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In the study of dynamics on networks, moment closure is a commonly used method to obtain low-dimensional
evolution equations amenable to analysis. The variables in the evolution equations are mean counts of subgraph
states and are referred to as moments. Due to interaction between neighbors, each moment equation is a function
of higher-order moments, such that an infinite hierarchy of equations arises. Hence, the derivation requires
truncation at a given order and an approximation of the highest-order moments in terms of lower-order ones,
known as a closure formula. Recent systematic approximations have either restricted focus to closed moment
equations for SIR epidemic spreading or to unclosed moment equations for arbitrary dynamics. In this paper, we
develop a general procedure that automates both derivation and closure of arbitrary order moment equations for
dynamics with nearest-neighbor interactions on undirected networks. Automation of the closure step was made
possible by our generalized closure scheme, which systematically decomposes the largest subgraphs into their
smaller components. We show that this decomposition is exact if these components form a tree, there is
independence at distances beyond their graph diameter, and there is spatial homogeneity. Testing our method
for SIS epidemic spreading on lattices and random networks confirms that biases are larger for networks with
many short cycles in regimes with long-range dependence. A Mathematica package that automates the moment
closure is available for download.
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I. INTRODUCTION

The dynamics of complex systems are usually most accu-
rately represented by high-dimensional stochastic simulation
models. However, their large state space makes exact math-
ematical analysis prohibitive. Therefore, one often looks for
low-dimensional approximations that permit analysis. In mo-
ment closure, one achieves this by studying the time evolution
of a finite set of “moments” rather than that of the full prob-
ability distribution of the considered stochastic dynamical
system [1]. The complete set of moment equations forms an
infinite hierarchy of ordinary differential equations (ODEs),
with lower-order moments depending on higher-order ones.
The approximation consists then of truncating the hierarchy
at a chosen order and replacing the highest order moments
by functions of the lower-order moments. Such functions
are known as closure formulas, and they can be obtained
in various ways [1], such as via an assumption of sta-
tistical independence [e.g., 2–4], physical principles (e.g.,
maximum entropy [5]), timescale separation [6], and as-
sumptions on the type of probability distribution [e.g., 7].
In this work, we only consider closures derived from an as-
sumption of statistical independence, which is equivalent to
a mean-field approximation, a method originating from the
statistical physics of phase transitions in materials [8–11].
First-order moment closure assumes pairwise independence
of species counts and corresponds to the “mean field” or
“simple mean field” [e.g., 12–14], resulting in equations only
for total counts of each species. Likewise, second order mo-
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ment closure assumes independence of pair counts in larger
units, and corresponds to the “pair approximation” [e.g.,
15–20], which also includes equations for pair counts. We
aim to exploit this connection between moment closure and
mean-field approximations to generalize and automate the
derivation of arbitrary-order mean-field models for arbitrary
dynamics with nearest-neighbor interactions on undirected
networks. In the rest of our introduction, we introduce our
approach with more precision, discuss the relevant litera-
ture, state our aims, and provide an overview of the paper
contents.

In general, moments in the moment closure for dynam-
ics on networks represent the expected frequencies of small
subgraph states known as network motifs [21]. Derivation of
the moment equations proceeds from smaller- to larger-sized
motifs, with dynamics of mean motif counts of size m de-
pending only on mean motif counts of size m and m+1 if
the dynamics has only nearest-neighbor interactions. Hence,
a system of ODEs obtained in such a manner for motif
counts up to a maximum considered size k (also referred to
as the order of the moment closure) is always underdeter-
mined, because it depends on motifs of size k+1 but does
not contain equations for them. Therefore, as the second step
of moment closure, a closure approximation is applied by
expressing counts of (k+1)-size motifs as functions of counts
of {1, ..., k}-size motifs, closing the system of ODEs. In this
substitution, larger-sized motifs factorize in terms of smaller-
sized ones, which we will justify, as mentioned above, by
an assumption of statistical independence. For homogeneous
networks, closures that are valid at the individual level (i.e.,
concerning states of given nodes) are also valid at the popula-
tion level (i.e., concerning total counts or averages of states
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in the whole network) [22], which then permits a compact
description in terms of population-level quantities. Yet, the
number of motif types, and hence equations, increases com-
binatorially with k. It is then hoped that the derivation can
be stopped at an order low enough for the resulting system
of ODEs to be sufficiently amenable to analytical or numer-
ical methods and high enough to satisfy the independence
assumptions underlying the closure approximately. We note
that various other types of approximations exist that focus
on specific types of subgraphs, such as active motifs [23],
star graphs [24,25], or hypergraphs of cliques [26,27] or of
general motifs [28]. These have also been referred to as
moment closure [e.g., in 29], but their truncation order and
closure formulas are implicit in the method. At present, the
equations obtained by the approach of references [24–28] are
referred to as approximate master equations.

In the context of population dynamics on networks or
lattices, moment closure methods have been used to study ap-
plications such as spatial ecology [e.g., 15,18,19], epidemics
[e.g., 16,17,20,21,30,31], opinion formation [e.g., 29], evo-
lution of cooperation [e.g., 32], among others. Despite the
wide use of moment closure in applications, derivation of
the moment equations is customarily done separately for each
considered process and approximation order, while justifying
the used closure formulas only heuristically. Comparatively
few studies have shown how moment equations derive in gen-
eral from the master equation or how closure formulas arise
from precisely defined independence assumptions. Regarding
the former, an automated algorithm to derive (unclosed) mo-
ment equations for arbitrary adaptive dynamics on directed
networks was recently developed by Danos et al. [33]. Re-
garding the latter, attention has centered on the specific case
of SIR epidemic spreading [2–4] because proving validity
of low-order closures is least challenging here. In particular,
Sharkey et al. [3] proved that an exact individual-level closure
approximation exists for motifs that have an all-susceptible
set of nodes which cuts all possible chains of infection be-
tween the remaining parts when removed. In tree networks,
this is already possible with three nodes such that the largest
required motif in the moment equations is of size 2. In case of
nontree networks, larger motifs need to be taken into account,
resulting in a larger number of equations. Hence, while Danos
et al. [33] have shown that it is feasible to derive moment
equations in a generic form, the work on SIR spreading [2–4]
indicates which type of independence assumptions are re-
quired to obtain valid closures.

In this paper, we provide a first fully automated pro-
cedure for both derivation and closure of population-level
moment equations up to any order and for arbitrary dynamics
with at most nearest-neighbor interactions on undirected net-
works. Automated derivation is made possible by our generic
moment equation (6), which we derived from the master equa-
tion. As mentioned above, more general derivations than ours
exist [33]. Hence, our main contribution is in automating also
the closure, which we show and justify in detail (Sec. VII).
Our closure scheme [Eqs. (23) or (24)] generalizes previous
insights [2–4] and relies on the theory of Markov networks
[34] to make it applicable to motifs of any type and size,
such that it can close any set of moment equations at arbitrary
order. We show that our closure scheme is exact if the motifs

that are decomposed by the closure form a tree and if there is
independence beyond their graph diameter.

As shown in Fig. 1, the whole procedure consists of four
main steps: (i) enumeration of all required motifs up to size
k, (ii) derivation of the unclosed ODEs for these motifs,
(iii) elimination via conservation relations, and (iv) closure
of the system of ODEs. We will refer to the final closed
system of ODEs as the k-th order mean field, or MFk in short.
Elimination is not strictly necessary but it increases efficiency,
particularly for higher-order approximations. We developed a
Mathematica [35] package that derives MFk by performing
steps (i)–(iv). The required inputs for this algorithm are: the
counts of all induced subgraphs in the underlying network
up to size k, and, the matrices R0, R1 with conversion and
interaction rates. A code example with output is discussed in
Appendix G and the package is available for download [36].

In Secs. II and III, the underlying Markov chain for the
network and its motifs are introduced. Section IV explains
the general formula (6) for step (ii), which follows from the
master equation (for its derivation, see Appendix A). The
conservation relations used for elimination of variables from
the ODEs in step (iii) are shown in Eqs. (8) and (9) of Sec. V.
The form of the system of moment equations up to a trun-
cation order k (10) and the variable elimination are shown in
Sec. VI, resulting in the unclosed system (13). Finally, general
expressions to close the system of moment equations in step
(iv) are derived in Sec. VII [Eqs. (23) or (24)], resulting in
form (14). In Sec. VIII we set up MF1-5 models of SIS
epidemic spreading and compare their steady states to those of
simulations on a selection of networks. We focus in particular
on the square lattice, for which low-order moment closures
fail, due to its large number of cycles of any size, and we
compare against random networks and higher-dimensional
lattices, for which they work well.

II. THE UNDERLYING DISCRETE-STATE
CONTINUOUS-TIME MARKOV CHAIN

We consider a dynamical system on a fixed undirected
graph G with N nodes and adjacency matrix A ∈ {0, 1}N×N ,
where each node may have one out of n discrete states. We
may see the nodes as locations and the states as species, such
that the space at node i ∈ {1, ..., N} is occupied by exactly
one species in {1, ..., n}. We denote the state vector at time
t by X (t ) such that [Xi(t )]N

i=1 ∈ {1, ..., n}N . The type of dy-
namics we consider is a continuous-time Markov chain with
two Poisson process transition types, with rates specified by a
n × n matrix R0 and a n × n × n tensor R1:

(i) R0 specifies spontaneous conversion rates. Any node
with state a may change spontaneously into state b, with rate
R0

ab;
(ii) R1 specifies nearest-neighbor-induced conversion

rates. Any node with state a may change into state b for each
link to a node with state c, with rate R1

abc.
This corresponds to the reaction rules

(1)

A simple example is susceptible-infected-susceptible (SIS)
epidemic spreading on a square two-dimensional lattice of
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FIG. 1. Mean-field models for multistate dynamics on networks via moment closure. Left: general form. Right: example (MF2 for SIS
spreading). Input (top): network G, the considered process defined by the reaction rate matrices R0, R1. Output (bottom): closed system
of differential equations representing mean frequencies of motif counts in the network up to a maximum size k. The four main steps are:
(i) enumerate all required motifs, (ii) derive the moment equations, (iii) substitute to be eliminated terms via conservation relations, (iv) close
the system via a closure scheme.

