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Feature-enriched core percolation in multiplex networks
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Percolation models have long served as a paradigm for unraveling the structure and resilience of complex
systems comprising interconnected nodes. In many real networks, nodes are identified by not only their
connections but nontopological metadata such as age and gender in social systems, geographical location
in infrastructure networks, and component contents in biochemical networks. However, there is little known
regarding how the nontopological features influence network structures under percolation processes. In this
paper we introduce a feature-enriched core percolation framework using a generic multiplex network approach.
We thereby analytically determine the corona cluster, size, and number of edges of the feature-enriched cores.
We find a hybrid percolation transition combining a jump and a square root singularity at the critical points
in both the network connectivity and the feature space. Integrating the degree-feature distribution with the
Farlie-Gumbel-Morgenstern copula, we show the existence of continuous and discrete percolation transitions for
feature-enriched cores at critical correlation levels. The inner and outer cores are found to undergo distinct phase
transitions under the feature-enriched percolation, all limited by a characteristic curve of the feature distribution.
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I. INTRODUCTION

Percolation theory on networks provides an effective way
to uncover many important structural and functional prop-
erties of diverse complex systems [1]. The pruning process
involved in percolation removes nodes and edges progres-
sively from the network according to some rule. The giant
connected component of the remaining network structure
serves as the relevant order parameter that shows the re-
silience of a macroscopic cluster in systems with information
exchange such as epidemic spreading in social systems, fi-
nancial transactions in stock markets, or transportation in
urban networks, to mention a few examples. The simplest
independent random removal rule leads to ordinary percola-
tion [2,3], which shows a continuous phase transition for the
emergence of a giant component. Various pruning strategies
targeting centralities such as node degree [4–6] are often more
deleterious in terms of disintegrating the network topology.

A paradigmatic pruning process deviating from the or-
dinary continuous phase transition is the k-core percolation
[7,8]. The k core of a network is the maximal subgraph where
each node has degree no less than k. It can be obtained by
recursively removing nodes having fewer than k neighbors
until no further deletion is possible. As a result, the network
is decomposed into a collection of enclosed k cores, which
has been extensively employed in the study of varied criti-
cal phenomena in the organization and dynamics of complex
systems [9,10]. It is remarkable that the percolation threshold
of a giant k-core cluster evinces a hybrid phase transition
combining discontinuity and a critical singularity when k � 3
[1,7,8]. In contrast to the role of connected components in
ordinary percolation, the k-core cluster is always giant in an
infinite locally treelike network as finite k cores (k � 2) are

absent therein. A deeper understanding of the network organi-
zation and robustness has been brought by some generalized
models for k-core percolation, where spreading behavior [11],
interdependence [12,13], and threshold heterogeneity [14] are
factored in.

Recently, it has been considered that information accessi-
ble at a single node level in real complex systems is often
nontopological, which is essential for quantifying the impact
of percolation [15]. For example, the age and education level
of individuals in contact networks are relevant for infectious
disease outbreak [16]; body mass and feeding mode of species
in food webs influences their resilience to adverse environ-
mental perturbation [17,18]. This information, or metadata,
characterizes the features of nodes that are distinct from con-
ventional graph-theoretic centralities. A feature-enriched site
percolation theory has been put forward in [15] by using
degree-feature joint probability distributions. It is shown that
the critical properties of networks under feature-based attacks
are the same as those under mean-field percolation regardless
of the feature distributions. However, the correlation between
degree and feature has a nontrivial influence on the network
robustness, allowing a more accurate evaluation of real net-
work resilience.

It is worth noting that the nature of the feature is left
undetermined in the general framework of feature-enriched
percolation [15], whereas some specific forms of node fea-
ture have been examined in percolation models. For instance,
healthiness of a node is considered in fractional percolation
[19] and coreness of a node is incorporated as a feature under
bond percolation in [20]. Moreover, the general idea of fea-
tures or annotations has also been employed to aid network
inference in supervised learning problems such as community
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detection in social networks [21,22] and link prediction in
recommender systems [23,24].

