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Nonequilibrium dynamics in a three-state opinion-formation model with stochastic extreme switches
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We investigate the nonequilibrium dynamics of a three-state kinetic exchange model of opinion formation,
where switches between extreme states are possible, depending on the value of a parameter g. The mean field
dynamical equations are derived and analyzed for any g. The fate of the system under the evolutionary rules
used in S. Biswas er al. [Physica A 391, 3257 (2012)] shows that it is dependent on the value of ¢ and the initial
state in general. For ¢ = 1, which allows the extreme switches maximally, a quasiconservation in the dynamics
is obtained which renders it equivalent to the voter model. For general g values, a “frozen” disordered fixed
point is obtained which acts as an attractor for all initially disordered states. For other initial states, the order
parameter grows with time ¢ as exp[a(g)t] where o« = ;%Z for ¢ # 1 and follows a power law behavior for g = 1.
Numerical simulations using a fully connected agent-based model provide additional results like the system size
dependence of the exit probability and consensus times that further accentuate the different behavior of the
model for ¢ = 1 and g # 1. The results are compared with the nonequilibrium phenomena in other well-known

dynamical systems.
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I. INTRODUCTION

One of the main motivations in studying nonequilibrium
phenomena is to check what kind of steady states can be
reached using different initial conditions. In the well-known
Ising-Glauber model at zero temperature, on lattices or net-
works, several studies have been made to show that the steady
states may not be the equilibrium steady states [1-14]. Exit
probability, a quantity related to the type of final state reached
from an initially biased state, has also been studied extensively
in recent times in spin and opinion-formation models [15-26].
In systems with more than two states, several other interest-
ing features, like the two-stage ordering process, have been
noted [26]. In addition, how a system evolves to a stable
state starting from an unstable fixed point is also a matter of
interest [27].

Opinion dynamics models relevant to social phenomena
have received extensive attention recently [28-31]. These
models typically show a rich nonequilibrium behavior. Usu-
ally, the opinion of an agent is updated following the
interaction with other individuals; sometimes the influence
of media is also incorporated. In the numerous models stud-
ied so far, the interaction and the choice of the interacting
agent(s) play crucial roles. The simplest models involve bi-
nary opinions typically represented by 0,1 or 1. The voter
model [32,33], in which an agent just copies the opinion of
another randomly picked up agent, is one of the simplest and
earliest opinion dynamics models. Later, models involving
more complexities have been constructed [29,30]. The binary
models obviously cannot capture all the intricacies of the real
world. Hence, models with three or more opinion states as
well as continuous values of opinions have been considered
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in the recent past. The voter model can be generalized with
a larger number of states easily [34] while other multistate
models which involve the effect of more neighbors have also
been considered [35,36]. In comparison to the simple binary-
state models, here the opinions are not merely flipped but
can change in more than one possible way. We focus our
attention on the so-called kinetic exchange models where pair-
wise interactions are considered at each step [37]. However,
these models generally have some restrictions. In particular, in
the kinetic exchange models most recently studied with three
discrete opinion states quantified by —1, 0, and 1 (assumed to
represent e.g., left, central, and right ideologies), a transition
from 1 to —1 or vice versa (i.e., an extreme switch of opinion)
is not allowed to the best of our knowledge [38—42]. Also,
in many other similar three-state models such a restriction is
imposed [43—49]. However, human behavior being complex
and unpredictable, such switches cannot be completely ruled
out. In fact, there are real-world examples where even political
cadres or leaders shift their allegiance to parties with totally
opposite principles [50,51]. The reasons may be associated
with immediate gains and selfish interests, lack of strong ideo-
logical beliefs, etc. We consider a model for opinion dynamics
where extreme switches are allowed to happen and see how
the dynamics are affected by this. It may be added here that for
the multistate voter model or Potts-type models, such extreme
switches can take place; however, in the relevant studies, the
effect of such switches has not been the issue of interest
specifically [34-36].

