglect the diffusional cross-talk
between PFs delivered at different sites because the membrane
is closed. MTs in each of the discrete direction thus deliver
their PFs to their own unbounded membrane, from which
they can subsequently unbind to return to the cell interior.
In case the sliding mechanism is also present, we assume
that all MTs rapidly slide to the poles, so that effectively we
only need to consider MTs nucleated in the two longitudinal
directions. Finally, instead of fixing the total number of MTs,
we specify only their rate of nucleation, which we take to be
isotropic, i.e., corresponding to the homogeneous nucleation
scenario. Although not essential, this latter assumption greatly
simplifies the analysis. This toy model is illustrated in Fig. 15.

2. General formulation

In general our toy model can have N different dis-
crete directions labeled by an index i = 0, 1, . . . , N − 1,
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unbinding

delivery

binding

FIG. 15. Schematic of the toy model for the polarization mech-
anism. Microtubules (blue lines) are nucleated in four directions
(k = 0, 1, 2, 3) towards the edges of a square. Polarity factors (red
circles) bind to the microtubules and are delivered by them to the
four boundaries, where they diffuse until they unbind back to the
interior.

corresponding to the spatial directions ϕ = 2π
n i. The distance

from the central MTOC to the boundary in the different di-
rections is given by di. Assuming we are in steady state, the
relevant variables are the MT length densities m±

i (l ), the num-
ber of membrane-bound MTs Mb

i and the local PFdensities
cb

i (si ), where si is a signed distance coordinate in the mem-
brane connected to the direction i. The unbinding rate of MTs
is given by Eq. (40) evaluated in cb

i (si = 0) . The nucleation
rate of new MTs is given by rn per direction. Denoting the
value of the MT unbinding rate by ru,i, which we note is
a quantity that needs to be self-consistently determined, the
solutions of the steady-state MT densities is simply given by
(cf. Appendix A and Sec. III A)

m+
i (l ) = rn

v+
e−l/l̄ , (E1)

m−
i (l ) = rn

v−
e−l/l̄ , (E2)

Mb
i = v+

ru,i
m+

i (di ) = rn

ru,i
e−di/l̄ ≡ rn

ru,i
Fi. (E3)

A key quantity in our model is the total length of MTs in the
direction i

Li =
∫ di

0
dl l[m+

i (l ) + m−
i (l )] + diM

b
i , (E4)

= rnt̄[l̄ (1 − Fi ) − diFi] + diM
b
i , (E5)

and its total L = ∑
i Li.

Turning to the PF dynamics, we first define the total num-
ber of bound PFs per direction

Cb
i =

∫ ∞

−∞
dsi cb

i (si ), (E6)

and the total number of bound PFs Cb = ∑
i Cb

i . The density
per unit length of MT-bound PFs in the cell the follows from
Eq. (39)

cm = 1

L + L 1
2

(C − Cb). (E7)

The net flux of PFs reaching the membrane in the direction i
is thus

Kb
i = vmcmMb

i . (E8)

In steady state, the PF density in this membrane satisfies

D
d2

ds2
cb

i (s) − kucb
i (s) + Kb

i δ(s) = 0, (E9)

with solution

cb
i (s) = 1

2

Kb
i

�ku
e−|s|/�, (E10)

where the free diffusion length is given by � = √
D/ku.

The total number of PFs in this membrane is then simply
Cb

i = Kb
i /ku and cb

i (0) = 1
2Cb

i /�.
We now nondimensionalize by choosing r−1

n as unit of
time and l̄ as unit of length, introducing � = L/l̄ , δi = di/l̄ ,
τ̄ = t̄ rn. We also introduce C∗, the cross-over number of PFs
through c∗ = 1

2C∗/�, and use this as a unit of measurement
for PFs, introducing �i = Cb

i /C∗ = cb
i (0)/c∗. This allows us

to write

Kb
i

kuC∗
= ω

1

�({� j}) + �∗

(
� −

∑
� j

)
Mb

i (�i ) = �i,

(E11)
where ω = vm/(ku l̄ ). We note that

� j (� j ) = τ̄ [(1 − Fi ) − δiFi] + δiM
b
i (� j ), (E12)

so that

�({� j}) = τ̄

(∑
i

(1 − Fi ) − δiFi

)
+

∑
i

δiM
b
i (�i ). (E13)

