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Energetic convenience of cell division in biological tissues
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A typical feature of living tissues is proliferation by division: it is a fundamental aspect of many biological
processes, including embryonic development, morphogenesis, and cancer growth. Here, we study the energetics

of cell division occurring in epithelia, highlighting the interplay of the key parameters ruling mitosis. We find the
existence of a region, in the parameter space, which is independent of the cell elasticity and weakly dependent
on the ratio between mother and daughter cells areas. In this region, cell division is energetically favorable. Our
results may lead to an exact characterization of cells having anomalous proliferation.
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I. INTRODUCTION

One of the features characterizing living tissues is the ca-
pability to grow and to adapt their topology when necessary.
Specifically, cells can undergo topological changes during
their life. The most important are, probably, the T1 transition
and mitosis, i.e., the process by which a single mother cell
divides into two daughter cells.

In the T1 transition, cells manage to change neighbor-
ing cells, thus promoting motility and migration within the
tissue. This transition has been widely studied in the liter-
ature. For instance, it is responsible for pattern creation or
for the emergence of compartments of cells of the same type
in heterogeneous tissues. It has been shown that to activate
such transformations, an energy barrier must be overcome. If
this is the case, the tissue eventually moves towards a new
local energy minimum [1,2]. Moreover, a simple but striking
connection between the energy barrier amount, the transition
between a solidlike (or glassy) behavior towards a fluidlike
response, and the isoperimetric inequality has been found in
[1-7]. This represents a paradigmatic example of the interplay
between geometry, mechanics, and biology. Although we can
assert that the T1 transition is quite understood, it is not the
case for mitosis.

Despite the advanced understanding of cell physiology,
there is still no quantitative connection between the mechani-
cal and geometrical parameters ruling the process. This work
aims at shedding light on these aspects, trying to bridging
the gap in the scientific literature. In particular, we aim at
identifying (i) the leading parameters driving mitosis, from
a joint mechanical and geometrical setting and at showing
their interplay; (ii) under which conditions mitosis shall be
sustained by energy supply, i.e., the presence of an energy
barrier to overcome; and (iii) under which conditions cell
division, hence proliferation, is energetically favorable, in the
sense that the energy state of the tissue after the division is
lower.
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It will come as no surprise that we approach this prob-
lem from a geometric and mechanical viewpoint. A wide
literature, especially in recent years, has been produced on
this topic. For instance, the connection between growth and
internal stress is well established [8—10]. It has been shown
that the internal stress can modulate the growth-preferred
directions, providing an effective (re)modeling tool to the
growing body [11,12]. We remark that, however, the definition
of growth is not univocal among different scientific commu-
nities. From a continuum mechanics point of view, growth
is generally synonymous with bulk (or volumetric) growth.
The volumetric growth of a soft elastic tissue is the change
in the local stress-free state without requiring the existence of
a corresponding global stress-free configuration [10,13-15].
Hence, growth is linked to the geometrical incompatibility of
the current configuration.

More important for our goal is that the stress level within
a cell regulates the rate of cell proliferation and growth.
There exists a homeostatic pressure that balances and regu-
lates cell proliferation and death [16—18]. Healthy cells have a
(chemo)mechanical feedback system regulating the biological
functionalities. On the contrary, malignant cancerous cells
have lost the ability to self-regulate, and they duplicate in an
uncontrolled manner [19,20]. From these considerations, the
deep interdisciplinary connections between mitosis, cancer
proliferation, biology, mechanics, and geometry are evident.

The geometry (shape) and the mechanic response of a
generic body are generally encapsulated within an energy
functional. This is also the case for cellular tissues, where an
energy expression, borrowed from the vertex model methods
[21,22], has been widely employed for numerical and theo-
retical predictions. The vertex model, in its simplest essence,
considers a tiling of the plane (even though three-dimensional
vertex models have been developed) where every polygonal
tile represents a cell. A simple yet nontrivial potential energy
is associated with each cell. The energy takes into account the
elasticity of the cytoskeleton, of the actomyosin ring contrac-
tility, and of the adhesion between cells. At each vertex of the
tessellation, a net force is exerted, according to a dynamical
law relating the evolution of the vertices positions and the
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FIG. 1. Cartoon of cell cycle, adapted from [35]. The (qualita-
tive) energy curve refers to the mother cell before division and to a
single daughter cell after division.

total energy. We emphasize that the major achievements on
T1 transitions and cellular tissues in general, both numerical
and analytical, have been obtained starting from the energy
expression employed in vertex models, with excellent agree-
ment with the experiments [1,4,6,23]. In this work, we will
consider the same starting point.

