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Effect of nonlocal grazing on dry-land vegetation dynamics
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Dry-land ecosystems have become a matter of grave concern, due to the growing threat of land degradation
and bioproductivity loss. Self-organized vegetation patterns are a remarkable characteristic of these ecosystems;
apart from being visually captivating, patterns modulate the system response to increasing environmental stress.
Empirical studies hinted that herbivory is one the key regulatory mechanisms behind pattern formation and
overall ecosystem functioning. However, most of the mathematical models have taken a mean-field strategy to
grazing; foraging has been considered to be independent of spatial distribution of vegetation. To this end, an
extended version of the celebrated plant-water model due to Klausmeier has been taken as the base here. To
encompass the effect of heterogeneous vegetation distribution on foraging intensity and subsequent impact on
entire ecosystem, grazing is considered here to depend on spatially weighted average vegetation density instead
of density at a particular point. Moreover, varying influence of vegetation at any location over gazing elsewhere
is incorporated by choosing a suitable averaging function. A comprehensive analysis demonstrates that inclusion
of spatial nonlocality alters the understanding of system dynamics significantly. The grazing ecosystem is found
to be more resilient to increasing aridity than it was anticipated to be in earlier studies on nonlocal grazing.
The system response to rising environmental pressure is also observed to vary depending on the grazer. Obtained
results also suggest the possibility of multistability due to the history dependence of the system response. Overall,
this work indicates that the spatial heterogeneity in grazing intensity has a decisive role to play in the functioning
of water-limited ecosystems.
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I. INTRODUCTION

Dry lands, consisting of arid and semiarid regions and the
dry subtropics, make up roughly 41% of the world’s land mass
and support approximately 38% of the human population [1].
Almost 10%–20% of these areas face acute land degradation,
and unfortunately this percentage is expected to grow due to
global warming [1,2]. Dry-land ecosystems have become a
key priority for ecologists due to rising concerns about deser-
tification and biodiversity loss, and the corresponding effect
on ecosystem functioning. Plants and vegetation constitute the
underlying energy base of all trophic levels and thus play a
crucial role in keeping these water-limited ecosystems afloat.

Varying water stress often results in triggering self-
organization of spatial vegetation patterns [3]. Since the
pioneering work [4] in 1950, a substantial number of stud-
ies have documented large-scale spatial vegetation patterns
in dry lands via aerial photographs and satellite images
[5–7]. Apart from regular labyrinthine grass patterns in arid
or semiarid landscapes, irregular patterns like groves within
grasslands or spots of uncovered ground within a grass ma-
trix have been observed worldwide [8–14]. These patterns
are considered to be the key to understand the processes
responsible for desertification, and these understandings can
be utilized to combat the catastrophic effect of climate change
[15,16]. The emerging characteristics of the self-organization
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mechanisms govern the system engineering at ecosystem lev-
els like primary or secondary production, flexibility against
increasing environmental pressure, and stability [17,18]. Due
to the vast spatial and temporal scale of formation of these pat-
terns, mathematical models have become the primary tool in
studying vegetation dynamics (see Ref. [19] for review). Sev-
eral researchers attributed this self-organization of patterns
to different processes: positive feedback between vegetation
biomass and water infiltration [20], competition among vege-
tation patches for ground water due to uptake by roots [3,21],
nonlocal water uptake by laterally extended roots and en-
hancement of root systems with biomass growth [22,23], or
plant-plant interaction only [24,25]. To incorporate the disper-
sal of plants and water movement, several models based on
partial differential equations have been proposed [20,26,27].
One such model that has been a subject of several extensions
in last two decades is the Klausmeier model [28] (which will
be detailed in next section) due to its lucidity and funda-
mental nature [29–33]. This plant-water model is basically
a reaction-diffusion-advection system in which the water-
uptake feedback loop and spatial displacement of plant water
have been taken care of in a minimalistic approach.

Foraging by herbivores has long been identified as one of
the principle influencers on the physiognomy, structure, and
functioning of vegetation, ranging from landscape scale to
a single plant systems [34,35]. Grazing ecosystems supply
large amounts of consumable protein; however, too many
anthropogenic foraging activities makes ecosystems increas-
ingly vulnerable to stressful environments. Several studies
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[36,37] have emphasized that vegetation patterns and foraging
by herbivores are interlinked and are sensitive to degradation
under extreme environmental events, like droughts. However,
most of the prevailing spatial models on dry-land ecosys-
tems have considered the loss of vegetation due to herbivore
grazing in a marginalized way; grazing has been thought to
be proportional to the vegetation density and modeled by
adding a constant term to the plant senescence. But empirical
studies have revealed that foraging by herbivores depends on
several factors like spatial distribution of vegetation, quality
of forage, and behavior of the grazer [38]. A greater portion
of grazers gets attracted by places with higher vegetation
concentration, thereby resulting in inhomogeneous grazing
pressure. Recently, in an elegant approach, Siero et al. [39,40]
have derived a grazing term that incorporates the underlying
effect of spatially heterogeneous vegetation distribution over
foraging and implemented it in the generic plant-water model
by Klausmeier [28].

Siero et al. [39,40] have used the mean-density-dependent
response term to showcase the dependence of grazing pres-
sure at any position on vegetation elsewhere. This approach
intrinsically presumes herbivory at any particular location to
depend equally on vegetation everywhere. However, in real
scenarios the distance between grazer and vegetation also
plays a decisive role [39,41,42]. Navigation to the forage, i.e.,
detecting and traveling to the food item, depends on the char-
acteristics of the grazer, like sight and olfactory cues [41,43].
Hence, the grazing strategy of a herbivore will be more de-
pendent on availability of vegetation within a certain range,
rather than the whole domain. To this end, in this current
work, the influence of vegetation over grazing at any particular
location is considered to vary with the intermediate distance.
This work primarily focuses on addressing two interconnected
questions: (1) What impact does this change bring to the self-
organization of patterns? (2) Does it have any effect on the
system-response towards increasing aridity? Here the mean
density is replaced by a spatially weighted average density, us-
ing a convolution integral with a normalized weight function,
that estimates the utilization of space for grazing as a function
of the distance. Moreover, a generalized nature is maintained
throughout the analysis, so that further modification can be
made by using data-driven weight functions.