Introducing �0 = τ̄ [
∑

i(1 − Fi ) − δiFi] + �∗ we can rewrite
(E11) as

ω
Mb

i (�i )

�0 + ∑
j δ jMb

j (� j )
= �i

� − ∑
� j

. (E14)

Multiplying by δi and summing allows us to solve for

∑
j

δ jM
b
j (� j ) = �0

∑
j δ j� j

ω� − ∑
j (ω + δ j )� j

. (E15)

This in turn allows us to solve for

Mb
i (�i) = �0

�i

ω� − ∑
j (ω + δ j )� j

. (E16)

Next, in Eq. (40) we introduce ρ = ru(0)/ru(∞) > 1 and
write

ru
[
cb

i (0)
] = ru(∞)

ρ + �
p
i

1 + �
p
i

≡ ru(∞)R(�i ). (E17)

This allows us to compactly formulate the remaining bound-
ary conditions (E3)

rn

ru(∞)
Fi = R(�i )M

b
i (�i ). (E18)

Using this to eliminate Mb
i (�i ) from (E16), then yields our

final equations

Ui = R(�i)�i

ω� − ∑
j (ω + δ j )� j

, (E19)
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where the constants on the left-hand side are given by

Ui = rn

�0ru(∞)
Fi > 0. (E20)

For the further analysis it is useful to define the denomina-
tor of (E19) as a separate function W ({� j}) = ω� − ∑

j (ω +
δ j )� j and note that is satisfies the bounds 0 < W ({� j}) � ω�

and is monotonically decreasing in each of its variables in
the physical domain � j � 0. The function in the numera-
tor R(�)� � 0 has an inflexion point and two local extrema
whenever ρ > [(p + 1)/(p − 1)]2 and diverges as � → ∞,

so its inverse can be multivalued over a finite range.

3. Models TOY-MP and TOY-MSP

In the case intended to mimic Model MP, we have four
discrete directions, corresponding to the two longitudinal
orientations ϕ = 0 and ϕ = π and the two transverse direc-
tions ϕ = π/2 and ϕ = 3π/2. We define β = δ0 = δ2 = b/l̄
and α = δ1 = δ3 = a/l̄ , Uβ = U0 = U2 and Uα = U1 = U3,

noting that Uβ < Uα as b > a, and W (�0 + �2, �1 + �3) =
ω� − (ω + β )(�0 + �2) − (ω + α)(�1 + �3). We can then
write the self-consistency equations (E19) in this case as

W (�0 + �2, �1 + �3)Uβ = R(�0)�0 = R(�2)�2, (E21)

W (�0 + �2, �1 + �3)Uα = R(�1)�1 = R(�3)�3. (E22)

WLOG, we can also require �0 � �2 and �1 � �3 as this sim-
ply divides out the multiplicity due to the trivial interchange
symmetries �0 ↔ �2 and �1 ↔ �3.

This allows the following systematic algorithm to find all
possible solutions:

Step 1: Choose a w ∈ [0, ω�]. Solve

R(�0)�0 = R(�2)�2 = wUβ, (E23)

R(�1)�1 = R(�3)�3 = wUα. (E24)

As R(�)� is a universal function, which is either mono-
tonic, or has two local extrema, and values on [0,∞)
these two equations always have solutions, which can
in principle be of the types (i) �0 = �2 and �1 =
�3, the default biaxial reference solution, (ii) �0 = �2

and �1 > �3, which we call transversely polarized, (iii)
�0 > �2 and �1 = �3, which we call longitudinally po-
larized, and finally (iv) �0 > �2 and �1 > �3, which we
would call doubly polarized. Note that in case of multiple
solutions of R(�)� = constant, we discard the unstable
middle solution for which R′(�)� + R(�) < 0.