Within the vertex model methods, cell division is diffi-
cult to handle due to the modification of the original tiling
[24]. That is, artificial treatments are required for numerical
simulations in these models. It is usually assumed that when
cells undergo mitosis, they split into two equal areas [24,25],
and the modeling reduces to a mere geometrical consider-
ation. In particular, the criterion triggering cell division is
the attainment of a certain critical area [26]. In so doing,
cell division is always prompted by the algorithm, regardless
of any energetic consideration. Clearly, the way cells divide
geometrically [27-29] and the rate at which they do so [30,31]
strongly affect the final topology and microstructure (internal
reorganization) of the tissues. What is missing is an energetic
point of view on mitosis.

What do we know about the relationship between cell
division and bioenergetics? Cell division is indeed a complex
process with substantial energy demands, and how cells reg-
ulate the generation of the required energy is still not well
understood. However, many studies suggest a connection be-
tween cell division and their metabolism [32].

The complete process of cell reproduction is called the cell
cycle, intuitively depicted in Fig. 1. For reasons we do not
need to specify, a quiescent cell starts to grow (interphase). In
this phase, the cell duplicates DNA and other genetic material.
At a critical point, if some checkpoints [33] to verify the
integrity of the major events of the cell cycle are satisfied, the
mother cell enters in the properly named mifosis phase, and
two daughter cells are generated by abscission (cytokinesis).
The daughter cells may possibly enter in turn in a cell cycle.
Usually, the mitotic phase represents less than 10% of the
whole cell cycle [34].

In a recent paper [35], the authors studied the mitochon-
drial bioenergetics, at the single-cell level, for the whole cell
cycle. Specifically, they managed to measure the mitochon-
drial membrane potential in murine lymphocytic leukemia
cells. They found a monotonic trend during the interphase,
with an important increase of energy at the beginning of the

mitotic phase. In the second part of mitosis, energy decreases
approximately up to the original maternal level (see, in par-
ticular, Figs. 1(a), 1(e) and 1(g) of [35]). A qualitative energy
trend, adapted from these findings, is reported in Fig. 1.

Needless to say, the biological cell division is promoted by
many complex, interrelated phenomena of a different nature,
i.e., chemical, biophysical, etc., so that “energy” contains
many contributions. In what follows, as anticipated, we will
assume a pure mechanical-geometrical viewpoint. Note that
this is a customary framework in which to study tissue and
cellular evolution. As reported in [33], shape is recognized
to play an important role in cell division. To maintain cell
size and ensure that daughter cells are endowed with the
appropriate amount of genetic material, cells must, on av-
erage, double their contents before division. Control of cell
size is critical for regulating nutrient distribution for the cell,
and regulating organ size and function in multicellular or-
ganisms. The mechanical-geometrical viewpoint is thus not
without merit.

The paper is structured as follows. Section II states the
main assumptions of our investigation, and it contains the the-
oretical parts of the paper together with the principal findings.
In particular, Sec. II A introduces the theoretical framework
that will be used in the paper, stating the main assumptions;
Sec. II B analyzes the case of equal splitting of the mother
cell, leading to the existence of a region of energetic conve-
nience for division; Sec. II C investigates the cases in which
the mother cell does not divide equally; and Sec. IID gen-
eralizes some of the previous results for the growing cell.
Section III presents five simulations using a simple, in-house
vertex model implementation. The results are consistent with
the theoretical and experimental evidence. Section IV shows,
under some optimality assumptions, the complete history of
the growth and division of a cell. The energy profile is consis-
tent with experimental observations. Finally, Sec. V concludes
the paper with meaningful remarks and prospects.

II. ENERGETICS OF CELL DIVISION
A. Theoretical setting

For a cell, we consider the well-known energy adopted in
vertex model approaches [21,22,24,25,36]:

Ey = Ky(A — Ao’ + Kp(P — Ry)*. M

The first term represents the elasticity of the cytoskeleton. A
is the current area of the generic cell, and A is the target area.
K, is the area modulus. Similarly, the second term models
actomyosin ring contractility and adhesion between cells. P
is the current perimeter, and P, is the target perimeter. Kp is
the perimeter modulus. For the time being, we regard these
quantities as positive constants.