In this article, we have considered a kinetic exchange
model of opinion dynamics with three states, with the pos-
sibility of switching between extreme opinions. In the mean
field approach, the equations for the time derivatives are set

©2022 American Physical Society
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up for the three population densities of different opinions
and solved numerically. We have introduced a parameter g
which governs the probability with which switches between
extreme opinions can occur and studied its effect on the time
evolution. g varies between zero and unity; the zero case is
already considered where no such switch is allowed [38]. In
parallel, numerical simulations have been conducted using a
fully connected agent-based model. The model and quantities
of interest are discussed in the next section, followed by the
results presented in Sec. III, and, finally in the concluding
section, the results are discussed and compared to existing
results in similar models.

II. MEAN FIELD KINETIC EXCHANGE MODEL

We have considered a kinetic exchange model (KEM) for
opinion formation which incorporates three opinion values
that are quantified by 0, £1. The possible correspondence
with left, central, and right ideologies has already been men-
tioned. The three opinion values may even mimic a two-party
voting system, where the 1 opinions represent support for
the two parties while people with zero opinion (the neutral
population) are those who refrain from voting for either of
them. The opinion of an individual is updated by taking into
account her present opinion and an interaction with a ran-
domly chosen individual in the fully connected model. The
opinion of the ith individual is denoted by o0;(¢). The time
evolution of o;, after an interaction with the kth individual,
chosen randomly, is given by

0i(t +1) = 0;(t) + por(t), (D

where (1t can be interpreted as an interaction parameter. The
opinions are bounded in the sense |o;| < 1 at all times and
therefore o; is taken as 1 (—1) if it is more (less) than 1 (—1).
There is no self-interaction so i # k in general. This evolu-
tionary rule was introduced in [38]. Here time is assumed to
be discrete but one can easily use a continuous-time model as
will be done in this paper.

In several previous works [26,38-42], u, the interaction
parameter, has been chosen randomly, allowing also negative
values albeit being bounded: |x| < 1. Such a bound allows a
transition between opinion values with a difference of maxi-
mum =1 only. In the present work, the interaction parameter
u is allowed to take two discrete values. The values are
u = 1and u = 2 which occur with probabilities 1 — ¢ and g,
respectively. Hence, for example, if an agent with opinion +1
interacts with another with opinion —1 and u = 2, her opinion
can change to —1, the other extreme value. The possibilities
of all the interactions and resulting opinions are shown in
Fig. 1 for the extreme values ¢ = 0 and ¢ = 1. Note that in
the present work only positive values of  are allowed.

The densities of the three populations with opinion 0, 1
are denoted by fy, fi1 with fo + f+1 + f-1 = 1. The en-
semble averaged order parameter obtained from the time
dependent equations for the densities is given as (O(t)) =
for = for with =1 < (0@) < 1.

Usually, to study opinion dynamics models, one starts with
a random disordered configuration such that the average opin-
ion is 0. Given that there are three states, one can choose this
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FIG. 1. The updated opinions of the ith individual following an
interaction with another individual (denoted by k) for all possible
opinion values at time ¢ are shown for g = 0 (left panel), which
implies £ = 1 and ¢ = 1 (right panel) for which p = 2.

state with different combinations of f;’s, keeping f,; = f_i.
A conventional choice is fy = fu = 1/3.

One can also study the effect of an initial bias in the distri-
bution of opinions in the starting configuration of the system.
The homogeneous configuration being one with all the densi-
ties equal to 1/3, one can consider a deviation from this such
that the net opinion is nonzero by choosing fy = 1/3, fi =
1/34+ A/2, and f-; =1/3 — A/2. Here —2/3 < A < 2/3.
Apart from this case, one can take other initial configurations
which have a net nonzero opinion. We have discussed such
cases as well to show the initial configuration dependence.