In Sec. II A, the working model is proposed after describ-
ing the Klausmeier model in detail, and then a thorough
mathematical analysis is carried out in Sec. II B 2. In Sec. III
numerical simulations are carried out to evaluate the resilience
of the system toward varying environmental pressure. In a
parsimonious approach, two particular types of weight func-
tions are chosen here for having a comparative understanding
and differentiating the obtained results from earlier studies
[39,40]. Finally, all the findings are ecologically interpreted
in Sec. IV, and a few potential extensions to this model are
suggested.

II. MODEL DESCRIPTION AND ANALYSES

A. Model description

This section first reviews the original model introduced by
Klausmeier, which is then extended by incorporating nonlocal

grazing to the equation for vegetation. Then Sec. II B presents
the systematic mathematical analysis of the modified system.

For modeling dry-land vegetation patterns on sloped ter-
rain, Klausmeier [28] proposed a reaction-diffusion-advection
system:

∂W

∂T
= A − LW − RW N2 + V

∂W

∂X1
,

(1)
∂N

∂T
= RJW N2 − MN + D∇2N,

where ∇2 = ∂2

∂X 2
1

+ ∂2

∂X 2
2

is the Laplacian operator. W (T ; �X )

and N (T ; �X ) are the density of surface water and plant
biomass, respectively, at location (T ; �X ) ∈ (T > 0) × R2.
The first equation of system (1) depicts the dynamics of water;
here the source term A is the uniform rate at which water is
added via precipitation. The term −LW accounts for the water
loss because of evaporation, and the advective term V ∂W

∂X1
symbolizes the downhill movement of water along the sloping
ground. The term RW N2 corresponds to the water uptake
by the plant roots, here the appearance of nonlinearity is a
consequence of the positive feedback between plant growth
and water seepage. The second equation presents vegetation
dynamics, where RJW N2 presents the plant growth; J being
the yield of vegetation biomass per unit consumption of water.
The term −MN specifies the loss of vegetation due to natural
death and grazing of plants by herbivores. Lastly, the diffusion
D∇2N is for modeling the spatial spread of vegetation by
means of seed dispersal or clonal growth.

While considering banded vegetation on a slope, the
Klausmeier model (1) fails to produce stationary patterns in
flat land. To this end several researchers [19,44,45] have omit-
ted the advective term (i.e., V = 0). Further they had added a
soil water diffusion term E∇2W to the first equation of system
(1) to encapsulate the movement of surface water due to the
spatial heterogeneity in infiltration rate [46]:

∂W

∂T
= A − LW − RW N2 + E∇2W,

∂N

∂T
= RJW N2 − MN + D∇2N. (2)

In model system (1) and (2), senescence of vegetation
biomass is assumed to be independent of the spatial dis-
tribution of vegetation, and grazing by herbivores has been
considered as included in this linear term MN . But empir-
ical studies [38,47] on semiarid region reveals that grazing
depends on spatial distribution of vegetation; herbivores get
attracted more to superior forage. This leads to spatially het-
erogeneous grazing pressure unlike system (2) where it is
constant. To incorporate this phenomenon, Siero et al. [39,40]
considered model (2) in one spatial dimension and modified
it by adding a density-dependent response function G̃. More-
over, the grazing pressure at any spatial point depends on
vegetation density not only at that point but also elsewhere.
Taking this nonlocality into account they have taken G̃ to be a
function of mean vegetation density Ñ , where

Ñ := 1

|�|
∫

�

N (z) dz, (3)
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and |�| denotes the length of the spatial domain � ∈ R under
consideration. Three different types of grazing functions have
been used. The first type coincides with the existing notion
of linear mortality in the Klausmeier model, i.e., grazing
pressure is considered to be constant: G̃ = M̃loc. Type II is
for sustained grazing (e.g., livestock farming), and foraging
is optional in this case as food shortages will be reimbursed
by supplementary food, i.e., demographic response is kept
at a constant level all the time. Considering that herbivores
maintain a saturating functional response (Holling type II),
the grazing function is given by G̃ = M̃sus/(K̃sus + Ñ ), where
K̃sus is the half persistence level. The third type is for a natural
scenario where grazing is obligatory for survival, and only
a selection of grazers will be able to survive by acquiring
a sufficient amount of food and the rest will disappear. Ap-
proximating this demographic response by a sigmoid function
(Holling type III), the resulting grazing pressure becomes
G̃ = M̃natÑ/(K̃2

nat + Ñ2). The resulting model is given by

∂W

∂T
= A − LW − RW N2 + E∇2W,

(4)
∂N

∂T
= RJW N2 − [M + G̃(Ñ )]N + D∇2N,

where ∇2 = ∂2

∂X 2 is the one-dimensional Laplacian opera-
tor. One noteworthy fact is that the nonlocal term appears
nonlinearly in the system. For ease of mathematical anal-
ysis, system (4) is nondimensionalized with the following
substitutions [39,40]:

w = W J

√
R

L
, n = N

√
R

L
, x = X

√
L

D
, t = T L,

e = E

D
, a = AJ

L

√
R

L
, m0 = M

L
, mloc = M̃loc

L
,

msus/nat = M̃sus/nat

L

√
R

L
, Ksus/nat =

√
R

L
K̃sus/nat.