We have already mentioned that the mitotic phase, experi-
mentally, is much shorter than the growth interphase. Ideally,
we may assume that mitosis occurs instantaneously. On this
basis, we can compare the cell energies astride two instants:
just before and just after the division. After a single division,
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FIG. 2. Cell division cartoon. (a) A cell of area o and perimeter p
divides into two cells via the creation of a new surface of size £. The
original area splits into «; and o — oy, the original perimeter into p;
and p — p;. (b) Regular hexagon case. The new surface equals twice
the apothem of the polygon. (c) Circular cell of area o undergoing
nonequal division.

the energy of the two daughter cells reads
Ey := Ko(A1 — Ao)* + Ka(A — Ay — Ag)*+
+Kp(Py+L—P)’ +Kp(P =P +L—P)*, (2

where L is the length of the new surface, which materially
divides the mother cell into two parts. In writing (2), we have
assumed that the original area A is split into two parts, namely
Aj and Ay = A — Ay, as well as the original perimeter P. We
have also assumed that the daughter cells inherit the same
elastic moduli and target area and perimeter from the mother
cell. It is easy to see that the energy of possible surrounding
cells is not affected astride the division instant. Given this
local property of mitosis, both in space and time, we can study
the division of one cell without loss of generality.

We seek conditions in which the cell division is ener-
getically favorable, i.e., conditions in which E, — E; < 0. A
direct computation shows that

E, — Ei = Ka(Aj + 2A7 — 2AA)) + Kp(Pg + 2P} — 2PP))
+ 2KpL(L + P — 2P). 3)

We assume +/Ag to be a characteristic size of the cell, and we
rescale the energy difference (3) by K4A3. Accordingly, the
dimensionless energy difference can be rewritten as

E,—E
AE = 2 21 = (1 +2a% —2050(1)
KAA§
+ K(s(z) + Zp% — 2pp1)
4+ 2KL(£ 4+ p — 259), “4)
where we defined
Kp A Ay
K=—— a=—, o:=—,
K4Ag Ao Ag
Py P P, L
S0 =—F=, Pi=—F7=, p1i=-—F7=, li=—=.
VAo VAo VAo VAo

It is well known that sy rules the fluid-solid transition of the
mechanical response. This parameter is known in the literature
as the target shape parameter.

A schematic representation of cell division in reported
in Fig. 2(a).

To perform computations, in the spirit of the vertex model
method, we hereafter consider n-gonal cells, where n €
[3, oo] in the number of edges. We recall that the isoperimetric
inequality for n-gons reads

P
VA
the equal sign holding only for regular ones. In our setting, the
isoperimetric inequality states a condition that any realizable
n-gon must satisfy. The limit values for ¢, are given by tri-

angles, g3 := 4.559, and by circles, g, = 3.545. For regular
n-gons, we have also

o 2/ 20 a,
= rn = =

7 ) T 7>
ntan 7 qn nsin cos

n

b3
> [4ntan — =: g,
n

a, =

as the dimensionless apothem and circumradius, respectively.
We further assume that the division surface is actually a
straight line.

B. Equal division

In this section, we add the hypotheses that the mother cell
is a regular n-gon that splits into two equal parts. Note that the
roughly equal splitting is observed also in experimental data
(see, for instance, [33]). Accordingly, we have o) = %, p1 =
£, p = gu/a. Moreover, the division surface passes through
the center of the polygon and 2a, < £ < 2r,.

Supposing the division is realized along the shortest seg-
ment, we have

2an=ﬂ’
e:{

neven,
n

an—{—r,,:%a(l—i- 1), 1 odd.

cos T
"

For cases of major interest, say n > 5, we can actually take
{ ~ 2a, for all values of n, so that

o? qﬁa
AE=<1—7)+K(s(2)— 5 )

+ 21(4“/a (4*/a + g/ — 2s0>. (3)

qn n

We remark that (5) is exact for any even value and for suf-
ficiently large values of n. The result of our assumptions is
depicted in Fig. 2(b) for a hexagon.

For K =0, the unique solution of AE <0 is o > ﬁ,
independent from the other parameters. K — 0 corresponds
to the “incompressible” regime in the following sense: the
area term in (1) is preponderant with respect to the perime-
ter counterpart (Kp << KsAy), so that a cell tends to satisfy
(and, possibly, maintain) the condition A = Ay to minimize
its energy. The reason why o = /2 appears as a threshold
also has the following interpretation, which does not need the
a priori assumption of equal splitting. For K = 0, (5) simpli-
fies into AE = 1 + 2a? — 2aa;. Optimizing with respect to
o1, we obtain a; = % and AE =1 — “—22 Imposing AE = 0,
we find @ = /2. Thus, the factor /2 comes directly from the
optimality of equal splitting of the cell.