Here we generalize the ordinary k-core percolation to the
theory of feature-enriched core percolation taking into ac-
count both the generic node and edge features through a
multiplex network approach. We introduce the concept of
feature-enriched cores and describe a pruning process, finding
them in a multiplex network with arbitrary degree distri-
butions. Based on our theoretical framework, we determine
some key quantities such as the corona cluster, relative size,
and number of edges in the feature-enriched cores. A hybrid
phase transition with a jump and a square root singularity is
observed at the criticality of both the network connectivity
and the node feature. We quantify the correlation between the
degree and feature through the Farlie-Gumbel-Morgenstern
distribution family and reveal an abrupt percolation transition
at a critical correlation level for k � 3 in single networks.
In the case of multiplex networks, we find that the feature-
enriched core percolation is only continuous for the most
outer cores and discontinuous for all inner cores in terms of
connectivity and feature values. The evolution of the feature-
enriched cores is limited by a characteristic curve of the
feature distribution. Moreover, we find that asymmetric layer
degree distributions can lead to crossovers in both network
connectivity and feature space, which are nonexistent in iden-
tical layer distributions.

II. ANALYTICAL FRAMEWORK

Our method is based upon a unified representation of multi-
plex networks with m layers and n node features. The network
is characterized by a joint degree-feature distribution P(q, η),
where q = (q1, q2, . . . , qm) ∈ Nm and η = (η1, η2, . . . , ηn) ∈
Rn represent the numbers of neighbors in all m layers and
the n-dimensional feature space at each node, respectively.
We construct the network ensemble by following the con-
figuration model [25] with the degree sequence drawn from
P(q) = ∫

P(q, η)dη and assign features to each node follow-
ing the conditional distribution P(η|q) = P(q, η)/P(q). Given
k = (k1, k2, . . . , km) and a = (a1, a2, . . . , an), we define the
(k, a) core of the multiplex network as its maximal subgraph
having nodes with degree at least ki in each layer i and feature
value at least ar for each r = 1, 2, . . . , n. Here, for physical
simplicity, we assume the features are continuous and regard
them as some monotonic scores. Nevertheless, other variants
such as discrete features or generic core criteria ηr ∈ Ar for
some set Ar ⊆ R are straightforward to produce in our frame-
work.

As the network is locally treelike, we describe the follow-
ing pruning process to uncover the (k, a) core. At every step
we delete each node if it has degree qi < ki in some layer i or
it has feature value ηr < ar for some type r. If there are still
such nodes left, we delete them in the next step. The process
is repeated until no further deletion is possible. An illustration
is shown in Fig. 1.

For each i = 1, 2, . . . , m, let zi be the probability that an
end node of a randomly selected edge in layer i belongs to
the (k, a) core, namely, it has feature value ηr � ar for r =
1, 2, . . . , n and has at least ki − 1 neighbors in layer i and k j

neighbors in layer j for j �= i belonging to the (k, a) core. We

FIG. 1. Schematic of the (k, a) core for a network with m = 2
layers and n = 1 feature. (a) The network is shown with two different
types of edges and blue numbers indicating values of the feature.
(b) The (k, a) core for k = (1, 1) and a = 2. Any increase of k or
a would lead to the null core. (c) Core for k = (0, 0) and a = 2,
namely, a purely feature-based core. (d) Core for k = (1, 1) and a =
0, which is a multiplex core irrespective of features.

write the self-consistent equation

zi =
∫ ∞

a
dη

∑
q

qiP(q, η)

〈qi〉

×
[

qi−1∑
s=ki−1

(
qi − 1

s

)
zs

i (1 − zi)
qi−1−s

]

×
m∏
j=1
j �=i

[ q j∑
s=k j

(
q j

s

)
zs

j (1 − z j )
q j−s

]
, (1)

where the integral
∫ ∞

a dη is interpreted as the multiple integral∫ ∞
a1

· · · ∫ ∞
an

dηn · · · dη1 and the sum of q is taken over all
qi from 0 to infinity. Here the average degree is calculated
as 〈qi〉 = ∫ ∞

−∞ dη
∑

q qiP(q, η) and the excess degree-feature
distribution qiP(q, η)/〈qi〉 represents the probability that the
end node of a randomly selected edge in layer i has degree
q and feature η. The two combinatorial expressions in (1)
indicate that no less than ki − 1 out of qi − 1 edges (excluding
the starting edge) in layer i and no less than k j out of q j edges
in layer j ( j �= i) lead to the (k, a) core.