We present in this paper the rate equations derived analyti-
cally using mean field theory for the three densities, and study
their behavior as functions of time. The fixed point analysis
of the equations present some interesting and nonintuitive
results. We also obtain the exit probability. Here the exit
probability E is considered as a function of A; i.e., E(A) is
the probability that the final configuration has f,; = 1 starting
from f,1 = 1/34+ A/2and f_; = 1/3 — A/2. The saturation
value of (O) is related to E(A) by

(O)sar =2E(A) — 1, (@)

from which the exit probability can be estimated.

We have also conducted numerical simulations by consid-
ering an agent-based model where each agent can interact
with any other agent. Here, the order parameter for a given

configuration is defined as O(t) = w where N is the
system size with (O) denoting the configuration average. To
calculate the exit probability E(A), we directly estimate the
fraction of configurations which reach the consensus state
with all opinions equal to 1.

To solve the coupled differential equations, the Euler
method has been used and in the Monte Carlo method, system
sizes ranging from 100 to 2'® have been simulated with the
number of configurations ranging from 10* to 10°.

From the simulations, it is also possible to estimate the
average consensus times for different system sizes. All the
results are presented in the next section.
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III. RESULTS

We present in this section the mean field analytical solution
in detail and also the results obtained from numerical simula-
tions.

A. Mean field rate equations

To set up the rate equations for the f;’s, we need to treat the
time variable as continuous. Assume that the opinion changes
from i to j (i, j = 0, +1) in time Ar with the transition rate
given by w;_, ;. Then we have the following set of w;;’s:

Wiis1 = 1+ fofr,
Wo—s+1 = foft1s
Wois41 = qf-1f41,
Wii—0 = (I — @) fs1 /-1,
Wo—o = f5,
w-i-0 = (I —g)f-1f+1,
Wil»-1 = qfr1f-1,
Wo——1 = fof-1,
w1 = f5 + fofor
Hence, in general, we have fi(r+ At)= f;(t)+

Zj Wi At — Zj w;— jAt such that, taking At — 0, we
get

d

% = fofr1 — A =@ fy1f 3)
and

df—

% =fofs1 — A = f-1f41. “)

The time evolution of the ensemble averaged order param-
eter (O(t)) satisfies

d{O0(1))
dt

= fo(O@)). ®)

B. Fixed points and steady states

There will be some trivial fixed points corresponding to the
initial conditions that have any of the three densities equal to
1. Here, obviously, there will be no evolution of the system at
all. We consider more general cases in the following.

Equation (5) shows that a steady state for (O) is obtained
when (O) = 0 and/or fy = 0. Consider first the case when we
have a disordered steady state, i.e., (O(t — 00)) = 0. If the
initial state is disordered, Eq. (5) indicates that O will remain
zero, i.e., will not evolve although the individual densities may
change in time. We show in the following that for all values
of g, there exists a nontrivial disordered fixed point at which
there is no evolution of not only the order parameter but also
of the individual densities. This special fixed point may be
termed the frozen fixed point (FFP) as the system does not
undergo any change at all right from the beginning, although
none of the densities have value unity.
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FIG. 2. The order parameter versus time variation near the frozen
fixed point shows an exponential growth given by exp[o(g)z] for any
q # 1 as is evident from the (a) analytical as well as (b) simulation
results. Also shown are the best fitted curves of the form given in
Eq. (8).

Atthe FFP, fi| = f_; = x > Ois a constant in time. Using
this in Eq. (3) or Eq. (4), one gets

dx

e x—B =gt =0. 6
=X G-k (6)
Ignoring the solution x = 0, we get x = 3 ; 1.e., the
fixed point is given by
1 1—¢q
=—. )

fr1= /2 =34 Jfo= 34

The stability of the FFP can be checked by introducing
small deviations about these values. These deviations can be
introduced in different ways. We first consider a deviation
such that the initial state has a nonzero order. Taking f1(¢) =
x*+§and f_;(t) = x* — § where x* = 3lq is the FFP value,
we get from Eq. (3)

dx*+6
% = (" +8)= 2 = )" + (" = 8)— (x* +8)°.
Linearizing the above, one finally gets