For K > 0, the zeros of (5) can be computed numerically.
The results are plotted in Figs. 3(a) and 3(b) for hexagons and
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FIG. 3. Zeros of (5) for different K: (a) hexagonal cells,
(b) circular cells. Red, dashed curves correspond to K = oo.

circles, respectively. The energetically favorable domain is
on the right side of any curve. The horizontal red dashed lines
represent the values 5o = g,,. From the plots in Fig. 3 we can
identify a limit curve delimiting the favorable region for K
sufficiently large (approx. >10). The two limit curves can be
determined analytically:

so 16242 F8V2

Va 2qy

They are represented by red-dashed curves in Figs. 3(a) and
3(b). This case corresponds to considering only the perimeter
term in (1). Note that 5/—“‘7 = % correlates the target perimeter

and current area, in contrast with the T1 transition that is
regulated by s¢, a parameter involving only target quantities.

For incompressible cells, the whole region o > +/2 is en-
ergetically favorable. The effect of compressibility is twofold.
On the one hand, the energetically favorable domain for
o > +/2 shrinks between the limit curves (6). On the other
hand, the domain for & < +/2 increases in the glassy domain
so < qn. The trend is qualitatively the same for hexagonal
and circular cells. Note that circular cells present a narrower
favorable domain, so that the results for circles are valid also
for regular polygons.

It is noteworthy that the region

(6)

A, = {(Ol,S())|O( > V2,

2qn Ja 2qn

16 —vV2¢2+8v2 5o 164242 —82
< < (7

J

062

is energetically favorable for cell division regardless of the
value of K. A fortiori, the region A, is energetically favorable
also regardless of the number of edges, since A, C A, for
every n. We have hence shown the existence of a region in
the (o, so) plane in which mitosis is energetically favorable
regardless of the shape and the elasticity of the cells.

We summarize this result in the following.

Proposition 1. Let AE, as in (4), be the energy difference
of a regular, n-gonal cell undergoing equal division, the seg-
ment of separation being the diameter of the incircle. Then,
if (a, s09) € A [see Eq. (7)], AE < 0 and the division is
energetically favorable.

The converse is not true, in the sense that the actual favor-
able region can be wider than A, but it depends on K and n,
while A, does not.

If we additionally require that the initial configuration
is stress-free, we have o = 1, g, = so, so that AE = % +

55+ g—f — 16. The inequality AE < 0 is never satisfied, as

can bé inferred by looking at Fig. 3. The interpretation is
straightforward: for a stress-free configuration, division is
never convenient. In fact, the cell would necessarily move
from a zero-energy state towards a higher-energy one.

C. Unequal division

In the previous section, we have considered the ideal case
of equal splitting of the mother cell. Now, we investigate the
effect of unequal division, i.e., when the mother cell does
not split into two identical daughter cells. In the spirit of the
previous observations, we consider a circular cell of area «, as
shown in Fig. 2(c).

We recall that for a circular cell, g, = goo = 2+/7 so that
p=2ma. Let 8 € (0, ) be the central angle subtending a
generic chord £. We can express the geometrical parameters
describing the division in terms of this angle, so that

[o
L= _|—+/2(1 —cosB),
T
[o o .
pr=,—60, o =—(@ —sinb).
b4 2

Hence

) o 2 ey
AE = (1 + (6 —sin6) — (0 — sine)) +K(s0 +229 —4a9)
T T T

2

+ ZK\/§\/2(1 — cos 9)(

For & = m, we obtain the case already studied, while for 8 = 0
no division occurs. Some solutions to (8) are depicted in Fig. 4
for four values of 6. The horizontal dashed red line represents
the value sy = goo. The trends are similar to those already

V2(1 —cos@)+2ﬁﬁ—2s0). (8)

(

discussed for equal division. The unequal division shrinks
the domain of energetic convenience and translates it towards
larger area ratios and smaller shape parameter values. In fact,
not only do the limit curves become closer, but also the solu-
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tion for K = 0 moves toward higher values of «. This effect is
more pronounced for smaller 6. That is, the domain shrinking
is more effective when the mother cell divides into strongly
dissimilar parts. Moreover, we remark that equal division has
more chances to be convenient in the fluid regime sy > g,
while the unequal division can represent the only possibility
in the glassy regime (5o < ¢oo), at least for a large interval of
o [see Figs. 4(c) and 4(d)]. It is remarkable that, neglecting
pathological cases in which a cell divides excessively dispro-
portionately, the favorable region for division is quite robust
for deviations of %! from the ideal value 0.5 [compare, for
instance, Figs. 4(a) and 4(b)]. Hence, for a wide class of cases
in which the two daughter cells are not extremely different
(these are likely to be the most frequent cases occurring in
actual cells), the expression for A, is still meaningful.