The set of probabilities {zi}m
i=1 enable us to compute the

probability N(k,a) that a random node is in the (k, a) core,
which is the relative size of the feature-enriched core in the
network. A node is in the (k, a) core if it has feature value
ηr � ar for r = 1, 2, . . . , n and no less than ki edges in layer
i leading to the (k, a) core for i = 1, 2, . . . , m. Therefore, we
obtain

N(k,a) =
∫ ∞

a
dη

∑
q

P(q, η)

×
m∏

i=1

[
qi∑

s=ki

(
qi

s

)
zs

i (1 − zi )
qi−s

]
. (2)
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To analytically solve (1) and (2), we can introduce
conditional generating functions by assuming that the mul-
tiplex network has uncorrelated degrees between layers,
namely, P(q, η) = P(η) · ∏m

i=1 P(qi|η) for q ∈ Nm and η ∈
Rn, where P(η) = ∑

q P(q, η) and P(qi|η) = P(qi, η)/P(η)
for i = 1, 2, . . . , m. For each given i, define the generating
function

Gi(x|η) =
∞∑

qi=0

P(qi|η)xqi . (3)

The sth derivative of Gi is defined by G(s)
i (x|η) =∑

qi�s P(qi|η) qi!
(qi−s)! x

qi−s. By some calculations, Eqs. (1) and
(2) can be recast as

zi =
∫ ∞

a
dη P(η)

(
1 − 1

〈qi〉
ki−2∑
s=0

G(s+1)
i (1 − zi|η)

s!
zs

i

)

×
m∏
j=1
j �=i

⎛
⎝1 −

k j−1∑
s=0

G(s)
j (1 − z j |η)

s!
zs

j

⎞
⎠ (4)

and

N(k,a) =
∫ ∞

a
dη P(η)

×
m∏

i=1

(
1 −

ki−1∑
s=0

G(s)
i (1 − zi|η)

s!
zs

i

)
. (5)

Based on these equations, we can determine the singularity for
the order parameters {zi}m

i=1 at criticality. In feature-enriched
core percolation, there are naturally two sets of control param-
eters: One regulates the topology and the other the features. In
Appendix A we show that in both cases, the critical exponents
are 1/2, namely, take the same value for the ordinary core
percolation.

Moreover, let N(k,a)(q, η) be the fraction of nodes with
degrees q and feature values η that are in the (k, a) core.
Here the feature values are interpreted as in the infinitesimal
hypercube [η, η + dη] by convention since features are con-
tinuous. Clearly, if qi < ki for some i or ηr < ar for some r,
then N(k,a)(q, η) = 0. Otherwise, we have

N(k,a)(q, η) =
∑
s�q

P(s, η)

×
m∏

i=1

[(
si

qi

)
zqi

i (1 − zi )
si−qi

]
, (6)

where s = (s1, s2, . . . , sm) and the sum
∑

s�q is taken over
si � qi for all i. In k-core decomposition, an important con-
cept is the corona cluster [8], which is the subgraph of nodes
with degree k in the k core. We can extend this concept
to feature-enriched corona as the subgraph containing nodes
with degree k and feature value at least a (dimensionwise).
Assuming the conditional independence of the degrees as

before, we can derive its relative size as

N(k,a)(k) :=
∫ ∞

a
dη N(k,a)(k, η) =

∫ ∞

a
dη P(η)

×
m∏

i=1

(
G(ki )

i (1 − zi|a)

ki!
zki

i

)
, (7)

where we have applied (6) and the generating function (3).
If the feature η is discrete, we can alternatively define the
feature-enriched corona as the subgraph containing nodes
with degree k and feature value a. Hence, in analogy to (7),
this alternative version of corona follows

N(k,a)(k, a) = P(a)
m∏

i=1

(
G(ki )

i (1 − zi|a)

ki!
zki

i

)
. (8)

Define L(k,a) as the relative number of edges in the (k, a)
core normalized by the size of the core. As each edge con-
tributes two degrees, it is easy to see that the following
equation holds:

L(k,a) = 1

2

∫ ∞

a
dη

×
∑

q

(q1 + q2 + · · · + qm)N(k,a)(q, η). (9)

Assuming the conditional independence of the degrees and
using (6), we can rewrite (9) as

L(k,a) = 1

2

∫ ∞

a
dη P(η)