3(r) = doexpla(q)r], 3)

where § is the initial value of § and

1—
alg) = Fy a4 &)

—q

The order parameter which is equal to 2§(¢) should show the
same behavior and indeed both the analytical solution and
simulations show the expected initial exponential growth with
the value of the exponent very close to « given by Eq. (9) (see
Fig. 2). The simulation results have some finite size effects
which is not unexpected [Fig. 2(b)]. The fact that «(g) > 0
(for g # 1) implies the FFP is an unstable one for all values
of g (except g = 1) when the deviation favors a finite order.

On the other hand, if we start from any disordered state,
it can be shown that the system will flow towards the FFP.
Here, with f, = f_ initially, they will remain the same in
time as indicated by the rate equations. Hence the state can be
characterized by fi = x* 4+ pand fy = 1 — 2(x* + p). In this
case, we obtain

p(t) = po exp[—t], (10)

i.e., the state flows to the FFP with a rate independent of g.
Here pg is the initial value of p. Hence the FFP acts as an
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TABLE I. Fraction of neutral opinion, positive opinion, and neg-
ative opinion considered for the initial configuration.

Initial configuration fo fr1 fa

Set I 1/3 1/3 1/3
Set II 1/2 1/4 1/4
Set IIT 5/10 3/10 2/10
Set IV 1/2 1/4+0.01 1/4 —0.01

attractor for all initially disordered states. We have checked
that the above form is indeed obeyed for any value of ¢ (not
shown).

C. Time evolution of the densities and the order parameter

Having obtained the fixed point and the behavior of the
system close to it for any value of g, we proceed to study the
time evolution of the relevant variables in more detail in this
section. We will first discuss this for g = 1, which is obviously
a special point in the parameter space. For other values of
q also, we present the results which show consistency with
the theoretical analysis. The data for the time evolution of the
three densities and the order parameters have been obtained
by numerically solving the analytical equations and also using
Monte Carlo simulations. Only two of these four quantities
are independent; however, it is more informative to present
the results for all of them.

We have used four different sets of initial conditions stated
in Table I. Of these, sets I and II are both disordered with set
I corresponding to the homogeneous case. Set III represents
an arbitrary initial condition that favors order. Set IV is also
ordered initially and can be regarded as a small deviation from
set II. For all these cases, for ¢ = 1, fj falls rapidly within a
few steps as shown in Figs. 3(a) and 4(a) obtained using both
the methods. This behavior of fy may be easily understood
from the transition possibilities, as we note (see Fig. 1) that,
for opinion zero, there is no flux to this state from opinion

0.5
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fo(

0.1

0 5 10 0 5 10
t t

FIG. 3. Results for ¢ = 1 obtained from the analytical solution
using the initial configurations given in Table I. The three densities
and the ensemble averaged order parameter are shown as functions
of time in (a), (b), (c), and (d), respectively. The time evolution of
sets I and II merge within a few steps as expected.

0.6

Eosl/ g2

N

2 100 4000
t
05 - 1.0
- / A
=04 E
= 505
\%
0.3 ©) (d)
2 100 4000 0.0 2 100 4000

t t

FIG. 4. Results for ¢ = 1 obtained from Monte Carlo simulation
(for system size N = 2'°) using the initial configurations given in Ta-
ble I. The three densities and the ensemble averaged order parameter
are shown as functions of time in (a), (b), (c), and (d), respectively.

values 1 while there is an outgoing flux when the zero
opinion changes to other values. This leads to the behavior of
(O(t)) in Eq. (5) as df% ~ 0; i.e., a quasiconservative system
is obtained. Note that fy — O implies fi; are independent of
time for ¢ = 1, but not necessarily equal to 1 or 0. Hence,
the consensus state (i.e., either fi; or f_; equal to 1) is
not reached in general such that the value of the ensemble
averaged opinion is less than 1. We exclude here the trivial
cases where f,; = 1 or f_; = 1 initially. The results using the
mean field equations are shown in Fig. 3 for different initial
states given in Table I. It is seen that, as expected, for sets I
and II, which are disordered initially, the system evolves to
the FFP 0, 1/2, 1/2. For the other sets we see that the system
reaches a steady state (which is not a consensus state) within
a few steps with the final value of the order parameter close
to the initial one and f = 0. For sets III and IV, we have used
initial states with a bias to the +1 opinion and O(¢) is therefore
positive in all the cases.