D. Division and growth

So far, we have regarded A as a constant: cells relax sub-
stantially. To include cellular growth effects, it is customary in
the vertex model literature to consider time-varying reference
areas. To generalize our results to take into account cellular
growth, we basically substitute the term A, appearing in (1)
(and the following equations) by the term Ay, representing
a target area that can evolve in time ¢ through some specified
law. We require only that Ao, be of the form Ay f (r — 7), where
7 is the time when the cell first appears in the tissue and
f is some positive function of time such that f(0) = 1. A as-
sumes now the meaning of target area for “newly born” cells.
Clearly, if Ay, does not depend on time, Ay, = Ap = const,

and the cases considered in the previous subsections are fully
recovered. Following the assumptions and the logical flow as
in Sec. IT A, we obtain

E; = Ki(A—Ap)* + Kp(P — Py,
— Ap)?
+ Kp(Py + L — Py)* + Kp(P — P, + L — Py)°.

Ey = Ka(A1 — Ag)* + Ka(A — A,

Note that the daughter cells inherit Ay as the target area when
they are created. Still assuming /A as a characteristic length
of the cell, we obtain by nondimensionalization

AE = (1 - — (@ —ag)? + (1 —a+a;)?
+ K(s§ +2p7 — 2pp1) + 2KL(L + p — 250),

where g, := A“’ . Note that the fourth and fifth brackets are
unchanged w1th respect to the counterpart Eq. (4). Supposing
a regular n-gonal cell and equal splitting, we obtain the coun-
terpart of Eq. (5):

AE = %(a —2)* — (a — ap )
2 ENCTE.
# () ra (N - 2n).

from which we easily deduce the favorable region, still de-
noted by A,

= {(a,so>|a > (2 —V2) (o — 1)+ 2,

16-V242+8v2 5o 16+/2¢2—842
< —=< .
24, Ja 2qn

)

The net effect of growth does not modify the latter inequalities
since they involve the perimeter terms. As noted before, such
terms are not affected by growth. Needless to say, for g, = 1
(no growth), Eq. (7) is recovered.

III. VERTEX MODEL SIMULATIONS

To support our findings, and to verify the robustness in non-
ideal cases, we implemented a planar vertex model algorithm.
Vertex models represent cellular tissues as a plane network of
vertices, edges and areas, and associate a potential energy to
each cell in the tessellation. Such models have been widely
used to describe the evolution of living tissues and are by now
a standard tool.

Let r; denote the position vector of the ith vertex in the tes-
sellation. Then, the vertex position evolves in time according
to the quasistatic motion law

81',» 1 0F

at B Y Bri ’
where ¢ is time, E is the total energy of the tissue [the sum of
(1) for all cells in the tissue], and y is a viscous coefficient.
3 is the resultant force acting on the ith vertex. We clarify
that'the implemented cell division algorithm does not take
into account effects due to cell elongation in order to keep
the algorithm as “clean” as possible and consistent with the
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TABLE I. Parameters used for the five synthetic experiments:
summary.

Synthetic experiment

1 2 3 4 5
So 3.7224 3.7224 3.7224 3.7224 2,5
K 0.1250 0.0909 0.0909 0.0909 0.1250
o 3.2475 4.1266 4.1266 2.3618 3.2475
p 6.7081 7.9777 7.9777 5.7207 6.7081
Growth N N N Y N
Division region A, A a>09 A, Ag,a>09

analytical results. A refined algorithm goes beyond the scope
of this work.

The pseudocode of our implementation is shown in
Algorithm 1.

Algorithm 1 Vertex model implementation

Require: Initial geometry, parameters

1: Evaluate and store the initial picture of the system
2:for j =1,..., Ny, do

3: Update geometry, parameters

4: fori=1,..., Ny do

5: Check for mitosis for the ith cell
6: if Check is satisfied then

7: Divide ith cell

8 end if

9: end for

10: Update geometry, connectivity, parameters

11:  Evaluate nodal forces

12:  Update vertices position (time integration)

13: Evaluate and store the picture of the system for the jth iteration
14: end for

After a complete initialization, in terms of geometry, con-
nectivity of cells, and various parameters, the code enters in
the time loop. For every time iteration, geometry and pa-
rameters are updated. Then, the algorithm checks whether
cells can be divided, in compliance with some constraint on
mitosis [e.g., (7)]. If so, the cell is divided, and the current
status of the system is updated. Hence, nodal forces are evalu-
ated, time integration is performed (via a fourth-order explicit
Runge-Kutta method), and the vertices position is updated.
Meaningful quantities for the continuation of the loop and for
the postprocessing phase are evaluated and stored.