×
∑

q

m∑
j=1

q j

m∏
i=1

(
G(qi )

i (1 − zi|η)

qi!
zqi

i

)
. (10)

III. RESULTS FOR SINGLE NETWORKS

As a representative example, we here consider Erdős-
Rényi (ER) networks (Poisson degree distributions) with a
single layer, i.e., m = 1. The marginal degree distribution is
P(q) = e−λλq/q! for q � 0, where the parameter λ = 〈q〉 is
the average degree. We assume the feature space is one dimen-
sional and follows the standard normal distribution, namely,
n = 1 and the feature admits the marginal probability density
P(η) = ϕ(η) := (2π )−1/2e−η2/2 for η ∈ R and the marginal
distribution function is given by �(η) = ∫ η

−∞ ϕ(y)dy.

A. Uncorrelated degree and feature

In the uncorrelated case, the joint degree-feature
distribution of the network becomes P(q, η) =
(2π )−1/2e−λ−η2/2λq/q!. This allows us to analytically reveal
the interplay between topology and feature in core structures.
For example, we find L(k,a) ∼ λ

2 [1 − �(a)]N(k,a) for a ∈ R
when k is large (see Appendix B). Figure 2 shows the behavior
of feature-enriched core percolation for small k with respect
to different λ and a. The agreement between simulations and
theory is very good. Some remarks are as follows.
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FIG. 2. (a) and (b) Relative size of the (k, a) core for ER net-
works of size N = 106 with average degree λ for different k = 2 (red
plots), k = 3 (blue plots), k = 4 (green plots), and feature value a.
The corona cluster size is also shown in (b). (c) and (d) Relative edge
numbers of the (k, a) core for the corresponding ER networks. Solid
and dashed lines are based on theory and symbols are simulations
averaged over 100 network realizations.

First, we observe that the size N(k,a) of the (k, a) core
experiences a continuous phase transition in terms of not
only the network connectivity [Fig. 2(a)] but the feature value
[Fig. 2(b)] when k = 2. When k � 3, the percolation be-
haviors become discontinuous at the critical points. When
the node feature is taken into account, the simple order of
enclosed k cores is broken, giving a landscape of feature-
enriched cores. For instance, for an ER network with λ = 4,
its 3 core [or equivalently its (3,−∞) core] nearly triples its
(2,0) core [cf. Fig. 2(a)]. There is also a region around λ = 6
where the (3,0) core vanishes but the 4 core remains quite
strong.

Second, the nonmonotonicity of the corona cluster shown
in Fig. 2(b) is qualitatively similar to the phenomenon in or-
dinary core percolation under attacks [8]. This is because the
parameter a here plays a similar role of occupation probability
in the uncorrelated situation. However, noting that the feature
assumes the standard normal distribution, we observe that
the humps of the corona curves are around the mean value
a = 0 of the feature distribution and dying away beyond, for
example, the 3-σ range (which is always the case at least for
small k), in line with the statistical characteristics of a normal
distribution. This feature distribution relevant phenomenon
may be helpful in determining cortical regions of degeneration
in brain networks [26,27] and is fundamentally different from
the ordinary corona evolution under attacks.

On top of the size of the (k, a) core, the relative num-
ber L(k,a) of edges shows analogous structural transitions at
the same critical points in terms of network connectivity
[Fig. 2(c)] and feature values [Fig. 2(d)]. By the definition
in (9), it is easy to check that 2L(k,a) is the average degree
or density of the (k, a) core. Comparing Figs. 2(a) and 2(c),

FIG. 3. (a) Relative size of the (k, 0) core for ER networks of
size N = 106 with average degree λ for different k = 2 (red plots),
k = 3 (blue plots), k = 4 (green plots), and θ . (b) Relative size of
the (k, 0) core as a function of θ for ER networks with λ = 10. Solid
and dashed lines are based on theory and symbols are simulations
averaged over 100 network realizations.

we observe that as a grows from −∞ to 0, the size of the
(k, a) core is shrunk roughly by half but its density is reduced
by about three-quarters. The qualitative relation can also be
verified by the expressions (B2) and (B3). This phenomenon
indicates that, compared to the size, the density of a core is
more sensitive to the variation of features.