The dimensionless model is given by

∂w

∂t
= a − w − wn2 + e

∂2w

∂x2
,

(5)
∂n

∂t
= wn2 − [m0 + G(ñ)]n + ∂2n

∂x2
,

where

G(ñ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mloc for local grazing (type I)
msus

Ksus + ñ
for sustained grazing (type II)

mnatñ

K2
nat + ñ2

for natural grazing (type III).

(6)

In this study, system (5)–(6) is taken as base model. One in-
herent assumption in this model is that grazing by herbivores
at any particular spatial point depends equally on vegetation
densities at all other points. But ecological studies on brows-
ing and grazing have showed that the rate of consumption of
vegetation biomass depends on the perceptual abilities (e.g.,
sight, olfaction) of the animal [41,43]. When the observational
area is vast (which is the case for most of the empirical studies
on dry-land vegetation dynamics), the grazing strategy of a

herbivore will be more dependent on availability of vegetation
nearby rather than the whole domain. To capture this ecolog-
ical fact more realistically, the definition of mean vegetation
density (3) is modified:

ñ(x, t ) =
∫

ρ(|x − x′|)n(x′, t ) dx′, (7)

where ρ(x) is a normalized kernel function [i.e.,
∫

ρ(|y|) dy =
1] accounting for the weighted mean vegetation density. The
use of absolute value |x − x′| in definition (7) ensures spatial
isotropy of the kernel function. In a parsimonious represen-
tation, here it is assumed that the influence of vegetation
density at any position over the grazing decreases with the
distance from the grazer; that is why the weight function ρ

is considered to be a monotonically decreasing function of
distance in this study. In the following Sec. II B, first the model
(5)–(7) will be analyzed mathematically in a general setting,
and then a Gaussian distribution function will be used as a
particular case for numerical simulation. Moreover, periodic
boundary conditions will be taken to lessen the effect of the
boundary and to mimic an infinite domain.

B. Model analysis

1. Homogeneous steady states

This subsection summarizes the existence of homoge-
neous steady states (hereafter HSSs) of system (5)–(6). For
a homogeneous steady state, ∂

∂t w(t, x) = ∂
∂t n(t, x) = 0 and

∂2

∂x2 w(t, x) = ∂2

∂x2 n(t, x) = 0. Using these in system (5)–(6),

a − w − wn2 = 0, (8a)

n[wn − m0 − G(ñ)] = 0. (8b)

Hence there are two possibilities for HSS: a bare state (B)
with w = a, n = 0 everywhere and homogeneously vegetated
state (V ) with w = a

1+n2∗
, n = n∗ > 0, where n∗ satisfies

wn∗ − m0 − G(ñ∗) = 0. (9)

It is noteworthy that there can be more than one homoge-
neously vegetated state (V ) depending on parameter values
and type of grazing function. The main focus of this article is
on the sustained and natural grazing type, as the local grazing
case has already been studied extensively [48].

Local grazing. As G(ñ) = mloc is constant in local grazing,
it is basically the same as the preexisting models that consider
linear mortality. Apart from the bare state (B), there also exist
two homogeneous steady states (wS, nS ) and (wN , nN ), when
a > 2(m0 + mloc) [49],

wS = 2(m0 + mloc)2

a −
√

a2 − 4(m0 + mloc)2
,

nS = a −
√

a2 − 4(m0 + mloc)2

2(m0 + mloc)
,

wN = 2(m0 + mloc)2

a +
√

a2 − 4(m0 + mloc)2
,

nN = a +
√

a2 − 4(m0 + mloc)2

2(m0 + mloc)
.
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FIG. 1. Existence of HSSs and their stability against spatially homogeneous perturbation: dot-dashed blue line is the bare state B (always
stable); solid black line and dashed red line are the stable and unstable branch of V , respectively. The asterisk denotes the critical transition
from one state to another, known as the tipping point. Parameters are the same as in Ref. [40]: e = 500, m0 = 0.225, mloc = 0.225, msus =
mnat = 1.5, Ksus = Knat = 0.3. (a) Local grazing, (b) sustained grazing, (c) natural grazing.

These two HSSs originate from a saddle-node bifurcation at
a = 2(m0 + mloc). Linear stability analysis against homoge-
neous perturbation [50] reveals that the bare state B is always
stable (for m0 + mloc > 0, which is always true). Moreover,
(wS, nS ) is unstable (actually saddle) and (wN , nN ) is a
node [45]. But for ecologically meaningful parameter values
for semiarid environment, (wN , nN ) is stable to homoge-
neous perturbation. The location and stability of steady states
against spatially uniform perturbation are shown in Fig. 1(a).
Furthermore, the linear stability analysis against spatially
heterogeneous perturbation [45] shows that the steady state
(wN , nN ) can lose its stability through Turing bifurcation,
although the bare state B always remains stable.

Sustained grazing. In this case, Eq. (9) takes the form

wn − m0 − msus

Ksus + ñ
= 0. (10)

Now for a uniformly vegetated state V , using the normaliza-
tion condition of the kernel, we have

ñ =
∫

ρ(|x − x′|)n(x′, t ) dx′ = n∗
∫

ρ(|x − x′|) dx′ = n∗.

(11)

Substituting w = a
1+n2∗

, n = n∗ into Eq. (10) and using (11), a
cubic equation for n∗ is obtained:

m0n3
∗ + (m0Ksus − a + msus)n2

∗
+ (m0 − aKsus)n∗ + m0Ksus + msus = 0. (12)

Only the positive solutions of (12) correspond to the phys-
ically admissible V steady states. As all the parameters
are nonnegative, the number of sign changes in the se-
quence of this cubic polynomial’s coefficients is either zero
or two. Moreover, there is no sign change in (12) when
a < min(m0Ksus + msus,

m0
Ksus

), hence Descartes’ rule of signs
implies that Eq. (12) will have no positive solution in that

case. Therefore, for a sufficiently small level of precipitation,
the bare state B will be the only HSS. Numerical simulation
shows that for a greater than some threshold value, there ac-
tually exist two branches of homogeneously vegetated steady
state V [see Fig. 1(b)].