√
N × √

N nodes (say, periodic in both directions). For SIS
spreading, each node may have one of two states, susceptible
or infected, { , } = {1, 2}, for t ∈ [0,∞) and i ∈ {1, ..., N}.
S nodes can become infected at rate β per infected neighbor
and I nodes recover spontaneously at rate γ . Hence, for SIS
spreading, the matrix R0 has a single nonzero entry R0

2,1 =
γ > 0 (for spontaneous recovery) and the tensor R1 has a
single nonzero entry R1

1,2,2 = β > 0 (for infection along IS
links, denoted by the symbol below), corresponding to
the reaction rules

(2)

III. NETWORK MOTIFS AND THEIR COUNTS

We define network motifs as (typically small) graphs with
given state labels. The order of a motif is the number of
nodes it has. For example, in our example, I nodes and IS
links are examples of first and second-order motifs. We use
square brackets to denote the count of occurrences of motifs

in (G, X ), i.e., the number of occurrences of I nodes is [ ].
Hence, we can write, e.g., respectively, for I nodes, IS links,
and ISI chains

where we omitted the dependence on t . The Kronecker δ,
δy(x), is 1 if x equals y and 0 otherwise. By construction, the
motif counts on the left-hand side are random, since X (t ) is
random.

Generalizing the above examples, a network motif of order
m, is a network with m nodes, each of which are labeled
with a state. It his hence fully characterized by its con-
nectivity pattern between nodes and its state labels on the
nodes. The connectivity between motif nodes, i.e., the motif
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without labels, will be indicated by a, which, depending on
the context, denotes the adjacency matrix of the motif, or a set
a ∈ ({1, ..., m} × {1, ..., m})μ of links between the m nodes
[the indices of the nonzero entries in the adjacency matrix of
the motif such that μ � m(m − 1)/2], or a graphical repre-
sentation of the connectivity. For instance, two linked nodes
are displayed according to these representations as (0 1

1 0),

{(1, 2)}, or , respectively. As we focus only on undirected
networks, each pair in the pair representation is bidirectional,
i.e., we write {(1, 2)} instead of {(1, 2), (2, 1)}. Motif labels
will be indicated via a vector x = (x1, ..., xm ) ∈ {1, ..., n}m

with state labels xp at positions p = 1, ..., m. Hence, the pair
of x and a describes the motif, which we write as xa. For
example (2, 1)(1,2) = , )(1,2) is the link.

For a general network motif xa, the total count [xa] =
[xa](t ) in the network G with fixed adjacency A and node
labels X = X (t ) is

[xa] =
∑

i∈S(m,N )

δa(Ai)δx(Xi), (3)

where S(m, N ) is the set of all m-tuples from {1, ..., N} with-
out repetition, which has size |S(m, N )| = N!/(N − m)!. For
instance,

∑
i∈S(3,N ) =∑i∈{1,...,N}

∑
j∈{1,...,N}\i

∑
k∈{1,...,N}\{i, j}.

For an index set i ⊂ {1, ..., N}m of length m we use the
convention that Ai ∈ {0, 1}m×m and Xi ∈ {1, ..., n}m are the
restrictions of matrix A and vector X to the index set i. We
count exact matches between the motif and the subgraph in
(G, X ). This means that the counted motif needs to have a as
induced subgraph of G, with matching state labels. Counting
via Eq. (3) leads to multiple counting of motifs with sym-
metries (more precisely: automorphisms—see Appendix A),
with multiplicity equal to the number of symmetries. For

instance, is counted once, but or is counted

twice, and is counted six times.

IV. DIFFERENTIAL EQUATIONS FOR MOTIF COUNTS

In our SIS spreading example, the expected rate of change
for the count of infected nodes is well known to satisfy

(4)

where 〈·〉 brackets denote expectations over many independent
realizations of the underlying Markov chain. Relation (4) is
exact for finite network sizes N and can be derived from
the Kolmogorov-forward (or master) equation for the Markov
chain, see Appendix A. Note that the structure in Eq. (4) is
such that the expected rate for the frequency of a motif of size
m = 1 depends on the counts of motifs of size m = 1 (here
〈[ ]〉) from spontaneous conversions (here recovery) and size
m = 2 (here ) from nearest-neighbor-induced conversions
(here infection).

This is true in general such that the count of a general motif
[xa](t ) of size m satisfies an ordinary differential equation of
form

d

dt
〈[xa]〉 = Fxa

(〈[
yb1

1

]〉
,
〈[

yb2
2

]〉
, ...
)
, (5)

where |yi| ∈ {m, m+1}. On the right-hand side the [ybi
i ](t )

stand for counts of motifs of size m or m+1 on which the
dynamics of 〈[xa]〉 depend. Our package expresses the right-
hand side of the differential equation (5) for arbitrary motifs
xa of size m in the general form

d

dt
〈[xa]〉 =

m∑
p=1

n∑
k=1

n∑
c=1

{(
R0

kxp

n
+ κxa

p,cR1
kxpc

)〈[
xa

p→k

]〉−
(

R0
xpk

n
+ κxa

p,cR1
xpkc

)
〈[xa]〉

+
∑

yb∈N c
p (xa

p→k )

R1
kxpc〈[yb]〉 −

∑
yb∈N c

p (xa )

R1
xpkc〈[yb]〉

}
. (6)

Here, xp→k is the state label vector obtained by setting the
state label of the pth element of x to k. κxa

p,c is the c degree
at position p in motif xa, i.e., it is the number of connections
node p in motif xa has to nodes with state label c. The set
N c

p (xa) is defined as

N c
p (xa):=

m+1⋃
�=1

{
yb:|y|=m+1, y�=c, yb

�→∅=xa, (�, p)∈b
}
,

and contains all motifs yb of order m+1 that extend the
state label vector x by one new node with state label c and
extend adjacency a by links to the new node, where yb

�→∅
denotes the mth order connected motif obtained by delet-
ing the �th node of yb and its links. In Fig. 5, we show
the dependence of each subgraph type on subgraphs of size
m + 1 up to order 4. The differential equation (6) shows how
the expected count of xa is increased by transitions into

xa—the positive terms—and decreased by transitions out of
xa—the negative terms. This happens through spontaneous
conversions (terms with R0), through nearest-neighbor in-
teraction between nodes within the motif (first two terms
with R1), or through nearest-neighbor interaction with nodes
outside the motif (last two terms with R1). Note that equiv-
alent motifs up to permutation (isomorphic motifs—see
Appendix A) result in the same equation, such that we choose
the same representative node indexing for each equivalence
class.

V. CONSERVATION RELATIONS

Conservation relations are linear algebraic relations be-
tween motif counts. For example, for SIS spreading on a
square lattice with periodic boundary conditions, we have for
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first and second-order motifs:

Such conservation of node and link counts occurs because our
graph G is fixed. We can use the total counts on the right-hand
side as normalizing factors such that we may write

where �·� is our notation for normalized motif counts. For
networks with homogeneous degree, one can also write con-
servation equations of the type [[ ]] = [[ ]] + [[ ]].

In general, for each adjacency matrix a of possible motifs
of size m the conservation relation∑

x:|x|=m

[xa](t ) = [a], where [a] =
∑

i∈S(m,N )

δa(Ai), (7)

holds. The overall count [a] of induced subgraphs a in graph
G is constant in time, and split up between all possible la-
belings. We can therefore use [a] as a normalization factor
for the (variable) counts of motifs such that we may consider
normalized motif counts

�xa� := [xa]/[a], such that
∑

x:|x|=m

�xa�(t ) = 1, (8)

is the conservation relation for the normalized quantities. For
networks with homogeneous degree there is the additional
type of conservation relation

n∑
k=1

�xa
p→k� = �xa

p→∅�, (9)

for each stub p of the motif xa (a stub is a node with degree
1 in a). The conservation relations (8) and (9) can be used to
reduce the number of variables in the moment equations via
substitution. This can result in a substantial reduction in the
number of moment equations (see Table II).

VI. TRUNCATION AND SUBSTITUTION

When we use Eq. (6) to express expected rates of change
for the set of motifs up to a chosen maximum size k, we obtain
a truncated hierarchy of moment equations. This linear system
of differential equations has the form

⎡
⎢⎢⎣

ẋ1

ẋ2
...

ẋk

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

Q1 Q12 0 · · · · · · 0

0 Q2 Q23 0 · · · ...
... 0 . . .

. . . 0
...

... · · · 0 Qk−1 Qk−1,k 0
0 · · · · · · 0 Qk Qk,k+1

⎤
⎥⎥⎥⎥⎥⎦.

⎡
⎢⎢⎢⎢⎣

x1

x2
...

xk

xk+1

⎤
⎥⎥⎥⎥⎦ =:

⎡
⎢⎢⎢⎢⎢⎣

x1 x2 ··· xk−1 xk xk+1

ẋ1 Q1 Q12 0 · · · · · · 0

ẋ2 0 Q2 Q23 0 · · · ...
...

... 0 . . .
. . . 0

...

ẋk−1

... · · · 0 Qk−1 Qk−1,k 0
ẋk 0 · · · · · · 0 Qk Qk,k+1

⎤
⎥⎥⎥⎥⎥⎦,

(10)

where we defined a more compact notation on the right. In
Eq. (10), xm are vectors with all dynamically relevant motif
counts of size m, Qm the coefficients for ẋm := dxm/dt with
motifs of the same size, and Qm,m+1 the coefficients for ẋm

with motifs of the size m+1. The block diagonal form arises
because the change of size-m motif counts depends only on
motif counts of size m and of size m+1. In Appendix B,
Eq. (10) is shown for SIS spreading up to a maximum motif
size of k = 3.

The substitution via conservation relations can be written
as

x = E · x̃ + c, (11)

where x = x1, ..., xk , x̃ is x with the to be substituted elements
omitted. E, c contain the coefficients of linear dependence
from Eqs. (7) and (9), with their ith row/element corre-
sponding to the identity transformation for motifs that are not
substituted. Substituting this into Eq. (10) results in the system
of equations for the remaining motifs x̃:

˙̃x = Q̃1···k,1···k · (E · x̃ + c) + Q̃1···k,k+1 · x̃k+1 (12)

(where the tilde omits the to be substituted rows/elements),
such that we can write the system in the same form as Eq. (10),

but now with an added constant vector:

˙̃x = Q′ ·
[

x̃
x̃k+1

]
+ c̃. (13)

For an example, see Sec. VIII A 2.

VII. CLOSURE SCHEME

Because in Eq. (13) counts for the largest motifs xk+1

appear on the right-hand side but not on the left-hand side,
Eq. (13) is underdetermined. A closure scheme provides a way
of expressing the undetermined parts x̃k+1 in Eq. (10) through
a nonlinear function x̃k+1 ≈ f̃ (x̃), creating a closed system of
ODEs:

˙̃x = Q′ ·
[

x̃
f̃ (x̃)

]
+ c̃, (14)

where f̃ also depends on counts of induced subgraphs of order
up to k+1 ([gk+1

1 ] in Fig. 1) if the motifs were not normalized
in advance. In this section, we develop a closure scheme that
decomposes x̃k+1 into its smaller-sized components. Our final
formula generalizes closures hitherto most commonly used,
as shown in, e.g., House et al. [21]. We will show that the
decomposition is valid when: (i) counts of components are

054312-5



BERT WUYTS AND JAN SIEBER PHYSICAL REVIEW E 106, 054312 (2022)

TABLE I. Examples of our method to obtain closure formulas. Because the closures can be written independent of the state labels, the
decomposition is shown for node-indexed graphs without reference to particular node states.

conditionally independent given the node states in their inter-
section and the adjacency structure between them is a tree,
(ii) the network is spatially homogeneous, and (iii) the
network is sufficiently large, such that the law of large num-
bers applies. We start with some introducing examples in
Sec. VII A and defer detailed explanation to Secs. VII B and
VII C. Examples are given in Secs. VII D and VII H.