B. Correlated degree and feature

Next we study single networks with correlated degree
and feature distributions by employing the bivariate Farlie-
Gumbel-Morgenstern (FGM) copula [28]. We consider the
joint cumulative degree-feature distribution

F (q, η) = F1(q)F2(η)

× {1 + θ [1 − F1(q)][1 − F2(η)]}, (11)

where F1(q) = e−λ
∑q

s=0 λs/s! is the cumulative degree distri-
bution for ER networks and F2(η) is chosen as the cumulative
feature distribution for a uniform random variable over
{−1, 1}. It is not difficult to see that (11) gives the right dis-
tribution since F1(∞) = F2(∞) = 1, F (q,∞) = F1(q), and
F (∞, η) = F2(η). Here |θ | � 1 is the parameter controlling
the coupling strength of the two marginal distributions. The
degree and feature are positively correlated if θ > 0 and they
are negatively correlated if θ < 0. When θ = 0, the degree
and feature become independent.

Note that we here consider a discrete feature to avoid the
mixed joint distribution. Since F2(0) = �(0) = 1/2, the (k, 0)
core is equivalent to the corresponding scenario explored in
Sec. III A when θ = 0 due to the symmetry of the feature
distributions. In Fig. 3 we show the behavior of (k, 0) core
for different λ and θ .

It is immediate to observe that the positive correlation
enhances the feature-enriched cores whereas the negative cor-
relation diminishes them. This phenomenon holds for all k.
It can be explained as follows. When nodes of degree less
than k are removed, they tend to be those with low features
(which will be deleted anyway under the feature-based rule)
if there is a positive correlation. Therefore, fewer nodes are
removed overall, which gives rise to a stronger core. Likewise,
in the case of negative correlation, those nodes having low
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degrees tend to have higher features, leading to more deletion
in the feature-enriched pruning process. Remarkably, the cor-
relation does not alter the nature of the phase transition for
core percolation, namely, k = 3 remains the separatrix for the
continuous and discrete percolation transition.

The change of the (k, 0) core with respect to θ shown
in Fig. 3(b) indicates the existence of an abrupt percolation
transition for k � 3 (the figure shows the case for k = 4). This
underscores the nontriviality of the role of correlation between
the degree and feature. As suggested in [15], features can be
related to network construction and dynamical processes on
top of the network in reality, which naturally lead to some
sort of correlation. It is also worth mentioning that the FGM
family is limited to characterize weak correlation only, with
the correlation coefficient in [−1/3, 1/3] [28]. This explains
the gentle increments relevant to θ in Fig. 3(b).

IV. RESULTS FOR DUPLEX NETWORKS

To appreciate both the node and edge features incorpo-
rated in our theoretical framework, in this section we consider
networks with two layers, namely, m = 2. For the sake of
simplicity, we restrict ourselves to the case of uncorrelated
degrees and features. We first consider the symmetric situ-
ation in Secs. IV A and IV B, where both layers have the
same distributions, and then examine an asymmetric situa-
tion in Sec. IV C for completion. We take n = 1 and the
node feature is chosen again as the standard normal dis-
tribution with probability density ϕ(η) = (2π )−1/2e−η2/2 for
η ∈ R. For a general number m of layers, we can show
that for any given k = (k1, k2, . . . , km) ∈ Nm and a ∈ R,
N(k,a) ∼ [1 − �(a)][1 − ρ(k)]m for some ρ(k) ∈ [0, 1] rely-
ing on the network topology (see Appendix C for general
results).

A. Networks with Poisson degree distributions

Assume that the two layers in the network have the Pois-
son degree distributions P(q1) = e−λ1λ

q1
1 /q1! and P(q2) =

e−λ2λ
q2
2 /q2! with λ =: λ1 = λ2. In Figs. 4(a) and 4(b) we show

the behavior of N(k,a) for the duplex ER network scenario with
k = (k1, k2).