The corresponding simulation results are shown in Fig. 4.
Here the consensus states are reached for all the sets of initial
states including the disordered ones (sets I and II). This is
because, in simulations, since we have a finite system size,
a random fluctuation can drive the system to a consensus state
in an individual configuration. Therefore, the data which are
shown for the ensemble average of the absolute value of the
order parameter show (O) — 1 at large times for all initial
states. This is analogous to the kinetics in the Ising-Glauber
model at zero temperature in one dimension, where we have a
conservation such that the ensemble averaged magnetization
is zero. In simulations, however, an individual configuration
indeed reaches the all-spin-up or -down state so that the
absolute value of magnetization reaches unity even after con-
figuration averaging.

Let us next discuss the case for g = 0, the other extreme
limit. This is the case when extreme switches are not allowed
and it is identical to the model considered in [38] when all
interactions are positive and equal to 1. In that case, an ordered
state is expected at long times. However, as already discussed
in the last section, the A = 0 point is the FFP here leading to
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FIG. 5. Results for ¢ = 0 obtained from analytical solution using
the initial configurations given in Table I. The three densities and the
ensemble averaged order parameter are shown as functions of time
in (a), (b), (¢), and (d), respectively. The time evolutions of sets I and
II merge within a few steps as expected.

(O(t)) = 0 for all + when the time evolution is studied using
the analytical equations. The results are presented in Fig. 5.
We note that set I does not evolve at all and for set II, the
densities evolve before terminating at the FFP, consistent with
the analysis presented in the previous section. Initial states
with nonzero order show that the system reaches a consensus
state. We also observe that if the initial state is close to a
disordered state (set IV), the system spends a longer time to
reach consensus. Once again, in the numerical simulations
(O(t — o00)) =1 for all initial configurations as shown in
Fig. 6. In the completely disordered case, again random fluc-
tuations are responsible for driving an individual system to a
consensus state.

For other values of g # 1, the qualitative behavior of the
time evolution is similar to that of g = 0. One gets consen-
sus states starting from initially biased states. The disordered

0.1 (©) / (d)

5 20 35 5 20 35
t t

FIG. 6. Results for ¢ = 0 obtained from Monte Carlo simula-
tions (for system size N = 2!°) using the initial configurations given
in Table I. The three densities and the ensemble averaged order
parameter are shown as functions of time in (a), (b), (c), and (d),
respectively.

10°
A A=0.002
o]
v gq=0.2
102 4 g=0.5
q=0.8
0 30 60

FIG. 7. The order parameter versus time variations for the initial
condition fr =1/3 £ A/2 shown for different values of g using
(a) the analytical method and (b) numerical simulation. The best
fitting curves for the growth show an exponential form exp[8(q)t].

states flow to the FFP when the time evolution is studied by
solving the differential equations numerically, as expected.
Consensus is reached in individual configurations starting
from any initial state in the numerical simulations.

We have already discussed the growth of the order param-
eter for initially ordered states with small deviations from the
FFP taken in a particular manner. In this section we discussed
the time evolution using various other initial configurations.
It is found that any initially ordered state finally attains con-
sensus and the growth of the order parameter is found to be
exponential in all cases given by exp[B(g)t]. In particular
we show in Fig. 7 the case when the initial condition is
fr=1/3£ A/2 with A = 0.002.