Step 2: Next we check if W (�1 + �3, �2 + �3) =
w. If yes, a self-consistent solution is found,
if not, choose another w. Since the solutions
[�1(w), �3(w), �2(w), �4(w)] are readily determined,
this procedure boils down to the one-dimensional
self-consistency problem

w = W [�1(w) + �3(w), �2(w) + �3(w)] (E25)

on w ∈ [0, ω�], which is guaranteed to have one solution
(the default solution (i) above), but may have more.

As order parameters we take the discrete analogs of the
order parameters defined in Sec. II A:

S1,x =
∑3

i=0 Li cos π
2 i∑3

i=0 Li

= L0 − L2

L0 + L1 + L2 + L3
, (E26)

S1,y =
∑3

i=0 Li sin π
2 i∑3

i=0 Li

= L1 − L3

L0 + L1 + L2 + L3
, (E27)

S2 =
∑3

i=0 Li cos π i∑3
i=0 Li

= (L0 + L2) − (L1 + L3)

L0 + L1 + L2 + L3
. (E28)

In the case intended to mimic Model MSP we have only
two directions, corresponding to the two longitudinal ori-
entations ϕ = 0 and ϕ = π . In this case we have W (�0 +
�2) = ω� − (ω + β )(�0 + �2), with � = ω�/(ω + β ) and
V = (ω + β )Uβ , and the self-consistency equations become

W (�0 + �2)Uβ = R(�0)�0 = R(�2)�2. (E29)

The only order parameter relevant to this case is S1,x, as
S1,y = 0 and S2 = 1 by construction.

From symmetry it is clear that (E29) admits a biaxial “ref-
erence” solution of the form �(0) = �0 = �2 satisfying

W (2�(0) )V = R(�(0) )�(0). (E30)

Although we would like to study the solutions of this equa-
tion as a function of �, which through its linear dependence
on � is a proxy for the total amount of PFs in the system, it is
actually simpler to study the inverse problem, and consider

�(�(0) ) = 1

V
[2V �(0) + R(�(0) )�(0)]. (E31)

Taking the derivative with respect to �(0), here denoted by a
prime, we find

�′(�(0) ) = 1

V
{2V + [R(�(0) )�(0)]′}. (E32)

As V > 0 this shows that �(0)(�) can be multivalued only if
R(�(0) )�(0) is nonmonotonic.

[1] K. Barlan and V. I. Gelfand, Cold Spring Harbor Persp. Biol. 9,
a025817 (2017).

[2] J. Wu and A. Akhmanova, Annu. Rev. Cell Dev. Biol. 33, 51
(2017).

[3] D. Oriola, D. J. Needleman, and J. Brugués, Annu. Rev.
Biophys. 47, 655 (2018).

[4] P. T. Tran, L. Marsh, V. Doye, S. Inoué, and F. Chang, J. Cell
Biol. 153, 397 (2001).

[5] L. Laan, N. Pavin, J. Husson, G. Romet-Lemonne,
M. van Duijn, M. P. López, R. D. Vale, F. Jülicher,
S. L. Reck-Peterson, and M. Dogterom, Cell 148, 502
(2012).

[6] L. Laan, S. Roth, and M. Dogterom, Cell Cycle 11, 3750
(2012).

[7] J. L. Meaders, S. N. de Matos, and D. R. Burgess, Cell Rep. 33,
108213 (2020).

054408-16

https://doi.org/10.1101/cshperspect.a025817
https://doi.org/10.1146/annurev-cellbio-100616-060615
https://doi.org/10.1146/annurev-biophys-060414-034107
https://doi.org/10.1083/jcb.153.2.397
https://doi.org/10.1016/j.cell.2012.01.007
https://doi.org/10.4161/cc.21753
https://doi.org/10.1016/j.celrep.2020.108213


MICROTUBULE ORGANIZATION AND CELL GEOMETRY PHYSICAL REVIEW E 106, 054408 (2022)

[8] A. J. Jimenez, A. Schaeffer, C. De Pascalis, G. Letort, B.
Vianay, M. Bornens, M. Piel, L. Blanchoin, and M. Théry, Curr.
Biol. 31, 1206 (2021).