A. Introduction

When truncating the moment hierarchy at a chosen or-
der k, we approximate the order k+1 motifs appearing in
the equations for order k motifs in terms of lower-order
motifs. For example, looking at the moment equations for
SIS spreading in Appendix B, when truncating at k=1, we
would need an expression of [ ] in terms of [ ] and [ ].
When assuming statistical independence of neighboring node
states, the resulting expression is of the form [ ] ∝ [ ][ ]
(ignoring proportionality constants for now). Similarly, for
truncation at k = 2, we would need an expression for all the
3-chains and triangles on the right-hand side of Eqs. (B3)
and (B4). For instance, the 3-chain [ ] is typically de-
composed as [ ] ∝ [ ][ ]/[ ]. Using the shorthand
xi for the event Xi = x, this is justified when there is a
conditional independence relation of the form P(Si, S j, Ik ) =
P(Si, S j )P(S j, Ik|S j ) and if the component probabilities are
the same everywhere in the network, such that node in-
dices i, j, k do not matter. This can be generalized to larger
chains, such as, e.g., [ ] ∝ [ ][ ]/[ ], which
similarly follows from the assumed conditional indepen-
dence relation P(Si, S j, Ik, Il ) = P(Si, S j, Ik )P(S j, Ik, Il |S j, Ik )
and homogeneity in the network.

It is possible to generalize the examples above to larger
subgraphs by starting from the chain rule of probability,

P(x) = P
(
xin | xin−1, ..., xi2 , xi1

)
...P
(
xi2 | xi1

)
P
(
xi1

)
,

where x is a vector of state labels on a given network motif,
and subsequently simplify with assumed conditional indepen-
dence relations. For instance, for our second example above,
[ ], we have P(Si, S j, Ik ) = P(Ik|Si, S j )P(S j |Si )P(Si ). If
now node k is conditionally independent of node i, then we
substitute P(Ik|Si, S j ) = P(Ik|S j ), such that we obtain the ex-
pression found above. In general, a simplification of the chain
rule in terms of subgraphs is possible if we can order the
chosen sets of subgraphs (with node indices i1, ..., in) without
creating cycles and if the states of adjacent subgraphs are
conditionally independent given their shared nodes. To make
this precise, we need the concept of independence map. The
independence map is a graph in which link absence between
two nodes means that there is no direct dependence between
them. For instance, if in the four-node graph shown in row 4
column 1 of Table I there is statistical independence between
node states that are further than two steps removed, then its
independence map is the graph shown in row 4 column 3
of Table I. The condition mentioned above for simplifica-
tion of the chain rule in terms of subgraphs reduces to the
requirement that the independence map be chordal, because
this allows a tree composition in terms of maximal cliques,
as shown in column 4 of Table I. A graph is chordal if every
cycle greater than three is cut short by a link between two
nonconsecutive nodes of the cycle.

In reality, we do not know the dependence structure be-
tween the graph nodes. However, the practical requirement of
truncation of the moment hierarchy obliges us to assume an
independence map for each of the largest motifs. To obtain a
consistent decomposition method, we will choose as indepen-
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dence map the graph obtained by connecting all nodes to other
nodes in their d−1 neighborhood, where d is the diameter
of the motif. The chain rule then leads to a decomposition in
terms of (maximal) cliques of the independence map in the
numerator and the node sets that separate them in the denomi-
nator. Table I shows example graphs, with their diameter, their
assumed independence maps, their tree decomposition and the
resulting closure formula. The choice of dependence within a
distance d may in some cases result in nonchordal indepen-
dence maps, such that the decomposition cannot be made.
In the next sections, we will explain our method in detail
and further show how one can treat motifs with a nonchordal
independence map.

B. Definitions and background

We will rely on the theory of decomposable Markov net-
works, following mostly the terminology of Pearl [34, Ch. 3].
We generalize the decomposition from a factorization involv-
ing (1-)cliques to one involving d-cliques. he definitions in
this section apply to a general graph G with nodes states X ,
but we will apply the decomposition to motifs in Sec. VII C.

a. Separation. Given a graph G(V, E ) and three disjoint
subsets of nodes i, j, k ⊂ V , k separates i and j in G, written
as i⊥⊥G j | k, if every path between i and j has at least one
vertex in k. Here, k is called a separator, or also, a node cut set
of i and j in G.

b. Independence map. An independence map M is a
graph that represents the independence between components
of a set of random variables X such that separation in M
guarantees conditional independence between corresponding
subsets of X . More precisely, given three disjoint subsets of
nodes i, j, k ⊂ V , X possesses a spatial Markov property:

i⊥⊥M j | k ⇒ Xi⊥⊥X j | Xk, (15)

where the ⊥⊥ notation on the right refers to indepen-
dence of the random variables: P(Xi=xi, X j=x j |Xk=xk) =
P(Xi=xi|Xk=xk)P(X j=x j |Xk=xk). The pair (X,M) defines
what is known as a Markov network.

c. Independence beyond distance d. Let G = (V, E ) be a
graph where the nodes in V have (random) states X . We define
Gd as the graph in which all nodes of G are neighbors if they
are at most a shortest distance d away from each other, i.e.,

Gd=(V, Ed ), with Ed={(i, j)∈V : distG (i, j)�d}. (16)

We then say that (G, X ) has independence beyond distance d
if Gd is the independence map of X , or for all distinct subsets
of nodes i, j, k ⊂ V holds

i⊥⊥Gd j | k ⇒ Xi⊥⊥X j | Xk. (17)

This means that states of two nonneighboring sets in Gd ,
which by definition (16) are further than d steps apart in
G, are independent of each other given the state of their
separator k.

d. Maximal d-cliques and d-clique graph. A maximal
clique is a complete subgraph not contained in a larger com-
plete subgraph [37]. As a generalization, maximal d-cliques
are maximal subgraphs with distance between any two nodes
not greater than d [35]. Correspondingly, maximal cliques in
Gd are maximal d-cliques in G. The graph Cd is the d-clique

graph of G if each node in Cd corresponds to a d-clique
in G with links between nodes in Cd occurring when the
corresponding d-cliques overlap. Hence, while nodes in Cd

correspond to maximal d-cliques in G, links in Cd correspond
to intersections between overlapping maximal d-cliques in G.

e. Junction graph of d-cliques. A junction graph of G’s
maximal d-cliques, denoted further as J d (G), is a subgraph of
the d-clique graph Cd obtained by removing redundant links
from Cd . Denoting d-cliques corresponding to nodes i, j in
Cd as ci, c j ⊂ V , a link between i and j in Cd is redundant
when there is an alternative path between i and j in Cd passing
by a series of other nodes in Cd of which the corresponding
d-cliques all contain ci ∩ c j . The junction graph J d (G) is then
obtained by iteratively removing redundant links from the Cd

until there are no further redundant links. While the d-clique
graph is unique, there may be several junction graphs J d (G)
of d-cliques for one graph G. Note that for chordal graphs
(defined below), the junction graph equals what is known as a
junction tree, which can also be obtained via the junction tree
algorithm [38], applied to the d-clique graph.

f. d-chordality. A graph G is chordal when for every cycle
of length greater than 3, there exists a link in G between two
nonconsecutive nodes of the cycle (thus, giving a short-cut,
also called chord to the cycle). As a generalization, we will
call a graph G d-chordal if Gd is chordal. If a graph G is d-
chordal, then J d (G) is a tree, or equivalently, if Gd is chordal,
then J (Gd ) is a tree. Nonchordal graphs can always be con-
verted to a chordal graph via triangulation, i.e., adding chords
to every chordless cycle of length greater than 3. We will write
below tr(Gd ) as a minimal triangulation of a nonchordal Gd ,
obtained by adding the smallest number of links that leads to
chordality, unless stated otherwise.

g. Decomposability at distance d. If there is independence
beyond distance d (17) and G is d-chordal, then the joint
probability of the network nodes of G being in a given state
P(X = x) can be factorized over the d-cliques of G. We will
call this property of the graph G and its node states X de-
composability at distance d . We call J the set of d-cliques in
G, ordering its elements consistent with the resulting junction
tree structure for Gd (such that J1 is the chosen root and
parent nodes have lower index than their leaves), and call
pa(Ji ) the parent node of Ji. In such cases, the factorization is
possible because the tree structure between d-cliques allows
application of the chain rule of conditional probability:

P(X=x) =
|J |∏
i=1

P
(
XJi=xJi | Xpa(Ji )=xpa(Ji )

)
,

=
|J |∏
i=1

P
(
XJi=xJi | Xpa(Ji )∩Ji=xpa(Ji )∩Ji

)
,

=
∏|J |

i=1 P
(
XJi=xJi

)
∏|J |

i=2 P
(
Xpa(Ji )∩Ji=xpa(Ji )∩Ji

) . (18)

The steps in Eq. (18) are explained as follows. As d-chordality
makes J d (G) a tree and any d-clique separates its neighbors,
one can recursively use conditional independence of children
given parents (line 1). We use the convention that pa(J1) = ∅,
such that the first factor is P(XJ1=xJ1 ). In line 2 we exploit
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that any two d-cliques in G are also separated by their inter-
section to condition instead on intersections.

h. Non-d-chordal graphs. There are two alternative ways
to decompose non-d-chordal G: (i) perform the decomposi-
tion (18) on the (more conservative) independence map after
triangulation, tr(Gd ). In this case, the factors in Eq. (18) may
still contain subgraphs of diameter d+1, but of smaller size
than G, such that one may have to apply Eq. (18) recursively
to achieve smaller diameter for all factors. Furthermore, the
resulting decomposition will depend on the choice of triangu-
lation. Alternatively, (ii) one can start from the nontree J d (G)
and use the ad hoc formula (without prior triangulation)

P(X=x) ≈ ζ

∏|J |
i P

(
XJi=xJi

)
∏|J |

i, j �=i P
(
XJi∩J j =xJi∩J j

) . (19)

Because the fraction in Eq. (19) does not result from appli-
cation of the chain rule as in Eq. (18), it is not a product of
conditional probabilities and hence it does not guarantee the
property that each of the node states in x has to appear one
more time in the numerator than in the denominator, which
in turn leads to inconsistency between closure formulas that
assume different d . The factor ζ in Eq. (19) corrects for this
inconsistency—see Sec. VII C for more detail. After applying
(i) to nonchordal graphs, the nodes in the resulting d-clique
tree are not all maximal d-cliques of G any more [39]. When
applying (ii) to nonchordal graphs, the subgraphs in J d (G)
are still maximal d-cliques of G but the clique graph is not a
tree, thus, violating the assumptions behind the decomposition
(18).

i. Maximum motif diameter. The decomposition explained
in this section implies that if independence beyond distance
d is valid in the whole network (G, X ), then we know that
we only need to consider motifs up to diameter d , justifying
truncation of the moment hierarchy. Note, however, that trun-
cation is usually done at a give size, not at a given diameter.
We expand on this in Sec. VII C e.