We performed five synthetic experiments. For all of
them, the animations of the simulations are available in the
supplemental material [41]. Table I summarizes the main fea-
tures and the values of parameters used for the simulations.

The first synthetic experiment considers a regular
hexagonal cell in the reference configuration. The vertex
model is initialized with the following parameters: sy =
3.7224, K = 0.1250, o = 3.2475, p = 6.7081 (« and p refer
to the area and perimeter ratios of the reference configuration).
Division is only allowed when («, p) is inside A,. The refer-
ential and final configurations are shown in Figs. 5(a) and 5(b).
The energy evolution for the whole tissue, from the referential

—s—cell 1]
—u—cell 2

6 cell 3

—e—cell 4
4 9
2

—_—

|
no
w

-6 1 0

0 10 20 30 40 50 0 10 20 30 40 50
iter. iter.
(c) (d)

FIG. 5. Numeric simulation results of the first synthetic exper-
iment: regular hexagonal cell, favorable division. (a) Referential
configuration; (b) final configuration (full evolution available in the
supplemental material [41]); (c) energy difference; (d) area history
for every cell (in green the region .400).

value, is shown in Fig. 5(c), together with the number of
cells for every iteration. It is evident how cell divisions are
energetically convenient for the cells. After three divisions,
mitosis is no longer energetically favorable. This is confirmed
by Fig. 5(d), where the area history for every cell is plotted.
As long as cells lie inside A (green region in the figure),
division decreases the energy of the system.

For the second synthetic experiment, we consider a simple
tissue composed by nine cells, which are not regular polygons.
We tuned the model as in the previous experiment, except for
o =4.1266, p =7.9777, and K = 0.0909 (all on average).
Division is only allowed when (¢, p) is inside A.,. Results
are shown in Fig. 6. Similarly to the first experiment, as long
as cells are permitted to divide within the region A, the en-
ergy of the system decreases. The final configuration contains
34 cells. For the sake of completeness, the area history for
every cell is depicted in Fig. 6(d).

The third synthetic experiment shows the effect of uncrit-
ical division. To do so, we consider again the setup of the
second experiment, but we allow cells to divide regardless of
any energetic consideration. To avoid numerical instabilities,
we just considered o = 0.90 as a threshold for mitosis. Be-
low this limit, mitosis in not permitted. Results are reported
in Fig. 7.

For the very first iterations, the energy profile follows that
of the second experiment. However, in this experiment cells
can divide also when they lie outside the favorable region,
thus causing energy to increase. When o < 0.90 for every
cell, mitosis stops. The final configuration contains 58 cells.
As expected, the relaxation of mitosis conditions leads to a
higher number of cells. For the sake of completeness, the area
history for every cell is depicted in Fig. 7(d).

The fourth synthetic experiment conjugates growth and mi-
tosis. The reference configuration is that of the first synthetic
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iter.

()

FIG. 6. Numeric simulation results of the second synthetic
experiment: irregular cells, favorable division. (a) Referential con-
figuration; (b) final configuration (full evolution available in the
supplemental material [41]); (c) energy difference; and (d) area his-
tory for every cell (in the green region A..).

experiment, but parameters are set as in Table I. We consider
the exponential growth law a, = (1.01)' %, where i is the
current number of iterations and i,p, is the iteration where
the cell is generated. Mitosis happens whenever parameters
lie in A [see Eq. (9)]. The effect of monotonic growth is to
increase the energy level of the tissue, as shown in Fig. 8(c).
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FIG. 7. Numeric simulation results of the third synthetic ex-
periment: irregular cells, uncritical division. (a) Referential con-
figuration; (b) final configuration (full evolution available in the
supplemental material [41]); (c) energy difference; (d) area history
for every cell (in the green region A).
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FIG. 8. Numeric simulation results of the fourth synthetic exper-
iment: regular cell, favorable division, and growth. (a) Referential
configuration; (b) final configuration (full evolution available in the
supplemental material [41]); (c) energy difference; (d) area history
for every cell.