The values of «(g) and B(q) obtained from the numerical
solution of the rate equations as well as using Monte Carlo
simulations are very close to each other as shown in Fig. 8. So
we conclude that when the system orders for g # 1, the initial
growth of the order parameter is given by a unique exponential
form, independent of the initial condition, with the exponent
given by Eq. (9).

Since the magnitude of the order parameter increases, a
steady state must imply fo = 0. With fy = 0, we have from
Egs. (3) and (4) that in the steady state, either f or f_; must
be zero (or unity). Hence the consensus state will be reached
forall g # 1.

For g = 1, although the analytical results show that the
consensus states are not reached in the thermodynamic limit,
for finite systems, we find a unique behavior for the growth of
the order parameter from the numerical simulation. Instead of

0.3
0.2 @ A () 12
@ 0. = )
3 o5 * S 0.1 N=2
0.1 %A v
Eﬁ . #0002, g=1.0
0 (1-9)/(3-d) —— 50=0.02 , g=1.0
0 025 05 075 10° 102 oF
q t

FIG. 8. (a) The values of @ and B (subscript A and S denot-
ing analytical and simulation results, respectively) shown against ¢
agree very well with the analytical form given by Eq. (9). (b) The
order parameter against time for ¢ = 1 obtained using the numeri-
cal simulations is shown to follow a power law behavior with the
exponent = 0.49 £ 0.01. The initial conditions are the same as in
Figs. 2(b) and 7(b).
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FIG. 9. Variation of average consensus time for different values
of g. The main plot shows the ¢ = 1 results obtained using system
sizes up to N = 2'. Inset shows results for two values of g # 1
obtained in system sizes <2!® agents.

exponential, it displays a slower power law variation with the
exponent very close to 0.5. The data are presented in Fig. 8(b).

D. Consensus times

From the simulations, t, the average time to reach the
consensus state, has been estimated for different system sizes.
Once again, we find different behavior for g # 1 and ¢ = 1.
For g = 1, © « N, while for other values of ¢, the consensus
time 7 depends logarithmically on the system size, with T
increasing with g. Figure 9 shows the data.

E. Biased initial conditions and exit probability

To calculate the exit probability, we consider the biased
initial condition fo = 1/3 and fi; = 1/3 £ A/2. As already
mentioned, we calculate the exit probability as a function
of A.

The exit probability for ¢ = 1 has a completely differ-
ent behavior compared to other values of g. We find that it
has linear variation given by E(A) = 1/2 4+ 3A/4 shown in
Fig. 10(a). A linear behavior is expected in conserved systems
but it is intriguing that even here, there is a linear behavior
although the system is not exactly conserved. In this case, the
simulations also agree as we take into account whether the
consensus reached is for all 41 or all —1 states. Figure 10(b)
shows the results are consistent with a linear variation of E(A)
when g = 1 and shows that it is also independent of the system
size.

Analytical results for the exit probability, for g # 1, shows
a step-function-like behavior: E(A) =1 for A > 0 and is

1.0 1.0

@ (o) /
o5 §0.5 e

T, 0=0.0 —+— / o
4=0.5 Z10N=210 —
g=1.0 —— /q 1'0“:312 e
0.0 0.0 N=2"
0.6 0 06 -06 0 0.6
A A

FIG. 10. (a) E(A) against A obtained in the analytical method
using Eq. (2) for different values of g. (b) E(A) for ¢ = 1 using
the numerical simulations for different system sizes shows a system-
size-independent linear behavior.
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u‘éjo.s o =
0.4
0 024 05 1
AN1/\7 q

FIG. 11. (a) Data collapse of E(A) for different system sizes is
shown against scaled A values for g = 0. Inset shows the raw data.
(b) The variation of the parameter A against g.

equal to zero for A < 0. The fixed point analysis also in-
dicates E(A =0) =1/2. Hence any biased state with a
majority opinion equal to 1 (—1) will end up with all opinions
equal to 1 (—1).