C. Motif decomposition

a. Decomposition of motifs at the individual level. We ap-
ply the decomposition (18) to motifs with connectivity a and
chordal independence map ad embedded in the network. For
now, we ignore that this may in some cases break the indepen-
dence assumption, but see Sec. VII C e for more detail on this
issue. Considering a set i of nodes that have connectivity a in
our network G and taking P(Xi=x) as the probability that these
are in states with labels x, we can write the decomposition (18)
for of P(Xi=x) = 〈[xa

i ]〉 to obtain

〈[
xa

i

]〉 =
∏|J |

j=1

〈[
xiJ j

]〉
∏|J |

j=2

〈[
xipa(J j )∩J j

]〉 , (20)

where now J is the set of d-cliques in a. Choosing d =
diam(a) − 1 ensures that the decomposition results in com-
ponent motifs with diameter decreased by one compared to
the decomposed motif. For motifs with nonchordal ad one
can, as noted above, either triangulate ad first or use the ad-
hoc approximation (19). We relied on the package Chordal
Graph [40] for triangulation of nonchordal ad . The ad hoc

formula (19) applied to the motif at i is

〈[
xa

i

]〉 ≈
∏|J |

j

〈[
xiJ j

]〉
∏|J |

j,k �= j

〈[
xiJ j ∩Jk

]〉 ∏
j∈i

〈[x j]〉γ j . (21)

The consistency correction [written as ζ in Eq. (19)] here
equals

∏
j∈i〈[x j]〉γ j and ensures that the ad-hoc extension

of closures to motifs with nonchordal ad does not result in
inconsistency with MF1 [condition 1 of 18, Ch. 21] under
independence between node states: when all motifs of order
greater than one are replaced by products of order one mo-
tifs, i.e., 〈[xa

i· ]〉 →∏
j∈i· 〈[x j]〉, the right-hand side of Eq. (21)

should reduce to MF1. Therefore, for each j, γ j is chosen
such that this is fulfilled. These ad hoc steps usually result
in violation of the conservation relations of Sec. V [18]. In
the approximations used in Sec. VIII, the bias introduced due
to this violation is small. For mitigation of this problem, see
Refs. [18,41].

b. Decomposition of motifs at the population level. If we
take the following spatial homogeneity assumption for all
motifs xa of sizes m up to our maximal considered size k,

∀i, i′ ∈ I (a) :
〈[

xa
i

]〉 = 〈[xa
i′
]〉 = 〈[xa]〉

[a]
= 〈�xa�〉, (22)

where I (a) := { j ∈ S(m, N ) : A j = a}, then Eqs. (20) and
(21) are independent of i, such that we can write Eq. (20) as

〈�xa�〉 ≈
∏|J |

j=1

〈
�xJ j �

〉
∏|J |

j=2

〈
�xpa(J j )∩J j �

〉 , (23)

and Eq. (21) as

〈�xa�〉 ≈
∏|J |

j

〈
�xJ j �

〉
∏|J |

j,k

〈
�xJ j∩Jk �

〉 m∏
p

〈�xp�〉γp, (24)

which may be used to close the population-level equa-
tions (10). In Eqs. (23) and (24), node indexing of a motif is
consistent with the node labels x. Recall that we use a single
consistent indexing for isomorphic motifs. The decomposition
(23) and (24) is not unique. If the independence assumptions
are satisfied, then each of the alternative ways to decompose
motif xa should result in the same value. As we do not
expect the independence to be perfectly valid, we take the
average of the alternative ways of decomposing xa if they
exist.

c. Normalization. We showed the closure formulas for
normalized motifs, i.e., we first normalized the counts of
motifs via Eq. (8), and then applied the closure. Hence, in this
case, the counts of induced subgraphs in the network enter
into the system of equations as normalization factors in the
unclosed system. One can also decide not to normalize (or to
do it after applying closure). In this latter case, the subgraph
counts enter into the final system of equations when apply-
ing closure, as the closure formulas for the nonnormalized
motif counts contain them (to see this, substitute each motif
count in Eqs. (23) and (24) as �yb� → [yb]/[b]). Hence, struc-
tural information specific to the considered network enters
the mean-field equations either when normalizing the motif
counts or when applying closure. In simple cases, such as
lattices or random graphs, the subgraph counts can be found
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by hand without much effort. In other cases, one can resort
to subgraph counting algorithms—we used IGraph [42] for
Mathematica [35].

d. Law of large numbers. We will use the population-level
closure to study the steady states in a single realization of a
given network. Motif counts are then assumed to be the total
counts in a single network, instead of their expectations over
many realizations. As the closure formulas apply to expecta-
tions, we make the additional assumption that motif counts are
close to their expectations.

e. Additional bias. Decomposing the whole network G at
distance d is exact when G is d-chordal and there is in-
dependence beyond distance d (Sec. VII B). Applying the
decomposition to motifs embedded in G instead of to G can be
done without additional bias when a is a distance-hereditary
subgraph of G (i.e., distances between nodes in a are equal
to those between corresponding nodes in G) and conditional
independence relations implied by a are also valid in G. As
a counterexample for the former, take for G the six-node

graph and for a its induced subgraph consisting of

nodes {1, 2, 4, 6, 5}. Here, a is not distance-hereditary be-
cause dista(1, 5)=4 �= distG (1, 5)=2. As a counterexample

for the latter, take for G the square and for a the 3-node

chain {1, 2, 4}. In this case, a is distance hereditary, but, while
(when assuming independence beyond distance d=1) within
a we have the independence relation {1}⊥⊥a {4} | {2}, this is
not true in G, where {1} �⊥⊥G {4} | {2}, because the node cut
set in G for {1} and {4} is {2, 3}. This occurs because the
decomposed motifs are nonmaximal d-cliques. Therefore, we
expect a bias as a consequence of this in the closed mean-
field equation hierarchy [Eq. (10) with Eqs. (23) or (24) at
population level under spatial homogeneity]. This bias can be
avoided when expressing the equations in terms of maximal p-
cliques for p ∈ {0, ..., k+1} and truncating at given diameter
instead of at given size.

D. Examples

Appendix H shows 13 application examples of Eqs. (23)
and (24) in table form. As the closures can be written inde-
pendent of the particular labels, they are shown for subgraphs
only, with each node tagged with its index. We have also
dropped the 〈·〉, assuming that the law of large numbers ap-
plies, such that the counts approach their expectations almost
surely for increasing network size N . The examples can be
understood by reading the table from left to right. Below,
we derive the normalization factors and the nonnormalized
closures of examples 1–3 of Appendix H for different net-
work types. Note that, unlike in Appendix H, we use letter
labels below, for consistency with the main text and the
literature.

(1) xa = : This diameter-2 motif has chordal inde-
pendence map equal to a and decomposes with Eq. (23) as

(25)

assuming conditional independence beyond distance d = 1.
Via normalization (8) we obtain also the closure for the non-
normalized counts:

(26)

The counts of the induced subgraphs of size 2 and 1, required
for normalization, are

(27)

and total number of triples (3-node motifs) in the network is

(28)

with κi the number of neighbors of node i and κ the mean
number of neighbors over the whole network. For particular
network types (28) can be simplified. Below are two exam-
ples.

(a) For a network with fixed degree without triangles

(e.g., a square lattice), we have ∀i : κi = κ and [ ] = 0,

such that

(29)

Using Eqs. (26) and (29), we obtain

(30)

An early use of this closure for networks can be found in
Keeling et al. [16].

(b) In a large Erdős-Rényi random network, we have

κi ∼ Pois(κ ) and [ ]/([ ] + [ ]) ≈ 0 [43]. Hence,

=
N∑
i

κ2
i −

N∑
i

κi,

= N
[
E
(
κ2

i

)− E(κi )
]
,

= N[Var(κi ) + E(κi )
2 − E(κi )],

= κ2N, (31)

where replacing the average by the expectation on the
second line requires N → ∞ (law of large numbers), on
the third line we used Var(·) := E((·)2) − (E(·))2, and on
the fourth line we used that, for κi ∼ Pois(κ ), we have
E(κi) = Var(κi ) = κ . We could also have obtained this re-
sult directly from the large-N limit of chains [39]. Using
Eqs. (26) and (31), we obtain

(32)

This closure was, to the best of our knowledge, first used
for networks in Gross et al. [20].

(2) xa = : This diameter-1 motif can be decomposed

into its three 0-cliques as

(33)
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when assuming independence of nodes (d = 0). With nonnor-
malized counts, this becomes

(34)

Alternatively, one can extend the usage of the ad hoc formula
(24) to include nonmaximal cliques: using its three 1-cliques
in Eq. (24), we obtain

(35)

which is known as the Kirkwood closure for triangles [22].
Using Eq. (8), we obtain for the closure with nonnormalized
counts

(36)

The frequency [ ] depends on the network type. For in-
stance, if we use the definition of the clustering coefficient

φ := [ ]/([ ] + [ ]) [30], then we have [via Eqs. (27)

and (28)] for a network with fixed degree [ ] = φκ (κ −
1)N , such that

which was first used for networks by Keeling [30].

(3) xa = : This diameter-2 motif has chordal inde-

pendence map a and decomposes with Eq. (23) as

(37)

when assuming independence beyond distance d = 1. Al-
ternatively, extending the ad-hoc formula (24) to the three
nonmaximal 3-cliques, we obtain

(38)

where a consistency correction was required. The non-
normalized form of this closure was first used in House et al.
[21].

VIII. APPLICATION TO SIS EPIDEMIC SPREADING

We apply our method to SIS spreading, which is a
continuous-time discrete-state Markov chain description of
epidemic spreading through a population of susceptibles [e.g.,
31]. As introduced in Sec. II, we have n = 2 species. The
2 × 2 matrix R0 of spontaneous conversion rates and the 2 ×
2 × 2 tensor R1 of conversion rates due to nearest-neighbor
interaction for SIS spreading have only two positive entries,
R0

2,1 = γ , R1
1,2,2 = β, corresponding to reaction scheme (2).

Hence, contagion of susceptibles S occurs over IS links at
rate β, whereas recovery occurs spontaneously at rate γ . In
the study of phase transitions and interacting particle systems,
SIS epidemic spreading is known as the contact process [44],
which is typically studied on d-dimensional lattices. In this

context, it was found to belong to the directed percolation uni-
versality class, of which scaling properties have been widely
studied [12–14].