Natural grazing. Proceeding in a similar fashion like
sustained grazing, a quartic polynomial for n∗ is obtained:

m0n4
∗ + (mnat − a)n3

∗ + (
K2

nat + 1
)
m0n2

∗

+ (
mnat − aK2

nat

)
n + m0K2

nat = 0. (13)

Depending on model parameters, this quartic equation may
or may not have positive solution. If the model parame-
ters are such that a < min(mnat,

mnat

K2
nat

), then the sequence of
coefficients of the polynomial (13) will have no sign change;

i.e., there will be no uniformly vegetated state V for a low
precipitation level. Numerical methods are used for finding
roots of this quartic equation which show that, for the pa-
rameter choice [40] (which was based on earlier studies and
empirical data), Eq. (13) has two positive zeros when a val-
ues are greater than some critical threshold. Consequently
for sufficiently large values of a, there will be two uni-
formly vegetated states V apart from the bare state B [see
Fig. 1(c)].

2. Stability analysis

Linear stability analysis is a broadly utilized tool to acquire
the temporal evolution of small perturbations to the homoge-
neous steady states of the system. When a given perturbation
gets amplified over time, the steady state will be unstable;
but if the perturbation decays with time, taking the system
back to the homogeneous stationary state, then that steady
state will be stable. For notational convenience, let (weq, neq )
be a homogeneous stationary state (it can be bare state B or
vegetated state V ). If a small perturbation is given to the HSS
(weq, neq ), the resulting density will be

[
w(x, t )
n(x, t )

]
=

[
weq

neq

]
+

[
ε1

ε2

]
ψ (x, t ), (14)

where |ε1| � 1 and |ε2| � 1. Now plugging Eq. (14) into
Eq. (7) and using the normalization condition of the kernel
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function,

ñ(x, t ) =
∫

ρ(|x − x′|)[neq + ε2ψ (x′, t )]dx′

= neq + ε2

∫
ρ(|x − x′|)ψ (x′, t )dx′,

so G(ñ) = G

[
neq + ε2

∫
ρ(|x − x′|)ψ (x′, t )dx′

]
.

As the perturbation considered here is very small, the function
G can be expanded using a Taylor series:

G(ñ) = G(neq) + ε2G′(neq)
∫

ρ(|x − x′|)ψ (x′, t )dx′

+ O
(
ε2

2

)
, (15)

where G′(neq) = ( dG
dñ )ñ=neq

.
Now substituting (14) into the first equation of system (5)

and neglecting the higher order terms in ε1 and ε2 we have

ε1
∂ψ

∂t
= ε1e

∂2ψ

∂x2
− ε1

(
1 + n2

eq

)
ψ − ε22weqneqψ

+ (
a − weq − weqn2

eq

)
. (16)

As (weq, neq ) is a homogeneous steady state of system (5), we
have a − weq − weqn2

eq = 0. Hence (16) becomes

ε1
∂ψ

∂t
= ε1e

∂2ψ

∂x2
− ε1

(
1 + n2

eq

)
ψ − ε22weqneqψ. (17)

Substituting (14) and (15) into the second equation of system
(5) and neglecting higher order terms in ε1 and ε2 we have

ε2
∂ψ

∂t
= ε1n2

eqψ + ε2

{
∂2ψ

∂x2
+ [−m0 + 2weqneq − G(neq)]ψ

− neq G′(neq)
∫

ρ(|x − x′|)ψ (x′, t ) dx′
}

. (18)

Applying a Fourier transform to this linearized integro-
differential system (17)–(18) for the evolution of ψ , we have[

ε1

ε2

]
∂ψ̂ (k, t )

∂t
= L

[
ε1

ε2

]
ψ̂ (k, t ), (19)

where

L =
⎡
⎣−ek2 − 1 − n2

eq −2weqneq

n2
eq −k2 − m0 + 2weqneq − G(neq)

−neq G′(neq)ρ̂(k)

⎤
⎦.

(20)

k is known as a wave number, ψ̂ (k, t ) = ∫
exp(ikx)ψ (x, t ) dx

is the Fourier transform of the perturbation, and similarly ρ̂(k)
is the Fourier transform of the kernel.

Now, considering ψ̂ (k, t ) ∝ exp[λ(k)t], Eq. (19) becomes

(
L − λ(k)I

)[ε1

ε2

]
=

[
0
0

]
. (21)

The nonzero solution of the linear system (21) exists if and
only if

det(L − λ(k)I ) = 0,

which yields a quadratic equation in k2 for the linear
growth rate λ:

λ2 − trace(L)λ + det(L) = 0. (22)

Equation (22) is known as the dispersion relation. Linear
stability of the HSSs depends on the essential spectrum (which
consists of the two solutions λ1, λ2 of the dispersion rela-
tion) of the linearized system. (weq, neq ) is linearly stable if
Re(λ1) � 0 and Re(λ2) � 0, and unstable if either of these
two inequalities gets altered.

Here stability against both spatially uniform perturbation
and heterogeneous perturbation will be considered.

Spatially homogeneous perturbation. Note that the case of
spatially homogeneous perturbation corresponds to the wave
number k = 0. Then the linearized matrix (20) takes the form[−1 − n2

eq −2weqneq

n2
eq −m0 + 2weqneq − G(neq) − neq G′(neq)

]
.

(23)

If (weq, neq ) is taken to be the bare state B(a, 0), then (23)
becomes

LB =
[−1 0

0 −m0 − G(0)

]
. (24)

From (24), it can be concluded that dispersion relation (22)
for B will always have negative roots, i.e., the bare state B
is linearly stable against spatially homogeneous perturbations
for all three grazing types.