The feature-enriched (k, a) core displays a continuous per-
colation transition in the case of k = (1, 1). However, there is
a jump at the critical point of the network connectivity when
k1 + k2 � 3 [cf. Fig. 4(a)]. This phenomenon is qualitatively
consistent with some other models of core percolation under
multiplex topologies [12,29]. As in the case of single net-
works, the continuous or discontinuous phase transition nature
for topology maps to the feature space in the multiplex net-
work setting. Figure 4(b) shows that the continuous transition
exists only for the (k, a) core with k = (1, 1). For any k and
a, the relative size of the (k, a) core is under the characteristic
curve 1 − �(a) of the feature, which agrees with our theory.
Note that the gap between them is minimal for a significant
proportion of a [e.g., a ∈ (−∞, 0)] even for inner cores,
highlighting the robustness of ER-ER topology. Furthermore,
in the spirit of robustness measure R [30], it seems plausible
to quantify network robustness against feature-based attacks

FIG. 4. (a) and (b) Relative size of the (k, a) core for duplex
ER networks of size N = 106 with average degree λ for differ-
ent k = (1, 1) (red plots), k = (1, 2) (blue plots), k = (2, 2) (green
plots), k = (1, 3) (magenta plots), k = (2, 3) (yellow plots), k =
(3, 3) (cyan plots), and feature value a. (c) and (d) Relative size of
the (k, a) core for duplex EXP networks of size N = 106 with the
parameter μ for different degree k and feature a analogously. Solid
and dashed lines are based on theory and symbols are simulations
averaged over 100 network realizations.

by calculating the area between the two curves N(k,a) and
1 − �(a) over the whole range of a.

B. Networks with exponential degree distributions

Next we consider the duplex networks with two
identical exponential (EXP) degree distributions, namely,
P(q) = (1 − e−1/μ)e−q/μ for q � 0. Such networks have a
heterogeneous degree distribution with the parameter μ =
1/ ln(1 + 1/〈q〉) ∼ 〈q〉 approximating the mean degree of (a
layer of) the network [25]. The corresponding results of N(k,a)

in this type of network are shown in Figs. 4(c) and 4(d).
As one would expect, the hybrid phase transitions also

exist in the duplex EXP networks. However, the duplex EXP
networks have smaller feature-enriched cores than the corre-
sponding duplex ER networks with the same mean degree or
density. This holds true across the range of all feature values.
Note that μ = 10.5 set in Fig. 4(d) is equivalent to an average
degree 〈q〉 ≈ 10.

Comparing Figs. 4(a) and 4(b) with Figs. 4(c) and
4(d), we interestingly observe that N((2,2),a)(ER-ER) �
N((1,3),a)(ER-ER) whereas N((2,2),a)(EXP-EXP) �
N((1,3),a)(EXP-EXP) for all a. The relationship among
N((k1,k2 ),a) when k1 + k2 ≡ const certainly relies on the
specific network topology, but an insight here is that an
uncorrelated feature would not change the size order among
them. This is potentially applicable as the core decomposition
sequence in multiplex networks is found to be correlated
with geometric embedding of real networks [31] as well as
certain functional areas revealed by brain-computer interface
training [32].
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FIG. 5. Relative size of the (k, a) core for ER-EXP networks of
size N = 106 with average degree λ = μ for different k = (1, 1) (red
plots), k = (1, 2) (blue plots), k = (2, 2) (green plots), k = (1, 3)
(magenta plots), k = (2, 1) (khaki plots), k = (3, 1) (purple plots),
and feature value a. Solid and dashed lines are based on theory and
symbols are simulations averaged over 100 network realizations.

C. Networks with asymmetric layer degree distributions

Finally, we examine an asymmetric duplex network
ER-EXP, namely, one layer follows the Poisson degree
distribution P(q) = e−λλq/q! and the other layer follows
the exponential degree distribution P(q) = (1 − e−1/μ)e−q/μ,
with μ = λ and q � 0. The results of N(k,a) are shown in
Figs. 5(a) and 5(b).

The hybrid phase transition of the feature-enriched (k, a)
core regarding the different combinations of k1 and k2

remains consistent with the above symmetric scenarios.
However, we observe several remarkable crossover phe-
nomena in the network topological space. For example,
the crossovers among N((2,2),a)(ER-EXP), N((1,3),a)(ER-EXP),
and N((3,1),a)(ER-EXP) in Fig. 5(a) indicate that within a cer-
tain range of λ, one of these feature-enriched cores can be
more robust than the other two. This is in sharp contrast to the
symmetric cases in Figs. 4(a) and 4(c). Moreover, in the fea-
ture space, we also observe similar crossover phenomena in
Fig. 5(b) at a given λ, which are nonexistent in Figs. 4(b) and
4(d). This suggests a deeper nexus between the node feature
and network topology and again highlights the nontriviality
of the feature-enriched core percolation even in the simplest
scenario of uncorrelated degrees and features.