We run the simulations with a Gillespie algorithm [45] and
stabilize them via feedback control [46–48], such that steady
states can be obtained in a more efficient manner than when
running regular simulations (see Appendix C).

A. Mean-field equations

We derived the mean-field models up to fifth order for
the square lattice and up to second order for other networks,
including cubic and hypercubic lattices, random regular net-
works and Erdős-Rényi random networks. In the main text,
we only show a step-by-step derivation of the first and second-
order mean-field models because they allow demonstration of
our method in the simplest form. Recall that we write in the
text 〈[·]〉 as [·], assuming the LLN holds (in the Mathematica
file for MF4 in Appendix G, we use the notation 〈·〉 instead).

To gain insight in the strength of dependence between
neighboring nodes in simulations and higher-order mean-field
models, we will observe the correlation between neighboring
node states a and b as in Keeling [30], defined by

(39)

(where κ is the mean degree) or when motif counts are nor-
malized,

(40)

They are uncentered correlations between species types that
are separated by one link. Values greater than 1 indicate
clustering and values less than 1 avoidance (compared to
a uniform random distribution). For a generalization of this
correlation to arbitrary distances between end nodes, see Ap-
pendix D.

1. MF1

The first-order mean field originates from the molec-
ular field approximation in statistical physics [8,9] and
is now commonly known as the “mean-field model”
[12–14,31,49,50]. MF1 only considers node states (k = 1) and
neglects correlations beyond distance 0. It provides a picture
of the dynamics when species are well mixed throughout a
large domain. One way to achieve this is when the domain is
a complete network on which susceptibles and infecteds have
contact rate κβ/N , and when N → ∞ [31].

There are two motif types of size 1: and . Of these, only
is dynamically relevant. This means that we only need the

equation

To close the system at order 1, needs to be expressed
in terms of [ ] and [ ]. No correlation beyond distance 0
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corresponds to [using Eq. (23)]

(41)

where we have also used the conservation relation [ ] +
[ ] = N to substitute [ ] = N − [ ]. The final expression for
the first-order mean field is

which, after normalization [via Eq. (8)], yields

(42)

The steady-state solutions are then

At β/γ = κ−1, the solution � �∗
1 becomes unstable due to a

transcritical bifurcation, also known as the epidemic threshold
in epidemiology.

2. MF2

The second-order mean field originates from the Bethe ap-
proximation in statistical physics [10] and is now commonly
known as the “pair approximation” [15–20,31,49,50]. MF2
neglects dependence beyond distance 1 and is obtained by
considering all dynamically relevant motifs up to size 2. Not-
ing that motifs without infecteds are dynamically irrelevant
and omitting zero blocks, we obtain

Hence, two types of order 3 motifs appear on the right-hand
side: chains and triangles. For the networks we consider in
this paper, triangular subgraphs are either not present (in case
of square, cubic, hypercubic lattices) or negligible for large
N (e.g., for Erdős-Rényi random networks [39]), so we only
need to consider the system

The number of conservation relations used for elimination de-
pends on whether the networks have a homogeneous degree.

a. Networks with homogeneous degree. In this case, the
conservation relations are

(43)

(44)

. (45)

However, due to the dynamic irrelevance of [ ] and [ ],
only Eq. (45) can be used to eliminate further variables.
We use it to eliminate [ ] = κ[ ] − [ ]. Following
Eqs. (11)–(13), this means

and

E =
⎡
⎣1 0

0 1
κ −1

⎤
⎦, c =

⎡
⎣0

0
0

⎤
⎦,

Q̃1···2,1···2 =
[−γ β 0

0 −β − γ γ

]
, Q̃23 = [β −β],

such that we can calculate Q′, c̃ to obtain

(46)

Applying the closure (30) for degree-homogeneous networks
[resulting from Eq. (23)],

(47)

we obtain the final nonlinear system

(48)

which, after elimination of [ ] and [ ] via Eqs. (43) and
(44) and normalization via Eq. (8) becomes

(49)

From the steady-state solutions (E1), we find that the epidemic
threshold is now located at β/γ = (κ − 1)−1. We also derived
nontrivial steady-state correlations via Eq. (40) in Eq. (E2).

b. Networks with heterogeneous degree. Here, Eqs. (44)
and (45) do not hold, but the total frequency of any given
subgraph is still conserved. Hence, the conservation relations
are Eq. (43) from order 1 and

(50)

This means that we cannot eliminate [ ] here (unlike in
case of networks with homogeneous degree), such that we
have three instead of two equations. Also applying the closure
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FIG. 2. Comparison of the mean-field approximations of order 1 to 5 (lines) with simulations (markers) of SIS epidemic spreading on
a square lattice as a function of β/γ : (a) nontrivial steady states, (b) correlations at distance 1 [shown for MF2 (solid), MF5 (dashed), and
simulations (dots)].

for ER networks (32) [resulting from Eq. (23)],

(51)

we obtain

(52)

After substitution of [ ] and via the conservation re-
lations (43) and (50) and normalization via Eq. (8), this
becomes

(53)

There are three steady states, of which two are in the ad-
missible range (E3). Here, the epidemic threshold is located
at β/γ = κ−1, as in the first-order mean-field model. The
steady-state correlations are given in Eq. (E4).

3. MF3-MF5

Approximations of higher order than two correspond to
cluster variation approximations in statistical physics [11].
MF3 results from neglecting dependence beyond distance 2
and is commonly known as the “triple approximation” [21].
Its step-by-step derivation for the square lattice is shown
in Appendix F and results in four equations (after sub-
stitution with conservation relations). In Appendix G, we
show the derivation of the unclosed MF4 for a general net-
work as Mathematica notebook output. We also derived the
closed MF4 and MF5 for the square lattice. The number
of equations after elimination with conservation relations is,
respectively, 14 and 37. The derivation of MF4 with closure is

shown in Appendix G point 2. The steady states of MF4 and
MF5 are shown in Fig. 2 of Sec. VIII B.

B. Comparison to simulations

Here, we compare the steady states of MF1-5 of SIS
epidemic spreading with those of the simulations on a selec-
tion of network types: lattices, regular random networks, and
Erdős-Rényi random networks.

a. Square lattice. In Fig. 2(a), we show, for the square
lattice, the steady-state fraction of infecteds versus β/γ for
MF1-MF5 compared to simulations. The steady states of the
mean-field models get closer to those of the simulation with
increasing order. All mean-field models have an increasing
bias in their nontrivial (endemic) steady states when ap-
proaching the critical value of β/γ from above. Figure 2(b)
compares the steady-state distance-1 correlations between
species types from MF2 and MF5 to those in simulations.
Species of the same type cluster whereas different species
tend to avoid each other (compared to a random distribution).
The infected-infected correlation diverges when approaching
the critical value of β/γ from above and has a singularity at
the bifurcation. For example, for MF2, via Eq. (E2), we have
C∗

II (β/γ ) → ∞ for β/γ ↘ (κ − 1)−1 (limit from above in
the endemic equilibrium). We recall that the errors in the
mean-field models visible in Fig. 2(a) can be due to violation
of the statistical dependence assumption beyond distance k,
nonchordality of the independence map, and violation of the
spatial homogeneity assumption. Spatial homogeneity can be
violated in two ways: via heterogeneity of structure and via
heterogeneity of dynamics [22]. As the structure of a lat-
tice is homogeneous and we only study steady states (i.e.,
there are no dynamics) that are spatially homogeneous [see
Fig. 6(b)], spatial inhomogeneity can not be a source of bias
here. This leaves statistical dependence and nonchordality as
only sources of bias. In the square lattice there are always
cycles with diameter larger than d for any chosen d along
which unaccounted for information can spread, unless d is
greater than or equal to the graph diameter of the entire
lattice. This means that mean-field models that do not consider
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FIG. 3. Comparison of the mean-field approximations (dotted lines: MF1, solid lines: MF2) and simulations (markers) of SIS epidemic
spreading on lattices and random regular networks with number of neighbors 4,6,8,10 as a function of β/γ : (a) nontrivial steady states,
(b) correlations: C∗

II (above 1), C∗
SI (below 1).

motifs of size up to the network diameter minus one cannot be
exact.

As MF1 assumes no correlation between the states of
neighboring nodes, the distance between the horizontal line
through 1 and the + markers of the correlations in the simu-
lations is a measure of the bias of MF1 due to neglection of
correlations in MF1 closures. Likewise, the distance between
the steady-state MF2/MF5 correlations and the simulations
is due to neglection of (higher-order and conditional) depen-
dence in MF2/MF5 closures and higher-level nonchordality.
All models have larger biases closer to the critical point, where
higher-order correlations become more important. This is a
well-known characteristic of continuous phase transitions, in
which correlations occur on increasingly long ranges when
approaching the phase transition (bifurcation). Figure 7 in
Appendix D shows the correlation as a function of distance
from a central point [via Eq. (D1)], for various values of β/γ .
It shows, as expected from phase transitions theory, that cor-
relations at any distance are larger closer to the critical point.
At the critical point, theory shows that correlations occur at
all distances [13].

Comparing the square lattice to the 4-neighbor random reg-
ular graph, we can see that there is also a phase transition, but
there is substantially less bias than in the square lattice (Fig. 3,
blue × versus +). This is because random regular graphs
are locally treelike, and hence, unlike in the square lattice,
correlations over longer distances can be captured well via a
decomposition of larger motifs into links (MF2). The small
remaining bias in the 4-regular random graph we suspect to
be because the assumed conditional independence is not valid
for all states [2,3].

b. General cubic lattices and random regular networks.
We show in Fig. 3 how the steady states and correlations
in MF1, MF2 and simulations depend on the number of
neighbors in d-dimensional cubic lattices and random regular
networks. When d is the lattice dimension, the lattice degree
is κ = 2d. The observations of the square lattice generalize to
cubic and hypercubic lattices and random regular networks (at
least up to κ = 10): (i) there is a transcritical bifurcation at a
particular value of β/γ , where C∗

II becomes singular, (ii) MF1

and MF2 capture qualitatively the steady-state fraction of
infecteds and correlations are captured qualitatively by MF2,
(iii) MF2 is less biased than MF1, (iv) the bias is larger closer
to the bifurcation. According to MF1, the bifurcation occurs
at κ−1 = (2d)−1 and according to MF2 at (2d − 1)−1 = (κ −
1)−1 (see Secs. VIII A 1 and VIII A 2). Liggett [51] proved
that for lattices, the critical value predicted by MF2 is a lower
bound. Figure 3(a) shows that MF2 and this lower bound is
approached increasingly closely when the lattice dimension
increases. Due to higher clustering of neighbors, the epidemic
threshold in lattices is higher than that in the corresponding
random regular network [30], but this difference decreases
with dimension and degree [Fig. 3(a)]. The steady states of
a five-dimensional hypercubic lattice and of a random regular
network with degree 10 are indistinguishable from each other
and from MF2. This is because random walks in space of
dimension 5 or higher have a finite number of intersections
almost surely [52–54]. If the path along which an infection
travels is seen as a random walk, then having many inter-
sections in d � 4 means that one cannot ignore alternative
infection paths. In d > 4, it is harder for infections to travel
via alternative paths to the same point, and hence those paths
resemble trees more closely. Hence, as explained above and
in Sharkey and Wilkinson [3], MF2 should then be more
accurate.