However, the energy decreases whenever cell division occurs.
For the sake of completeness, Fig. 8(d) shows the area history
for every cell. The region A, is not reported, since it changes
in time for every cell. The final configuration is composed of
30 cells. This is in contrast with the first experiment, which
actually considers only relaxation of the cells up to a level
where mitosis is not favorable. The presence of growth clearly
sustains proliferation, as can be seen in Fig. 8(c), where the
energy evolution is not monotone as in the first experiment,
and it presents many spikes (see also the measurements in
Fig. 1 of Ref. [35]).

The fifth experiment considers the same setting as that of
the first experiment, but sy is made to vary. We considered
the cases sop = 2,5 so as to include situations in which the
isoperimetric inequality is not/is satisfied, respectively. For
both cases, we report in the odd rows of Fig. 9 the energy
evolution and the area history when energetic conditions are
taken into account for mitosis, i.e., (7), while in the even rows
of the same figure we report the results when uncritical divi-
sion (o > 0.9) is allowed. The effect of introducing energetic
considerations is more evident for the case so = 5. In fact,
looking at Figs. 9(g) and 9(h) we can see how drastically
uncritical division increases the energy content of the tissue.

IV. OPTIMAL CELL CYCLE

In this section, we pursue the complete time evolution of
a growing cell undergoing division, yet in a particular ideal
case. We consider a single, regular, hexagonal cell which real-
izes, at every instant, the configuration of least energy. When
the cell reaches the critical area, i.e., when the cell enters the
favorable region for division for the first time, the cell splits
into two equal halves. We further suppose that the daughter
cells do not grow and relax towards states of least energy.
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FIG. 9. Numeric simulation results of the fifth synthetic ex-
periment: regular cell, sy varies. (a),(b) so = 2, favorable division;
(¢),(d) so = 2, uncritical division; (e),(f) so = 5, favorable division;
(g),(h) so =5, uncritical division. Full evolutions available in the
supplemental material [41].

The following result characterizes least energy configura-
tions in a general setting.

Proposition 2. Let E = (o — o, )? + K(p — s0)* be the en-
ergy of a n-gonal, possibly growing, cell. Then, there exists a

unique minimizing pair (&, p) given by

@, p) = (ctor, o) if So > gna/Alors
"P2Z1(B, 4u/B) otherwise,

where (;—0)2 < B < aq is the unique positive real number
satisfying

Kq? K
ﬁ+<%—ao,) p-12= =0 (0

Proof. To be meaningful, the minimization of £ must be
performed under the constraint of the isoperimetric inequality

75 2 an-

We thus consider the Lagrangian E + A(g,/a — p), where
A is the Lagrange multiplier to enforce the constraint. The
stationarity of the Lagrangian (saddle point) requires the fol-
lowing system to be fulfilled:

dvVad + g — 4050t\/_ =0,
2K(p —s0) =4+ =0,

Qn\/&_p< O»
A =0,
)‘(Qn\/__p):()s

or, solving and substituting for A from the second equation,

4va3 + 2K g, (p — 50) — dag /ot = 0,
Qn\/a - P g 0,

P = So,

(p = 50)(gnv/a — p) = 0.

From the last of (11), we distinguish two cases.

(i) If p = s, the constraint is not active (A = 0), and we
readily deduce g,/ < so and (@, p) = (aqy, So). This case
corresponds to the compliance of the isoperimetric inequality.
A fortiori, the following inequality holds: g,./ao < so. The
minimal energy level is E = 0.

(ii) If p = g,/, the constraint is active (A # 0), and the
least-energy configuration is a regular n-gon. We further de-
duce that 59 < g,+/a. The first of (11) provides

Kq? WSoK
Va3+< q"—a0,>ﬁ—qso =0.

(1)

2 2

By the Descartes-Laguerre rule of sign [37], we easily deduce
that the equation admits just one positive real root, say S,
2

regardless of the sign of (qu" — o )-

We claim that (;—0)2 < B < ag. The number of positive
real roots greater than «y, is linked to the sign alternances of

2

{1, M, qu” (gnJoor — S0)} (see Ref. [37], Prop. p. 102).
In this regime, so < gn+/00;, and there are no sign alternances.
Similarly, the number of positive real roots less than (fl—“)2 is

) ) 50K
linked to the sign alternances of {—%3=, —S“qﬂ, —;—“(0101 —
n n

(;—2)2)} (see Ref. [37], Prop. p. 106). Again, being sy <
gn+/0;, there are no sign alternances, and the thesis is proved.