V. REAL NETWORK EXAMPLES

In this section we consider two real-world networks to
show the effectiveness of our feature-enriched percolation
framework. The first network SEM is a semantic association
network of the Edinburgh Associative Thesaurus [33] with
23 219 nodes and 325 029 edges. This is a single network, in
which nodes are phrases and two nodes are connected by an
edge if they are associated in the word association user exper-
iments. The node feature is taken as the length of the phrase
ranging from 0 to 28. The second network FIN is a financial
market network of China [34], where nodes are companies
and two nodes are joined if they have a liability guarantee
relationship. This network contains 4354 nodes and is duplex
with the first layer (for the year 2013) having 3618 edges and
the second layer (for the year 2014) having 4102 edges. We
take the node feature as the current ratio at December, which
ranges from 0.13 to 10.74.

FIG. 6. (a) Relative size of the (k, a) core for SEM and its ran-
domized version with k = 2 and a = 4 (red square), k = 3 and a = 4
(red triangle), k = 2 and a = 7 (blue square), and k = 3 and a = 7
(blue triangle). (b) Relative size of the (k, a) core for FIN and its ran-
domized version with k = (1, 2) and a = 1 (red square), k = (2, 2)
and a = 1 (red triangle), k = (1, 2) and a = 2 (blue square), and
k = (2, 2) and a = 2 (blue triangle).

We show in Fig. 6 the feature-enriched core size N(k,a)

in these two networks for different k and a against that the
analytic results in the randomized versions. To generate the
joint degree-feature distributions of the corresponding ran-
domized networks, we assume the degree distributions in the
two layers in the FIN network are independent. Note that
the higher-dimensional copula takes the same format of (11)
since the only correlation we consider here is between the
degree and feature [35]. The empirical degree distributions
and the degree-feature correlation parameters θSEM = −0.31
and θFIN = 0.47 are then fed into the corresponding FGM
copulas to calculate the theoretical results. We observe from
Fig. 6 that there are some differences in the feature-enriched
core sizes between real networks and analytic results. This
is arguably due to the presence of intricate structures such
as interlayer degree correlation, assortativity, clustering, and
communities, which all influence the percolation process.

VI. CONCLUSION

The theory of k-core percolation is an important tool for
understanding network structure and resilience. In this paper
we have introduced the concept of the feature-enriched (k, a)
core and presented a general framework for (k, a)-core perco-
lation over multiplex networks. We have analytically derived
the corona cluster, size, and number of edges of the (k, a)
core. A hybrid phase transition combining a jump and a square
root singularity was observed at the critical points in both
the network topology and the feature space. The influence
of correlation between degree and feature was demonstrated
through the FGM family, which favorably characterizes a
continuous variation of correlation between two distributions
with given marginals. We found that the (k, a) core grows
monotonically with the correlation and that a first-order per-
colation transition occurs at a critical correlation level for
k � 3 in single networks. In the duplex network scenarios,
we show that the transitions for the (k, a) core are continuous
only for k = (1, 1) and more inner cores display an abrupt
percolation transition in terms of the connectivity as well as
the feature, limited by a characteristic curve when the feature
space is one dimensional. We hope this work can be a helpful
starting point for the development of new feature-enriched
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percolation models and analytical and phenomenological
studies in feature-rich complex systems.

APPENDIX A: CRITICAL EXPONENTS OF THE
PHASE TRANSITION

The set of equations in (4) can be represented by zi =
fi(z1, z2, . . . , zm) for i = 1, 2, . . . , m. Let λi := 〈qi〉 be the
control parameter for the network topology. At N(k,a) = 0 we
have the critical points {zic}m

i=1, where the (k, a) core starts to
emerge. From (5) we observe no special behavior at {zic}m

i=1
and that the singularity of N(k,a) comes from {λi}m

i=1 in (4).
When {λi}m

i=1 are small, the system only has trivial solu-
tions zi = 0 for i = 1, 2, . . . , m and hence there is no (k, a)
core. The critical points are the largest nontrivial solutions
zi ∈ (0, 1], which can be obtained by solving the system (4)
along with the determinant |I − J| = 0 invoking the implicit
function theorem, where I ∈ Rm×m is the identity matrix and
J = ( ∂ fi

∂z j
) ∈ Rm×m is the Jacobian matrix.