[9] N. Pavin, L. Laan, R. Ma, M. Dogterom, and F. Jülicher, New
J. Phys. 14, 105025 (2012).

[10] R. Ma, L. Laan, M. Dogterom, N. Pavin, and F. Jülicher, New
J. Phys. 16, 013018 (2014).

[11] T. Lechler and M. Mapelli, Nat. Rev. Mol. Cell Biol. 22, 691
(2021).

[12] B. J. Thompson, Development 140, 13 (2013).
[13] J. Mata and P. Nurse, Cell 89, 939 (1997).
[14] D. Brunner and P. Nurse, Cell 102, 695 (2000).
[15] P. Recouvreux, T. R. Sokolowski, A. Grammoustianou, P. R.

ten Wolde, and M. Dogterom, Proc. Natl. Acad. Sci. USA 113,
1811 (2016).

[16] P. Foteinopoulos and B. M. Mulder, PLoS ONE 12, e0184706
(2017).

[17] J. Teapal, L. J. Schuitman, B. M. Mulder, and M. E. Janson,
Eur. Phys. J. Plus 136, 858 (2021).

[18] M. Dogterom and S. Leibler, Phys. Rev. Lett. 70, 1347
(1993).

[19] X. Su, H. Arellano-Santoyo, D. Portran, J. Gaillard, M. Vantard,
M. Thery, and D. Pellman, Nat. Cell. Biol. 15, 948 (2013).

[20] J. Vogel, B. Drapkin, J. Oomen, D. Beach, K. Bloom, and M.
Snyder, Dev. Cell 1, 621 (2001).

[21] M. Dogterom, J. W. J. Kerssemakers, G. Romet-Lemonne, and
M. E. Janson, Curr. Opin. Cell Biol. 17, 67 (2005).

[22] M. E. Janson, M. E. de Dood, and M. Dogterom, J. Cell Biol.
161, 1029 (2003).

[23] C. S. Peskin, G. M. Odell, and G. F. Oster, Biophys. J. 65, 316
(1993).

[24] M. Dogterom and B. Yurke, Science 278, 856 (1997).
[25] D. Foethke, T. Makushok, D. Brunner, and F. J. Nédélec, Mol.

Syst. Biol. 5, 241 (2009).
[26] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series,

and Products, 7th ed., edited by A. Jeffrey and D. Zwillinger
(Academic Press, San Diego, 2007).

[27] A. Jilkine and L. Edelstein-Keshet, PLoS Comput. Biol. 7,
e1001121 (2011).

[28] A. Akhmanova and L. C. Kapitein, Nat. Rev. Mol. Cell Biol.
23, 541 (2022).

[29] L. C. Kapitein and C. C. Hoogenraad, Neuron 87, 492 (2015).

054408-17

https://doi.org/10.1016/j.cub.2021.01.002
https://doi.org/10.1088/1367-2630/14/10/105025
https://doi.org/10.1088/1367-2630/16/1/013018
https://doi.org/10.1038/s41580-021-00384-4
https://doi.org/10.1242/dev.083634
https://doi.org/10.1016/S0092-8674(00)80279-2
https://doi.org/10.1016/S0092-8674(00)00091-X
https://doi.org/10.1073/pnas.1419248113
https://doi.org/10.1371/journal.pone.0184706
https://doi.org/10.1140/epjp/s13360-021-01756-7
https://doi.org/10.1103/PhysRevLett.70.1347
https://doi.org/10.1038/ncb2801
https://doi.org/10.1016/S1534-5807(01)00073-9
https://doi.org/10.1016/j.ceb.2004.12.011
https://doi.org/10.1083/jcb.200301147
https://doi.org/10.1016/S0006-3495(93)81035-X
https://doi.org/10.1126/science.278.5339.856
https://doi.org/10.1038/msb.2008.76
https://doi.org/10.1371/journal.pcbi.1001121
https://doi.org/10.1038/s41580-022-00473-y
https://doi.org/10.1016/j.neuron.2015.05.046