Now, if we consider (weq, neq ) to be the uniform vegetated
state V , then it will satisfy condition (9). So Eq. (23) takes the
form

LV =
[−1 − n2

eq −2weqneq

n2
eq weqneq − neq G′(neq)

]
. (25)

Unlike the case for a bare state, the sign of the real parts
of λ1, λ2 (which are actually the eigenvalues of matrix LV )
depends on the value of weq, neq and the grazing function G.
Using numerical schemes, the existence and linear stability
of these HSSs have been evaluated for all three types of
grazing (Fig. 1). Observe that up to a certain threshold value of
precipitation a, bare state B is the only HSS available. But at
some critical value of a, saddle-node bifurcation occurs and a
stable and an unstable (saddle) branch of uniformly vegetated
state V appear.

Spatially heterogeneous perturbation. Putting weq = a
and neq = 0 in matrix (20), it can be observed that the
linearized matrix for bare state B always has negative eigen-
values, i.e., bare state B is stable against heterogeneous
perturbations also.

So far, all the mathematical analysis have been carried out
without specifying the explicit form of kernel function. But,
from the linearized matrix (20), it is evident that the linear
stability of the state V against heterogeneous perturbation
depends on the Fourier transform of the kernel. So it directly
depends on the structure of the kernel function. Without loss
of generality, it is assumed that vegetations at any point have
lesser influence over the grazer the farther they are; and after
a certain cutoff distance, the influence is too insignificant to
consider. Keeping this assumption in mind, a cutoff Gaussian
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FIG. 2. Stability scenario against heterogeneous perturbation in (a, k) space. The colored solid lines represent the boundaries of the Turing
prediction region for a different choice of kernel: cutoff Gaussian ρ1 having σ = 1 (red solid line), σ = 8 (green solid line), σ = 15 (pink solid
line), and uniform kernel ρ2 (blue solid line). The dot-dashed line denotes the lower bound of precipitation below which the steady state V
ceases to exist. The dashed lines (colored in the aforesaid order) represent the mode of perturbations with largest growth rate. Parameters are
same as Fig. 1. (a) Sustained grazing, (b) natural grazing.

function [51] is used here:

ρ1(x) = 1

σ
√

π erf (w/σ )
exp

[
−

(
x2

σ 2

)]
[θ (w−x)θ (w + x)].

(26)

Here θ is the Heaviside function and w denotes the effective
radius of action. The shape of the kernel function is charac-
terized by its width (σ ) and the cutoff length (w). For further
analysis, the spatial domain is considered to be finite: [−L, L].
The cutoff distance w is always within the bound of domain
length (i.e., w � L). The term 1

σ
√

πerf (w/σ ) is the normalization
factor, which ensures that the integral of ρ1(x) over the whole
domain equals unity and it serves the purpose of being an
averaging function. For this choice of ρ, the Fourier transform
will be

ρ̂1(k) = exp[−(σk/2)2]

2erf (w/σ )

×
[

erf

(
w

σ
+ ikσ

2

)
+ erf

(
w

σ
− ikσ

2

)]
. (27)

To have a comparative understanding of the role of the kernel
function, a second choice of ρ is considered here:

ρ2(x) = 1

2w
[θ (w − x)θ (w + x)] (28)

and

ρ̂2(k) = sin(kw)

kw
. (29)

Without loss of generality, both the kernels will be consid-
ered with w = L for numerical simulations. In this scenario,
σ is the parameter which regulates the variation in depen-
dence of grazing intensity over vegetation elsewhere. One
noteworthy fact is, for w = L, the kernel choice ρ2 actually
corresponds to the uniform weight function, which is the case
in Refs. [39,40]. This enables us to compare results of this
study with the findings of Refs. [39,40].

Unlike the case for homogeneous perturbation (i.e. k = 0),
here the growth term λ will be dependent not only on the

model parameters, but also on the wave number k of the
perturbation. As the saddle branch of steady state (dashed red
part in Fig. 1) is already unstable against the homogeneous
perturbation, only the stable node (solid black part) will be
considered here. These stable nodes will get destabilized if
the real part of one or both of the solutions λ(k) of disper-
sion relation (22) becomes positive. With the variation in the
bifurcation parameter, instability can happen in mainly two
ways: Hopf instability [when trace(L) goes to positive from
being negative] and Turing instability [when det(L) becomes
negative from being positive]. Numerical simulation reveals
that, for a realistic choice of ecological parameters [28,40],
these stable nodes lose stability only by Turing bifurcation; no
Hopf instability is observed in this model. When a uniformly
vegetated state is driven out of the Turing stability region, a
spatiotemporal vegetation pattern appears.

In Fig. 2 values of a at which the homogeneously vege-
tated state (V ) becomes Turing unstable have been derived.
To have a comparative understanding, different structures of
kernel function are considered. The black dot-dashed line
marks the lower bound of precipitation for which a uniform
vegetated state (V ) persists. Inside the region in a-k space,
bounded by the colored solid curves and to the right of the
black chained line dot-dashed line, the amplitude of a given
perturbation grows with time, i.e., for every (a, k) pair from
this region, the dispersion equation (22) will have at least
one solution λ having a positive real part. This region is
termed a Turing prediction region, [45,52] as self-organized
spatiotemporal patterns can be expected in this region due to
Turing-type instability. Moreover, the most unstable mode of
the perturbation (i.e., the maximum of Re[λ(a, k)]) for each
a in Turing instability band is derived, and it is denoted by
dashed lines (colored in their respective order). When precip-
itation is getting reduced over time, there will be no pattern
formation initially; but at the maximum precipitation value
in the Turing prediction region (i.e., the intersection points
of dashed and solid curves of the same color) the HSS loses
stability via Turing bifurcation and spatiotemporal patterns
appear. These intersection points will be denoted by aT here-
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after. In other words, the stable branch (black solid curve)
in Fig. 1 will end at aT , long before reaching the tipping
point, which is basically the level of precipitation at which the
nonspatial version of the system shifts from vegetated state V
to the less desirable stable state B. It can also be seen from
Fig. 2 that the pattern formation starts at less arid situations
in case of natural grazing, compared to sustained grazing.
Model runs have confirmed that patterns generated at aT have
a wave number very close to the k value of these intersection
points. Usually inhomogeneous patterns of vegetation, gener-
ated when random perturbations are applied to the uniformly
vegetated state, are expected to have the mode close to the
wave number of the perturbation that have largest growth
rate. However, which of these wave numbers gets chosen at
a particular precipitation level is largely unpredictable, and
in Sec. III it will be seen that the history of environmental
variations has a significant role to play in this selection of
wave number.