For simplicity, we consider a symmetric scenario, where all
layers have the same degree distribution, k = (k, k, . . . , k) ∈
Rm, and a = a ∈ R. Hence, we have λi ≡ λ for i =
1, 2, . . . , m and write (4) as z = f (z, λ), where z is the single
order parameter. (Note that f is also a function of features,
but they are taken as constants for now for the sake of clarity.)
We set z = zc + ε and λ = λc + δ and perform the Taylor
expansion at ε → 0 and δ → 0:

zc + ε = f (zc, λc) + ∂

∂z
f (zc, λc)ε + + ∂

∂λ
f (zc, λc)δ

+ 1

2!

∂2

∂z2
f (zc, λc)ε2 + o(δ) + o(ε2). (A1)

Noting that zc = f (zc, λc) and 1 = ∂
∂z f (zc, λc), we have from

(A1) that

ε = z − zc ∝ (λ − λc)1/2. (A2)

For the feature space, we may take, for example, the expecta-
tion μ := ∫

ηP(η)dη as the control parameter. Then Eq. (4) is
written as z = f (z, μ). By setting z = zc + ε and μ = μc + ζ

and performing the expansion at ε → 0 and ζ → 0, we obtain
similarly

ε = z − zc ∝ (μ − μc)1/2. (A3)

The enriched-core percolation is a hybrid phase transition
with a jump of the order parameters and a square root sin-
gularity at the criticality. The general cases can be shown with
a similar procedure but more tedious calculations because
vector-valued functions are used for the expansion.

APPENDIX B: UNCORRELATED DEGREE AND FEATURE
IN SINGLE NETWORKS

In uncorrelated networks with a Poisson degree distribution
P(q) = e−λλq/q! and a standard normal feature η, we can
derive

z = [1 − �(a)]

(
1 − e−λz

k−2∑
s=0

(λz)s

s!

)
(B1)

and

N(k,a) = [1 − �(a)]

(
1 − e−λz

k−1∑
s=0

(λz)s

s!

)
(B2)

by employing (4), (5), and the generating function G(x) =
eλ(x−1). Using (B1) and (10), we have

L(k,a) = [1 − �(a)]
λz

2

= λ

2
[1 − �(a)]2

(
1 − e−λz

k−2∑
s=0

(λz)s

s!

)
. (B3)

In view of (B2) and (B3), we obtain

L(k,a) ∼ λ

2
[1 − �(a)]N(k,a) (B4)

for large k, by applying the Stirling formula.

APPENDIX C: CORE SIZE IN MULTIPLEX NETWORKS

For the ease of presentation, we begin with a multi-
plex network with m layers following the same Poisson
degree distribution P(q) = e−λλq/q! and an uncorrelated fea-
ture η following the standard normal distribution. If k =
(k, k, . . . , k) ∈ Nm, we obtain by (4) and (5) that

z = [1 − �(a)]

(
1 − e−λz

k−2∑
s=0

(λz)s

s!

)

×
(

1 − e−λz
k−1∑
s=0

(λz)s

s!

)m−1

(C1)

and

N(k,a) = [1 − �(a)]

(
1 − e−λz

k−1∑
s=0

(λz)s

s!

)m

. (C2)

When λ is small, Eq. (C1) only has a trivial solution z = 0
and hence N(k,a) ≡ 0 by (C2). When λ is sufficiently large,
Eq. (C1) begins to have positive solutions and N(k,a) = [1 −
�(a)][1 − ρ(k)]m, where ρ(k) ∈ (0, 1) depending on the de-
gree distribution. Hence, N(k,a) � 1 − �(a), where the upper
bound is not achievable in ER networks.

For general (but layer-identical) degree and (potentially
correlated) feature distributions, the same argument gives us
N(k,a) = [1 − ρ(k)]m

∫ ∞
a dηP(η) for some ρ(k) ∈ [0, 1] de-

pending on the degree distribution and correlation. When
the network has different layer degree distributions and gen-
eral k = (k1, k2, . . . , km), we can similarly obtain N(k,a) ∼
[1 − ρ(k)]m

∫ ∞
a dη P(η), where ρ(k) ∈ [0, 1] relying on the

degrees and their correlation with features.
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