c. Erdős-Rényi random networks. Finally, we show in
Fig. 4 how the steady states and correlations in MF1, MF2,
and simulations depend on the number of neighbors in an
Erdős-Rényi random network. Recall that MF2 on an Erdős-
Rényi random network is different from that of the networks
above because it has one fewer conservation relation. As
above, the behaviour of the steady-state solutions is cap-
tured qualitatively by MF1 and MF2 and of the correlations
by MF2 alone. Also as above, networks with a larger de-
gree have lower biases and MF2 is better than MF1, but
now there seems to be a slight increase of bias with β/γ ,
at least in the range inspected. Despite spatial heterogene-
ity of the degree in Erdős-Rényi random networks, there is
considerably less bias than in lattices, confirming that the
presence of cycles beyond closure distance is the dominant
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FIG. 4. Comparison of the mean-field approximations (dotted lines: MF1, solid lines: MF2) and simulations (markers) of SIS epidemic
spreading on an Erdős-Rényi random network with number of neighbors 4, 6, 8, 10 as a function of β/γ : (a) nontrivial steady states,
(b) correlations: C∗

II (above 1), C∗
SI (below 1).

cause for mean-field model biases in the steady states of SIS
spreading.

IX. SUMMARY AND CONCLUSIONS

Previous work found that exact closed individual-level mo-
ment equations exist for SIR spreading on arbitrary networks,
with the requirement to consider larger-sized motifs, and
therefore more equations, for networks that are decreasingly
treelike [3]. While for other dynamics than SIR spreading it
may not be possible to prove exactness for a finite number of
closed moment equations, it is generally found that accuracy
increases with the order of approximation [e.g., 21,31] (which
was confirmed here). Feasibility of automated derivation of
exact closed moment equations for SIR epidemic spreading
was shown by Ref. [3], while an automated procedure to
derive unclosed moment equations for arbitrary dynamics
was developed by Ref. [33]. We developed an automated
procedure to both derive and close population-level moment
equations for arbitrary dynamics on networks at any approx-
imation order, allowing us to consider mean-field models of
higher orders than typically derived by hand. For this purpose,
we developed a method to derive closure schemes from pre-
defined independence assumptions. Our closure formulas rely,
besides the requirements of spatial homogeneity and large
network size, on the assumption of conditional independence
beyond distance k and k chordality of the considered net-
work. Consistently, our simulations of SIS epidemic spreading
showed that, at given approximation order, the largest biases
occurred for networks with many short cycles of any size,
such as lattices, in parameter regimes with long-range correla-
tions, such as near continuous phase transitions. Note however
that, for lattices, we found the bias of mean-field models to
decrease with lattice dimension, which is consistent with re-
sults in percolation and phase transitions theory, where it was
shown that the importance of cycles decreases with the lattice
dimension [52–54]. We also showed that the conventional
procedure of truncation at a maximum motif size instead
of at a maximum motif diameter necessitates independence
assumptions that are inconsistent for different approximated
motifs or that may be incompatible with the network (see

Sec. VII C e). This suggests that choosing a moment space that
consists of motifs at increasing diameter instead of increasing
size would lead to more accurate mean-field models.

Whereas our method still needs to be tested more widely,
we expect it to lend itself well to study dynamics on net-
works with density and size of short cycles between that
of random networks and (low-dimensional) lattices, particu-
larly when the network is structurally homogeneous. In these
cases, derivation by hand may be too tedious while the final
set of moment equations is still more manageable than the
Markov chain simulations. For networks with considerable
degree heterogeneity and/or community structure, we expect
approximate master equation methods [24–28] to be more
efficient. Our approach focused on static networks with at
most nearest-neighbor interactions, but it can be extended to
adaptive networks such as those studied in [20,29,33], and to
dynamics with higher-order interactions [55]—requiring reac-
tion rate tensors Rp with p � 2. Our approximation scheme
of Sec. VII can be applied more generally, to understand
precisely which independence assumptions are taken in other
existing types of mean-field approximations than moment clo-
sure, or to devise new mean-field approximations. It may also
serve to extend the use of message-passing methods [56–58]
for epidemic modeling to graphs with cycles.

While we were able to derive closure formulas by assum-
ing statistical independence, leading to mean-field models,
other assumptions can be used to obtain closures [1], such
as maximum entropy [5], or timescale separation between
moments at different orders [6]. Sometimes one can find an
appropriate moment space and closure by taking account of
the characteristic features of the process in consideration,
leading to a description with greater efficiency compared to
what is obtainable by using the size-based moment space
and closing via independence assumptions [59]. We expect
that for finding good moment spaces and closures, equation-
free and machine-learning methods [60,61] will play an
important role, in particular because the most appropriate
low-dimensional descriptions or their closures may not neces-
sarily be available in closed form [5,6,60,61]. It is subject of
future work to explore if and how these different approaches
relate.
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APPENDIX A: DERIVATION OF THE MOMENT
EQUATIONS

In this section, we derive expressions for the expected rate
of change and conservation relations of motif counts, first
shown in Eqs. (8) and (9) of Sec. V. Both can be seen as
invariance relations, the former being of a differential type,
and derived from the master equation for the Markov chain
on the network, and the latter of an algebraic type, following
from the property that the network is fixed.

a. Master equation for transitions in a Markov chain. We
recall that the state of the system for our network with N nodes
is given by (using := for “defined as”) X := (X1, X2, ..., XN ) ∈
{1, . . . , n}N , where Xi is the label of the species that occu-
pies node i. Hence, the total number of states is nN . The
probabilistic transition from one state to another, following
a discrete-state continuous-time Markov chain, defines an
evolution equation for the probability of being in each of
these states, the so-called master equation (also known as
the Kolmogorov-forward equation for a Markov jump process
[62]). The probability density P(X, t ) for a particular state X
at time t changes according to

d

dt
P(X, t ) =

∑
X ′ �=X

[w(X ′ → X )P(X ′, t )

−w(X → X ′)P(X, t )], (A1)

where w denotes the transition rate between system states.
If we define W as a nN × nN transition rate matrix
with nondiagonal entries w(X ′ → X ) and diagonal entries
−∑X ′ �=X w(X → X ′), then we can rewrite the master equa-
tion as

Ṗ(t ) = WP(t ),

which describes the evolution of the density for all states as
elements of a vector P [and not just of one particular state as in
Eq. (A1)]. Because almost surely at most one node can change
state at any one time t , only states differing from each other
in one node can be directly transitioned between. Therefore,
W must be sparse, having only N (n − 1) entries in each row

or column, as each of the N nodes can convert to any of the
n − 1 other species. This permits writing Eq. (A1) as

d

dt
P(X, t ) =

N∑
i=1

n∑
k �=Xi

[wi(Xi→k → X )P(Xi→k, t )

− wi(X → Xi→k )P(X, t )], (A2)

where

X → Xi→k : (X1, ..., Xi, ..., XN ) �→ (X1, ..., k, ..., XN )

is the operator that replaces the species at the ith node by
species k, and wi(.) is the conversion rate at node i.

b. Motifs and their frequencies. In what follows, we will
derive from the master equation the evolution of the frequency
(or total count) of the motifs xa, as defined in Sec. II. Recall
that these motifs, are defined by their state label vector x of
size m and the adjacency structure between motif nodes a. We
denote a single occurrence at a given i ∈ S(m, N ) as[

xa
i

]
(t ) := δa(Ai)δx(Xi(t )), (A3)

which requires an exact match of the adjacency a by Ai

and state label vector x by Xi. For example, if A contains
a connected triangle between nodes 1, 2, and 3, then motifs
with a = {(1, 2), (2, 3)} would not occur on i = (1, 2, 3). The
total count of motifs in the large network is then the number
of such exact matches, which is obtained by summing over
all indices i ∈ S(m, N ), as shown in Eq. (3). Since the large
network structure is constant in time, we can use the counts
of induced subgraphs [a] given by Eq. (8) as a normalization
factor for the (variable) counts of motifs such that we may
consider normalized motif frequencies

�xa� := [xa]/[a]. (A4)

c. Evolution of expected counts. Total and normalized
counts [xa] and �xa� refer to realizations of states X on the
large random network such that they are random variables.
Similarly, [xa

i ](X ) is a random variable in {0, 1} for each index
vector i ∈ S(m, N ) once we take the randomness of states X
into account. Its expectation is〈[

xa
i

]〉 =∑
X

[
xa

i

]
(X )P(X, t ). (A5)

The master equation (A2) for the density P implies that the
expectation satisfies the differential equation

d

dt

〈[
xa

i

]〉 = ∑
X

[
xa

i

]
(X )

d

dt
P(X, t ) =

∑
X

⎧⎨
⎩δa(Ai )δx(Xi)

N∑
i′=1

n∑
k �=Xi′

[wi′ (Xi′→k → X )P(Xi′→k, t ) − wi′ (X → Xi′→k )P(X, t )]

⎫⎬
⎭,

=
〈
δa(Ai )

N∑
i′=1

n∑
k �=Xi′

[δx((Xi′→k )i ) − δx(Xi)]wi′ (X → Xi′→k )

〉
,

=
〈
δa(Ai )

m∑
p=1

n∑
k �=Xip

[
δx
((

Xip→k
)

i

)− δx(Xi )
]
wip

(
X → Xip→k

)〉
,

=
〈
δa(Ai )

m∑
p=1

n∑
k �=Xip

δxp→∅ (Xip→∅ )
[
δxp (k) − δxp

(
Xip

)]
wip

(
X → Xip→k

)〉
, (A6)
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where in the second step, we substituted δx(Xi )wi′ (Xi′→k →
X )P(Xi′→k, t ) for δx((Xi′→k )i )wi′ (X → Xi′→k )P(X, t ) which
corresponds to a reordering of the terms in

∑
X , and where we

have used the notation 〈·〉 for the expectation
∑

X (·)P(X, t ). In
the third step, we used that only changes to the nodes belong-
ing to i matter. In the last step, we factored out the common
elements in the δ functions corresponding to all but the pth
element of Xi and x, and we used the subscript notation (·)p→∅
to denote a vector with element p removed. The expression on
the right-hand side in Eq. (A6) can be understood independent
of the prior algebraic manipulations: the expected change rate
of 〈[xa

i ]〉 equals the sum of expected rates for each of the
nodes ip in i changing its state to xp minus the rate of node
ip changing its state from xp.