III. RESPONSE TO CHANGING PRECIPITATION LEVEL

It is well known that the stability characteristics of a sys-
tem, acquired by linear stability analysis, are generally local in
nature, i.e., these predictions hold to be true in a close vicinity
to the steady state. Therefore in this section, to have a com-
plete understanding of the dynamical scenario, system (5)–(6)
will be studied with a gradually varying precipitation parame-
ter. Earlier studies [45,53] on dry land vegetation revealed that
rising environmental pressure (e.g., degrading precipitation
level) drives the system to a coarsening cascade of transitions
to patterns with increasing wavelengths, and for adequately
low precipitation level the system goes to a bare state. Here
a spatial domain � = [−250, 250] (resembling 1 km [39])
with periodic boundary conditions will be considered for nu-
merical simulation. All other parameter values (mentioned
in Fig. 1) are in accordance with previous studies [28]. Ini-
tially for every simulation, the precipitation level is kept at
a = 3(≈ 800 mm year−1), sufficient to support a uniformly
vegetated state. Then the precipitation level is set to decrease
at a constant rate da

dt = −10−4(≈ 0.1 mm year−1) until a = 0
is reached [40]. Moreover, to reduce numerical artifacts and
incorporate intrinsic noise sources that deterministic equa-
tions fail to capture, spatially and temporally uncorrelated
multiplicative uniformly distributed noise of small amplitude
0.05% is added to both components at every quarter of a
year [45]. Simulations are carried out in MATLAB using the
Backward Time Centered Space (BTCS) difference scheme.
To avoid any discrepancy that may arise near the boundaries
of � during numerical evaluation of the mean density (7),
both kernel functions ρ1, ρ2 are modified accordingly [54,55].
Following earlier studies [39,40], in the numerical simula-
tions vegetation density n less than 10−6 has been considered
as zero.

To showcase the role of kernel function in the system
response (to decreasing precipitation level), model runs have
been performed with both cutoff Gaussian ρ1 and uniform
kernel ρ2. Different shapes of kernel ρ1 (i.e., ρ1 having dif-
ferent widths σ ) have been used in these simulations, results
of three of which are shown in Fig. 3. It can be seen from
these figures that for both types of grazing, as the precipitation

is reduced, patterns of vegetation appear just after the initial
uniformly vegetated state loses its stability through Turing
bifurcation. This transition of stability happens at the criti-
cal precipitation level aT , mentioned in the previous section.
Moreover, wavelengths of these initial patterns match very
closely the estimation made by linear stability analysis. For
example, in case of σ = 8 with sustained grazing, the bi-
furcation point in Fig. 2(a) is (aT , kT ) = (2.954, 0.395), so
the critical wavelength would be 2π/kT ≈ 15.91; hence the
resulting pattern is expected to have approximately 31 ridges
in the computational domain [−250, 250], which is exactly
the case in Fig. 3(c). Furthermore, Fig. 2 reveals that the aT

value for σ = 1 is much greater than a = 3 (which is the
starting point of the simulation), so in this case the pattern
emerges right from the beginning [Figs. 3(a)–3(b)]. But as
the width of the weight function ρ1 increases, this critical
precipitation level aT decreases. Figures 3(c)–3(f) reflect the
same phenomenon, a homogeneously vegetated state persists
until the precipitation level reaches aT . However, the rate of
lowering of aT falls off with increment in σ , and after a
certain value (which is σ ≈ 15 for aforesaid parameter choice)
no more significant change in the value of aT occurs. With
a further decline in precipitation the wavelengths of these
patterns remain constant initially and then undergo a num-
ber of sudden transitions to patterns with larger and larger
wavelengths. After a sufficiently low value of precipitation
all of these vegetation patches go extinct, and a bare desert
state is attained. This desertification threshold varies with the
width (σ ) of kernel ρ1; as σ rises the threshold value of
precipitation for desertification also rises, for both types of
grazing.

In Fig. 4 simulations have been performed for ρ2 with the
same setting as Fig. 3. Like the case for ρ1, as the precip-
itation is reduced, the initial homogeneously vegetated state
undergoes a Turing bifurcation resulting in formation vegeta-
tion patterns, and then after a number of pattern transitions a
regime shift to a desert state occurs. In the case of sustained
grazing this regime shift is to a state with no vegetation,
but a little amount of vegetation continues to exist [the thin
strips from a ≈ 2 to a ≈ 0.54 in Fig. 4(b)] for natural grazing,
before going to a fully degraded state finally. As expected,
these observations match exactly the findings of Ref. [39,40].