The most interesting case to be studied is the incompat-
ible regime sy < gu4/0to;. Since a closed form solution to
(10) cannot be found, we performed a simple computation
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FIG. 10. Time evolution of a least-energy regular, hexagonal cell.
(a) Area history; (b) energy history per cell (after cell division, the
energy of one of the daughter cells is reported).

with the following parameters: n = 6, K = 0.1, 59 = 2, o, =
(1.01)""%», Results are shown in Fig. 10. Figure 10(a) shows
the favorable division region Ag [Eq. (9)] and the evolution of
the current area (blue curve) as a solution of (10). The black
square marker highlights the critical values of area and time
when, for the first time, the cell finds division advantageous.
Figure 10(b) shows the history of the energy of one cell (after
cell division, the energy of one daughter cell is reported).
Up to the critical time, energy increases exponentially due to
the form of the growth law. When mitosis occurs, the energy
of one daughter cell instantaneously reads E; = (5" — 1> +

K (%@ + % — 50)%. If the pentagonal daughter cells do
not growth, after some amount of time, possibly infinite, the
system reaches a relaxed configuration characterized by two
regular, pentagonal cells (note that sy < ¢gs). The final area
and energy, for one daughter cell, are given by the solution of
the following system:

Kq? K
i~ i 4 1) a — 95508 _ 0,
2 2
E = (¢ — 1) + K(gs/a — 50)*.

Such an energy level is represented by a dashed line in
Fig. 10(b). It is slightly higher than the maternal one due to
the presence of g5 instead of g¢. The trend is consistent with
the experimental observations already reported in Sec. I.

V. DISCUSSION AND CONCLUSIONS

We addressed the question of whether cell division is en-
ergetically favorable or not, and whether we can identify the
cases. Unlike T1 and glassy-fluid transitions, we showed that
cell division is not ruled by a single parameter (the target
shape index [1]), but that the interplay between actual and
target geometrical ratios and cells elasticity is more involved
and far from trivial. We discovered that the energetic conve-
nience region for mitosis can be expressed in terms of the
ratio between initial and target areas, and in terms of the
target shape parameter. The effect of cells elasticity saturates
as the cells become more and more compressible. In addition,
we derived exact expressions for a domain where division is

energetically favorable, i.e., a region unaffected by the level
of compressibility and by the number of sides. Furthermore,
we quantified the effect of unequal cell division. We found
that this effect is weak, at least for nonpathological cases in
which the daughter cells have very different areas. Finally, we
characterized lowest-energy configurations, and we simulated
a complete, ideal cell cycle. The validity of the theoretical
results has been supported by many synthetic experiments
using a vertex model method approach. Results have been
found to be consistent with theoretical expectations.

We expect that our findings may be of interest to a
wide class of scientists. We show under which conditions
mitosis is energetically favorable for the cell. Our results may
shed light on the energetics of actual cells mitosis and on
more complex biological phenomena correlated to prolifera-
tion, such as tumor growth and the evolution of competing
cells. In fact, our results can be easily implemented in vertex
model algorithms, thus they will enhance the reliability and
likelihood of these tools. This is an important factor in com-
putational biology. Moreover, results are consistent with the
well-documented tendency of tumors to be fluidlike [38]: we
found that the domain where cell division is favorable extends
more in the fluidlike region. We suppose there is a deeper
connection between malignant cell unregulated proliferation
and the parameters ruling the energetics of cell division. In
some cases, division must be sustained by some energy sup-
ply, while in others it is energetically favorable and occurs
spontaneously. It is worthwhile to investigate if a converse
statement holds true, namely if malignant cells can only lie
inside the convenience region, and thus to provide a precise
mechanical characterization of those cells. The connection
between malignant cell behavior and elasticity is, after all,
accurately documented [17,36,38—40]. It is also well known
that in malignant cells, the feedback regulating the internal
stress level and growth is compromised [19]. In light of these
observations, we speculate about the possibility that the mal-
functioning feedback effect is bringing cells to lie within the
convenience region for division by altering the target area
and/or the target shape index, or by acting on the elastic
moduli.

In addition, the results offer a cell characterization, from a
geometrical-mechanical viewpoint, that potentially opens new
perspectives. The hypothesis about the characterization of ma-
lignant cell functioning, through an altered internal feedback
mechanism that makes the cells behave as though they are in
the favorable region, may pave the way for a new experimental
research topic to confirm such an idea. Thus, by measuring the
geometrical and elastic properties of the cell, one could detect
malignant cells from among others. That is the starting point
for a better understanding of cancer. Moreover, this may have
an impact not only for academics, but also for physicians, for
instance to develop better strategies for cancer treatment.
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