d. Conversion rates. Next, we will insert the two types of
admissible transitions (as discussed in Sec. II) into Eq. (A6),
namely spontaneous conversions with rates given in matrix
R0 ∈ Rn×n, and, conversions due to interactions with a single

nearest neighbor with rates given in R1 ∈ Rn×n×n. The diag-
onal entries of R0, R1 are zero without loss of generality. For
these transition types, the rates wip in Eq. (A6) are

wip

(
X → Xip→k

) =
n∑

a,c

R1
akcδa

(
Xip

) N∑
j

Aip jδc(Xj )

+
n∑
a

R0
akδa
(
Xip

)
. (A7)

With the rates in Eq. (A7), and noting that

δxp (k) − δxp

(
Xip

) =
⎧⎨
⎩

1 if xp = k,
−1 if xp = Xip ,

0 if k �= xp and xp �= Xip ,

the sum inside the averaging brackets in Eq. (A6) has the form

[
n∑

a,c

R1
axpcδa

(
Xip

) N∑
j

Aip jδc(Xj )+
n∑
a

R0
axp

δa
(
Xip

)]
δxp→∅

(
Xi\ip

)−
n∑

k �=Xip

[
n∑
c

R1
xpkc

N∑
j

Aip jδc(Xj ) + R0
xpk

]
δx(Xi),

where we used for the last two terms that δxp (Xip )δxp→∅ (Xi\ip ) can be combined to δx(Xi ).
e. Differential equations for motif counts. When distributing the products and exploiting the linearity of the averaging

brackets, the differential equation (A6) for the expected rate of change at i becomes

d

dt

〈[
xa

i

]〉 = δa(Ai )
m∑
p

[
n∑

a,c

R1
axpc

〈
δxp→∅

(
Xip→∅

)
δa
(
Xip

) N∑
j

Aip jδc(Xj )

〉

+
n∑
a

R0
axp

〈
δxp→∅

(
Xip→∅

)
δa
(
Xip

)〉− n∑
k �=Xip ,c

R1
xpkc

〈
δx(Xi )

N∑
j

Aip jδc(Xj )

〉
−

n∑
k �=Xip

R0
xpk〈δx

(
Xi
)〉
⎤
⎦.

After replacing index label a by k, using the definition of [xa
i ] in Eq. (A3) and using (xa

i )p→k to indicate xa
i with its pth element

replaced by species k, this becomes

d

dt

〈[
xa

i

]〉 = m∑
p

n∑
k

[
n∑
c

R1
kxpc

〈[(
xa

i

)
p→k

] N∑
j

Aip jδc(Xj )

〉
+ R0

kxp

〈[(
xa

i

)
p→k

]〉− n∑
c

R1
xpkc

〈[
xa

i

] N∑
j

Aip jδc(Xj )

〉
− R0

xpk

〈[
xa

i

]〉]
.

This shows that 〈[xa
i ]〉 can increase by a conversion from motifs that differ from xa

i in only one node (first two terms), or
decrease by having any of the nodes in xa

i convert to another species (last two terms), with both increase and decrease possible
via interaction with neighbors and via spontaneous conversion. The factors of form [·]∑N

j Aip jδc(Xj ) count the number of
c-connections of motif [·] (located at i) at node ip. The neighboring node j with species c can be part of the motif [·], or it can
be outside of [·], in which case it gives rise to higher-order motifs. Therefore, by splitting the neighborhood sums as follows:

N∑
j

Aip jδc(Xj ) =
N∑
j∈i

Aip jδc(Xj ) +
N∑
j /∈i

Aip jδc(Xj ),

their products with [xa
i ] and [(xa

i )p→k] count contributions of c neighbors from within versus from outside the motif separately:

[(
xa

i

)
p→k

] N∑
j

Aip jδc(Xj ) = δc(x)aep
[(

xa
i

)
p→k

]+
∑

yb∈N c
p ((xa)p→k )

N∑
j /∈i

[
yb

i, j

]
, (A8)

[
xa

i

] N∑
j

Aip jδc(Xj ) = δc(x)aep
[
xa

i

]+
∑

yb∈N c
p (xa )

N∑
j /∈i

[
yb

i, j

]
. (A9)

On the right-hand side, ep is an m-dimensional vector with
a 1 at position p and zeros elsewhere, and δc(x) a vector

Kronecker δ function that returns a vector of the size of x
with ones where the elements equal c and zeros elsewhere.
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FIG. 5. Dependence of moment equations of a given motif on motifs of one order higher due to nearest-neighbor interactions, up to order
4 (ignoring labels).

Thus, the term δc(x)aep counts the number of c-connections
at position p in the motif xa. We use the notation i, j for
the vector i with an extra node index j appended at position
m + 1. We used N c

p (xa) to denote the set of all (m + 1)th
order connected motifs that can be obtained by linking a new
c-node to the pth position in motif xa, i.e.,

N c
p (xa) :=

m+1⋃
�=1

{
yb : |y| = m + 1, y� = c,

yb
�→∅ = xa, (�, p) ∈ b

}
, (A10)

where yb
�→∅ denotes the mth order connected motif obtained

by deleting the �th node of yb. The sum over elements of
N c

p (·) in Eq. (A9) is taken because any of the other motif
nodes can also link to the new node. The types of higher-order
motifs appearing in the differential equation depend on the
considered motif. In Fig. 5, we show this dependence structure
(ignoring the labels).

With the substitutions from above, we obtain the
individual-level moment equations:

d

dt

〈[
xa

i

]〉 = m∑
p

n∑
k

{( n∑
c

δc(x)aepR1
kxpc + R0

kxp

)〈[(
xa

i

)
p→k

]〉

+
n∑
c

∑
yb∈N c

p (xa
p→k )

N∑
j /∈i

R1
kxpc

〈[
yb

i, j

]〉

−
(

n∑
c

δc(x)aepR1
xpkc + R0

xpk

)〈[
xa

i

]〉

−
n∑
c

∑
yb∈N c

p (xa )

N∑
j /∈i

R1
xpkc

〈[
yb

i, j

]〉}
. (A11)

The population-level moment equations are then obtained by
taking the sum

∑
i∈S(m,N ) [see definitions of [xa] and [xa

i ] in
Eqs. (3) and (A3)] of Eq. (A11) over all index sets i:

d

dt
〈[xa]〉 =

m∑
p

n∑
k

n∑
c

{(
R0

kxp

n
+ δc(x)aepR1

kxpc

)
〈[(xa)p→k]〉

−
(

R0
xpk

n
+ δc(x)aepR1

xpkc

)
〈[xa]〉

+
∑

yb∈N c
p (xa

p→k )

R1
kxpc〈[yb]〉 −

∑
yb∈N c

p (xa )

R1
xpkc〈[yb]〉

}
,

(A12)
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where we collected the sums at the front. In closing this
section, we make the following remarks. (i) The evolution of
expected motif counts of size m is a function of expected motif
counts of size m and m + 1. (ii) Equation (A12) leads to the
same equation for motifs in the network that are isomorphic,
where we call two motifs xa and yb isomorphic if there exists a
permutation π of their node indices that maps them onto each
other, i.e., ∀xa, yb : xa � yb ⇐⇒ ∃π : πx = y, πaπT = b.
Hence, different motifs that are isomorphic belong to the same
equivalence class. Isomorphic motifs have equal total counts
such that we may consider only one representative from each
equivalence class. In our implementation, we therefore make
sure that we count all isomorphic motifs under a single repre-
sentative node indexing. (iii) The summation in Eq. (3) over
index tuples i ∈ S(m, N ) that we used to go from Eqs. (A11)
to (A12) leads to multiple counting of motifs that possess
automorphisms other than the identity transformation. A motif
has an automorphism if it can be mapped onto itself by a
permutation of its node indices. An automorphism is there-
fore an isomorphism with itself, i.e., Aut(xa) := {π : πx =
x, πaπT = a}. The multiplicity with which a particular motif
xa is counted [via Eq. (3)] is then equal to |Aut(xa)|.

f. Conservation relations. In fixed networks, the frequen-
cies of induced subgraphs of a given type (e.g., nodes, links,
polygons, chains) remain fixed. The sum over all possible
motif label orderings then yields these fixed frequencies, or
using the notation from above,∑

x

[xa] = [a],
∑

x

�xa� = 1, (A13)

where the right is the normalized form of the left [via
Eq. (A4)]. For networks with homogeneous degree and motifs
and every stub p of motif xa (also called leaf), i.e., a node with
degree 1, there is the additional conservation relation∑

k

[
xa

p→k

] = [a]

[a \ p]

[
xa

p→∅
]
,
∑

k

�xa
p→k� = �xa

p→∅�,

(A14)
where the right is again the normalized form of the left [via
Eq. (A4)]. Under the conditions mentioned above, [a]/[a \ p]
is the number of out-motif connections at the node that con-
nects to the stub. As Eqs. (A13) and (A14) can be derived
for each motif up to the chosen truncation order, they form
an additional system of equations that can be used to reduce
the dimensionality of the mean-field model via elimination. To
avoid multiplicity of equations while deriving relations (A14),
we set up one equation per set of stubs that lead to isomorphic
variants of the considered subgraph when their indices are
permuted.

g. Number of equations. A simple lower bound on the
number of equations (before elimination) can be found by
considering only chains. At each order there is only one chain
graph. Order 1 contributes n equations, where n is the number
of possible node states. Each chain of order m > 1 has ((n

m)) =
(m + n − 1

n ) = (m+n−1)!
(m−1)!n! ways of labeling its m nodes with n

species. The total number of equations from chains is then
nch = 2 +∑k

m=2(
(n

m

)
). For networks in which the number of

short cycles goes to zero with N → ∞, as in Erdős-Rényi
random networks, the total number of equations is equal to

TABLE II. Cumulative number of equations (nch, neq, n4c) or
motif types (ng) as a function of order k. nch: number of chain motifs
(if the number of species n = 2), ng: number of subgraph types, neq:
total number of equations ignoring conservation relations (if n = 2),
n4: number of equations for the square lattice (if n = 2), n4c: number
of equations for the square lattice after elimination via conservation
relations (if n = 2).

k nch ng neq n4 n4c

1 2 1 2 2 1
2 5 2 5 5 2
3 11 4 15 11 4
4 21 10 65 35 14
5 36 31 419 113 38

this lower bound plus the number of equations due to nonchain
trees. When cycles need to be taken into account however,
there will be additional connected motif types at each order;
see Table II column ng [37, Table 4.2.1]. To obtain the number
of equations contributed by each of these, one has to consider
all labeling orderings, knowing that some orderings lead to
isomorphic motifs and hence do not add to the total. We have
listed in Table II the total number of equations neq resulting
from our enumeration algorithm for dynamics with n = 2,
such as SIS epidemic spreading. For a particular network,
these are still reduced by the number of motifs not occurring
in the considered network and by the number of variables via
the conservation relations. Column n4 in Table II shows the
number of equations for the square lattice and column n4c

shows the remaining number after eliminating variables by
using conservation relations.