A qualitative comparison between these kernel choices
shows that, unlike the kernel ρ2, in the case of Gaussian kernel
ρ1, a patterned vegetated state goes on till a precipitation level
that is very low, in the case of sustained grazing also. More-
over, a shift toward a completely degraded state happens for a
much higher value of precipitation in the case of ρ2 compared
to ρ1. One more interesting fact is, as the width of kernel
ρ1 grows, the characteristics of the system become more and
more similar to the system with uniform kernel ρ2. In Fig. 5
the spatial averages (i.e., biomass per unit area) of the vege-
tation biomass are plotted for the aforementioned simulation
runs. For both kernel choices, declining precipitation level re-
sults in reduction of vegetation biomass. This reduction is not
gradual; rather we can see sudden changes in the density curve
(Fig. 5) whenever the patterns undergo wavelength adapta-
tions in Figs. 3 and 4; and for sufficiently low precipitation
these curves abruptly shift to a state with no vegetation. This
abrupt transition comes much earlier for kernel ρ1 that has
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FIG. 3. Simulation results for system (5)–(6) with kernel ρ1 (26) having different σ values: [(a), (b)] σ = 1, [(c), (d)] σ = 8, [(e), (f)]
σ = 15. The left-hand column is for sustained grazing [(a), (c), (e)], and the second column [(b), (d), (f)] is for natural grazing. In all of these
model runs, starting from a homogeneously vegetated state at a = 3, the precipitation level is set to decrease at a rate da

dt = −10−4.

a higher width. Furthermore, the curves for simulations with
cutoff Gaussian with higher width σ coalesce with the curve
for ρ2.

We have also carried out numerical simulations similar to
those in Figs. 3 and 4 but with a higher rate of precipitation
decay ( da

dt = −10−2, da
dt = −10−3) to better understand how
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FIG. 4. Simulation results for system (5)–(6) with kernel ρ2 (28). The left-hand column is for sustained grazing (a), and the second column
(b) is for natural grazing. Starting from a homogeneously vegetated state at a = 3, the precipitation level is set to decrease at a rate da

dt = −10−4.

the system response is dependent on the rate of variation
of precipitation level. Like in the earlier cases, here too as
the precipitation decays, the system shifts from an initial
vegetated state to patterned states and then to a complete
desert state after a number of pattern rearrangements and
wavelength adaptations. However, the system is found to
be undergoing wavelength adaptations with increasing step
size for growing rates of variation in a; i.e., when the rate of
change is higher, a much higher proportion of patches become
extinct while undergoing wavelength adaptation compared
to the cases in Figs. 3 and 4. Due to this, desertification
occurs at precipitation levels where stable patterned states
previously existed at earlier instances. This infers the
possibility of the rate-dependent transition, but a detailed
study of this phenomenon is out of the scope of this work.
Earlier studies [40,53] have demonstrated that the extended
Klausmeier model (2) manifests hysteresis phenom-

ena: a numerical run for decreasing precipitation
yielded patterns with shorter wavelength than patterns
for increasing precipitation. To know the depen-
dence of system response on its history, simulations
have been carried out with the same setting of Figs. 3
and 4, but this time with precipitation increasing at a rate
da
dt = 10−4. Following previous studies [40,45], simulation
is performed up to a precipitation level a = 3.5. Vegetation
distributions of Figs. 3 and 4, where a very little amount of
vegetation is left (i.e., at the precipitation level just before
vegetation density n becomes lesser than 10−6), are taken
as the initial conditions. The simulation results (Fig. 6) for
kernel ρ1 having a different width show that with increasing
precipitation, the initial vegetation distribution continues for
some time and number of vegetated patches remains the
same. Further increment in precipitation results in a sequence
of transitions to patterns with shorter and shorter wavelength,

FIG. 5. Spatially averaged vegetation density vs precipitation corresponding to the previous simulations, with cutoff Gaussian ρ1 having
σ = 1 (red solid line), σ = 8 (green solid line), σ = 15 (black solid line), σ = 25 (pink solid line), and uniform kernel ρ2 (blue solid line).
(a) Sustained grazing and (b) natural grazing.
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FIG. 6. Simulation results for system (5)–(6) with kernel ρ1 (26) having different σ values: [(a), (b)] σ = 1, [(c), (d)] σ = 8, and [(e),
(f)] σ = 15. The left-hand column is for sustained grazing [(a), (c), (e)], and the second column [(b), (d), (f)] is for natural grazing. Initial
vegetation distribution is taken from Fig. 3 at precipitation where very few vegetation patches are left, and then the precipitation level is set to
increase at a rate da

dt = 10−4.

and ultimately a regime shift to a state with homogeneous
vegetation takes place. In the case of σ = 1, the system is
unable to recover fully, and no homogeneously vegetated
state appears till a = 3.5 for both types of grazing. But as

the width σ increases, the final transition from patterned
state to uniformly vegetated state happens [Figs. 6(c)–6(f)].
This regime shift occurs for a slightly higher level of
precipitation for natural grazing, which reciprocates the
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earlier observations for decreasing precipitation. Moreover,
this final regime shift occurs at a precipitation level which
is greater than the Turing bifurcation threshold aT in Fig. 3.
Furthermore, as expected the simulation results for uniform
kernel ρ2 are in line with Ref. [40] but not shown here for
the sake of brevity. It is observed that, unlike Ref. [40],
the restoration of vegetation under increasing precipitation
can be seen not only for natural grazing, but in the case
of sustained grazing also. Another noteworthy fact is the
wavelength of these patterns at any given precipitation
level is larger with respect to their counterpart in Fig. 3.
This can be understood simply by counting the number of
ridges in Fig. 6 at any particular value of a and comparing
them with their corresponding result in Fig. 3. So at any
specific precipitation level, there are multiple possible stable
states at which the system may reside, depending on its
history.

IV. DISCUSSION AND CONCLUSION

This study aims to evaluate the influence of the in-
trinsic spatial nonlocality in herbivore grazing over the
response of dry-land ecosystems to changing environmen-
tal conditions. While modeling vegetation dynamics in an
arid ecosystem, Refs. [39,40] have elegantly incorporated a
mean-density-dependent grazing response; here it is further
modified by using a Gaussian weight function for deriving
the mean vegetation density. This modification is driven by
the simple assumption that a grazer at any location will be
more influenced by the forage nearby than that of further
away. It has been observed that such a simple ecologi-
cal aspect of herbivory affects the dynamics of ecosystem
significantly.

Results of this study clearly reconfirm that apart from
the water and nutrient availability, herbivory is also a major
player in the functioning of dry-land ecosystems. Simulations
in Sec. III show that the system responds to the change
in precipitation by regulating vegetation biomass through
self-organization of patterns. With increasing aridity, sys-
tem starting from a homogeneously vegetated state (V ) first
shifts to a patterned state due to Turing bifurcation and
then undergoes a sequence of pattern adaptations to patterns
with larger and larger wavelength, followed by a regime
shift to a completely barren desert state. In nonspatial mod-
els, with declining precipitation the system was thought to
stay in a stable uniformly vegetated state until a tipping
point (marked by the asterisk in Fig. 1) is reached, where
a critical transition to the alternate stable state (B) hap-
pens [56]. However, findings of this study suggest that the
steady state (V ) with uniform vegetation cover loses sta-
bility against spatial effects through Turing bifurcation, at
a much higher precipitation level than that of the tipping
point, and vegetation persists through rearrangement of pat-
terns for the precipitation level beyond the tipping point,
which reiterates the significance of self-organized patterns
for maintaining productivity in dry-land ecosystems [45,57].
One of the new phenomena observed in this study is that
the system response to increasing environmental pressure
heavily depends on the characteristic of grazer, for exam-
ple, perceptual abilities (e.g., sight, olfaction). From Fig. 2

it can be noticed that when the width σ of the weight func-
tion (ρ) is small (i.e., the scenario where a grazer relies
mainly on the vegetation present in a close vicinity), the shift
from homogeneous vegetation cover to patterned state hap-
pens at a relatively higher precipitation level. Moreover, for
both sustained and natural grazing, complete desertification
comes at more arid conditions for the case with smaller width.
From a comparison of Figs. 3 and 4 it is evident that the
ultimate critical transition to a barren desert state takes place
at drier conditions in the case of a Gaussian kernel; i.e., the
grazing ecosystem is more resilient to increasing aridity than
it was considered to be in previous studies [39,40]. Another
interesting fact observed in this study is that the decline in av-
erage vegetation density in response to the increasing aridity
is not gradual, rather sudden oscillations can be observed in
Fig. 5 whenever the patterns rearrange themselves by adapting
wavelength. Observations in Ref. [40] suggest that in the case
of human-controlled grazing, the final regime shift occurs at
a high precipitation level [Fig. 4(a)]; however, a very small
amount of vegetation continues to exist for far more arid
situation in case of natural grazing [Fig. 4(b)]. In contrast,
this study exhibits resilience to decreasing precipitation in
both types of grazing (Fig. 3). Another noteworthy fact is
that as the width of the Gaussian influence function increases,
the dynamical behavior of the system becomes increasingly
alike to the system with uniform kernel ρ2 (which resembles
the model in Refs. [39,40]). This can be easily explained by
comparing the shape of weight functions ρ1 and ρ2. With
growing σ the bell shape of the Gaussian function gets more
and more flattened, hence the weights all over the range be-
come almost equal, which resembles the case for a uniform
kernel.

Our findings also imply that the response of patterned
ecosystems to environmental variation depends not only
on the magnitude of the variation but also on the rate at
which conditions change. A similar type of results had been
observed in Ref. [45]. When the rate of change in precipi-
tation level is rapid, the adaptation process is less gradual.
Such circumstances prevent vegetation patches from rear-
ranging, and the system shifts abruptly to a completely
degraded state for less arid conditions compared to the
scenarios with a slow rate of change. So to tackle the increas-
ing environmental pressure efficiently, it is also necessary
to identify the critical rates of change in environmental
conditions.

This work demonstrates possibility of restoration in graz-
ing ecosystems, which is in line with previous studies
[45,53]. Model runs with increasing precipitation exhibit com-
plete recovery to a uniformly vegetated state at a higher
precipitation level, preceded by a number of pattern tran-
sitions to patterns with shorter and shorter wavelengths.
Unlike Ref. [40], improving the environmental condition
results in restoration of vegetation not only for natural graz-
ing but also for the sustained grazing case. Furthermore,
qualitative comparison between Figs. 3 and 6 reveals that
although the rate of change in precipitation is same, the
system response to increasing and decreasing precipitation
is contrasting. This infers the history dependence of sys-
tem response under a stressful environment (better known as
hysteresis) and the possibility of multistability in the graz-

054407-11



MRINAL KANTI PAL AND SWARUP PORIA PHYSICAL REVIEW E 106, 054407 (2022)

ing ecosystem, which reciprocates the observations of earlier
studies [40,45].

Summarizing, this study reveals how the incorporation of
herbivore grazing as function of distance from the grazer
can substantially alter the ecosystem response to changing
environmental conditions. Apart from providing insights into
grazing ecosystems, this study also reconfirms the findings
of recent studies in arid ecosystems. Moreover, outcomes of
this work necessitate inclusion of spatial nonlocality while
modeling herbivory in vegetation systems. However, it must
be mentioned that this study is based on a phenomenological
approach, intended to integrate the scale-dependent feedback
and spatially nonlocal herbivore grazing. It can further provide
a theoretical framework for future data acquisition on herbi-
vore foraging using sophisticated techniques and satellite im-

ages. Assimilating the biological behavior-driven movement
of herbivores with realistic data support while choosing a
weight function would be a research problem worth pursuing.
Furthermore, in order to understand the transitions among
qualitatively different patterns in the presence of herbivore
grazing, the two-dimensional version of this model needs to
be explored.
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