APPENDIX B: MOMENT EQUATIONS FOR SIS
SPREADING UP TO ORDER 3

The moment equations up to third order can be written [via
Eq. (10)] as

⎡
⎣

x1 x2 x3 x4

ẋ1 Q1 Q12 0 0
ẋ2 0 Q2 Q23 0
ẋ3 0 0 Q3 Q34

⎤
⎦. (B1)

Then, the coefficients for motifs up to order three are (omitting
zero blocks)

while those for fourth-order motifs in Q34 are
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When written out, this corresponds to the equations:

(B2)

(B3)

(B4)

(B5)

(B6)

(B7)

(B8)

(B9)

(B10)

(B11)

(B12)

APPENDIX C: OBTAINING STEADY STATES
FROM SIMULATIONS

a. Feedback control. As we aim to compare the steady
states of mean-field models to those of the simulation, we
need a way to obtain the steady states of the simulations, even
if they are unstable or marginally stable. Treating the simula-
tion like an ideal physical experiment, the general approach
to finding equilibria regardless of stability is to introduce a
stabilizing feedback loop of the form

r(t ) = r0 + g([xa](t ) − [xa]ref ), (C1)

as was done in Refs. [46–48] for continuation of unstable
vibrations in mechanical experiments. In Eq. (C1), r is one of
the conversion rates in R0 or R1. The feedback control [63]
makes this rate time dependent by coupling it to the motif
frequency [xa](t ) of a chosen motif xa through the relation
(C1). The factor g is called the feedback control gain and
is problem specific. When performing bifurcation analysis, it
is convenient if the rate r used as the control input is also
the bifurcation parameter varied for the bifurcation diagram.
In this case, whenever the simulation with feedback control
(C1) settles to an equilibrium (r∗

c , [xa]∗c ) (in the limit of large
N) the point (r∗

c , [xa]∗c ) will be on the equilibrium branch
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FIG. 6. Feedback control of SIS epidemic spreading on a square lattice: (a) example time profiles of infected fraction [I] and fraction
of susceptible-infected links [SI] in conventional (left) and controlled (right) simulation, (b) bifurcation diagram with control; insets:
example spatial patterns; grid size 100×100 (white=susceptible, black=infected), gain g � 1, recovery rate γ = 1. Near the critical point, the
conventional simulation shows large fluctuations and short extinction times (absorption event occurs at the end of the time series for β ≈ 0.43
in green), whereas the controlled simulation has small fluctuations and no extinction.

of the simulation without feedback control [64–66]. For SIS
spreading, we choose

(C2)

This limit for feedback control results in what is called the
conserved contact process, as proposed by Tomé and De
Oliveira [67]. While SIS spreading does not have any unstable
steady states, points that are marginally stable, as near the con-
tinuous phase transition (epidemic threshold) are stabilized as
well by the control. This stabilization suppresses fluctuations,
even close to the bifurcation, which results in faster conver-
gence of the mean and absence of absorption for any positive
[ ] (see Fig. 6).

b. Simulation algorithm. In the limit of infinite gain g,
each recovery event forces a simultaneous infection event,
such that the number of infected nodes [ ] stays constant. In
a simulation based on the Gillespie algorithm [45] this is done
in the following steps:

(1) start with a number of randomly distributed infected
nodes,

(2) recover an infected node selected uniformly at random,
(3) infect a randomly selected susceptible node, with se-

lection probability proportional to its number of infected
neighbors,

(4) advance time with 
t = − log(ξ )/(γ [ ]) (where ξ is
a uniform random variable on the interval [0,1]),

(5) go to step 2.
This loop runs until we observe that [ ] (t ) is stationary

(call this time te). Then for some additional time T we observe
the fluctuations of [ ] (t ) around its mean. Tomé and De
Oliveira [67] derived the effective infection rate β̃ for each
chosen count [ ] of infected nodes by noting that, because for
every infection event there is a recovery event,

where 〈·〉 is an average over many independent realizations,
such that

which they found to lead to the same nontrivial steady states
[ ]∗(β̃/γ ) as [ ]∗(β/γ ) in the model without control. As the
model with control is ergodic (no absorbing states exist) we
need to run only a single realization and compute the effective
infection rate as

(C3)

In this manner, the error bars of estimates of β̃ can be made
arbitrarily small by increasing T .

APPENDIX D: CORRELATIONS AT GIVEN DISTANCE

In Fig. 7 we show for SIS epidemic spreading the cor-
relation at given distance between two nodes (only between
infected nodes shown). Its general definition is

(D1)

or with normalized motifs,

(D2)

where the distance dist(i, j) is the length of the shortest path
between i and j. Note that the correlations between neighbor-
ing nodes (39) is a special case of this, i.e., Cab = C1

ab. An
alternative way to write Eq. (D2) is

(D3)
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FIG. 7. Steady-state correlation function CD
II versus distance D

(D1) for simulations of SIS spreading on the square lattice (lines).
Color scale indicates values of β/γ corresponding to the markers in
Fig. 2 and sorted such that higher correlations occur for lower values
of β/γ (closer to the critical point). Markers show approximated
correlations when assuming MF2 conditions hold [using Eq. (D3)]
and factorizing the numerator in pair fractions). Filled black markers
are MF2 correlations for β/γ = 0.4137 (which for simulations is
the top black line). Open red markers are MF2 correlations for
β/γ = 0.5602 (which for simulations is the red line).

where �ac1...cD−1b� is a chain motif of size D + 1 with
indicated states. This definition was used to derive CD

ab as
approximated by mean-field models in Fig. 7, by applying the
closure formula to the chain in the numerator.

APPENDIX E: STEADY STATES OF MF1-MF2

Here, we show the expressions for the steady states and
steady-state correlations of MF1 and MF2.

1. MF1

The MF1 model equals SIS epidemic spreading under
well-mixed conditions. Its steady states are the trivial and the
endemic state,

2. MF2

For the MF2 model the equations and, hence, their steady
states, depend on the type of network.

a. Degree-homogeneous networks

The steady states of the dynamic equations for MF2 on degree-homogeneous networks (49) are

(E1)

The nontrivial correlations, obtained by substitution of the above into Eq. (40), are

C∗
II = (γ − βκ )(γ − β(κ − 1)κ )

βκ2(β(κ − 1) − γ )
, C∗

SI = 1 − γ

βκ (κ − 1)
, C∗

SS = β(κ − 1)κ − γ

β(κ − 1)2
. (E2)

b. Degree-heterogeneous networks

The steady states of the dynamic equations for MF2 on degree-heterogeneous networks (53) are

(E3)

The nontrivial correlations, via substitution of the above into Eq. (40), are

C∗
II = 4β3/2κ − 2

√
βγ (κ + 3) + 2γ

√
β(κ − 1)2 + 4γ√

βκ[
√

β(κ − 1)2 + 4γ − √
β(κ + 1)]2

, (E4)

C∗
SI = C∗

SS = 2γ

κ
√

β2(κ − 1)2 + 4βγ − β(κ − 1)κ
. (E5)
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APPENDIX F: MF3 FOR SIS SPREADING

We only apply MF3 to the square lattice, such that we can ignore all motifs that contain triangles and set

in the remaining equations, such that we obtain

The seven conservation relations are

We eliminate . Following Eqs. (11)–(13), this means

and

Q̃1···3,1···3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−γ β 0 0 0 0 0 0
0 −β − γ γ 0 β 0 −β 0
0 2β −2γ 0 0 0 2β 0
0 0 0 −2β − γ 0 2γ 0 0
0 0 0 0 −β − γ γ γ 0
0 0 0 β β −β − 2γ 0 γ

0 0 0 0 0 0 −2β − 2γ γ

0 0 0 0 0 2β 2β −3γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
κ −1 0 0

−κ (κ −1) 2(κ −1) 0 1
0 κ −1 −1 0

κ (κ −1) 1− κ 0 −1
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Q̃34 =
(

2β 2β 0 0 −β

0 0 2β 2β β

)
, c = (0 0 0 0 0 0 0 0)T ,

which results in the four remaining equations (c̃ = 0 so not shown),

(F1)
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where we have used κ = 4 for the square lattice. In normalized form this is

(F2)

To close the system of equations, we apply Eq. (23) to the chains and star, and Eq. (24) to the cycles (using the extension to
nonmaximal 2-cliques) and obtain the normalized closures (see also Sec. VII D, examples 3–5)

(F3)

where we also used the conservation relations to substitute any previously eliminated motif. The steady-state solutions of the
final system are roots of a ninth-order polynomial, of which two are admissible (see Fig. 2 for numerical results).

APPENDIX G: MF4 FOR SIS SPREADING IN MATHEMATICA

We uploaded two application examples of our algorithm
at fourth order to Mathematica’s notebook archive (best
viewed locally). In the first section of the file, the procedure
as explained in the main text is followed for MF4 on the
square lattice. The second section in the file shows the general
coefficient matrix Q for the (unclosed) moment equations up
to fourth order, with columns labeled by x1, . . . , x5 (stored in
the variable mots). The algorithm can be instructed to write
the resulting set of equations as MATLAB [68] functions in a
format compatible with continuation software such as COCO
[69] and MatCont [70].

APPENDIX H: CLOSURE EXAMPLES

Here we show 13 examples of subgraph decompositions
based on the method explained in Sec. VII [Eqs. (23) and
(24)]. They are shown in table form on the last page of the
arxiv version of this article [71]. We also discussed three
commonly used ones (1–3 in the table) in Sec. VII D.

As the closures can be written independent of the particular
labels, they are shown in the table for subgraphs only, with
each node tagged with its index. We have also dropped the
〈·〉, assuming that the law of large numbers applies, such that
the counts approach their expectations almost surely for in-
creasing network size N . The examples can be understood by
reading the table from left to right. Comments are added in the
last column. By column, it shows: (1) the example number, (2)
the considered subgraph, (3) its diameter, (4) its independence
map assuming independence beyond distance diam(a − 1),
(5) whether the independence map is chordal, (6) the de-
rived junction graph of d-cliques where d = diam(a − 1),
(7) the resulting closure formula, (8) a triangulation of the
independence map if the independence map is nonchordal,
(9) the junction graph of d-cliques based on the triangulation,
(10) the closure formula based on the triangulation, (11) an
ad hoc extension of the method to nonmaximal cliques for
some subgraphs, (12) the resulting closure formula based on
this extension, (13) comments. Our Mathematica script [36]
generates these closures automatically.
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