The simulation results for E(A) for g # 1 show strong
finite size dependence. When plotted against N'/” A, the data
collapse in a single curve indicating

E(A) =g(N'"A), (11)

where g is a scaling function. This is true for any value of
g # 1 with a universal value of b & 2. Figure 11(a) shows the
data for g = 0.

The scaling function g in Eq. (11) can be approximated by

8(y) = [1 + tanh(2y)]/2, 12)

as obtained earlier in a few other models [18,24-27]. We
find that A decreases as the value of ¢ increases from zero
[Fig. 11(b)].

In the thermodynamic limit, the exit probability shows the
step function behavior. However, for finite systems, it is S
shaped and from the finite size analysis we can conclude that
the range of A over which it is neither zero nor unity, to a large
extent, is inversely proportional to AN'/7.

We end this section commenting that the two different
behaviors of the exit probability shown in Fig. 10(a) are anal-
ogous to the Ising-Glauber model in dimensions greater than
unity and the voter model (in any dimension) respectively for
g#landg=1.

IV. SUMMARY AND DISCUSSIONS

In this paper, the evolution of the opinions in a kinetic
exchange model has been studied using both analytical and
numerical methods. The three discrete opinion values used
here are quantized by 0, +1. The mean field differential equa-
tions for the rate of change of the population densities having
the three opinions have been derived and analyzed. Here,
the parameter g determines the value of the interaction u, a
random variable, which can have binary values 1 and 2. When
u = 2, which occurs with a probability g, there is a possibility
that the opinion value switches from one extreme value to
the other. The ¢ = 0 case, where i can have a single value
equal to unity, has been considered earlier in several studies
in different contexts.

Let us first summarize the main results obtained:

(a) Any initially ordered state will reach a consensus state

for g # 1.
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(b) A frozen disordered fixed point exists; all initially dis-
ordered states flow there.

(c) The growth of the order parameter is exponential for
q#1.

(d) A quasiconservation exists for ¢ = 1 leading to dif-
ferent saturation behaviors of the order parameter and exit
probability.

The results are qualitatively different for ¢ = 1 and g # 1.
The analytical solution, which is valid in the thermodynamic
limit, shows that for ¢ = 1 the dynamics are quasiconservative
as the order parameter remains constant after a very short tran-
sient time. This indicates that the system does not order fully
for any initial configuration with initial order parameter less
than 1. The linear behavior of the exit probability is similar to
what is seen for a conservative dynamics as for example in the
voter model in all dimensions and the Ising-Glauber model
in one dimension. This is actually quite interesting, as the
present model does not strictly conserve the order parameter;
the saturation value is not exactly equal to the initial one. But
the linear behavior of the exit probability can still occur if the
saturation value of the order parameter varies linearly with the
initial value, which we have checked to be true here.

The g = 1 case is in fact very similar to the voter model:
as fy goes to zero very fast, it effectively renders the system
to a binary opinion model within a short time scale with the
transition rates identical to those in the voter model [52]. Like
the voter model, here the agent adopts the opinion of the
other agent with whom she interacts irrespective of her own
opinion. We also obtain the result that the average consensus
time is proportional to N for g = 1, a result valid for the mean
field voter model.

In the analytical approach, one essentially obtains the
ensemble averages in the thermodynamic limit. Initial con-
figurations with nonzero order will eventually reach the
consensus state for g # 1. We also find that this growth be-
havior is unique, i.e., does not depend on the initial state but
only on ¢. This is not surprising as it is expected that there
will be a single time scale in the system. Such exponential
growths have been recently observed in the mean field Ising
model with finite coordination number also [27].

The analytical approach also leads to the interesting result
that an initially disordered state, that can be realized in many
ways, will flow towards the so-called frozen fixed point at
a rate independent of ¢g. In comparison, in binary models
like the Ising model, the disordered state is unique, charac-
terized by exactly half of the relevant degrees of freedom
belonging to one state. Hence no such flow can be observed
there.

In the numerical simulations, one can keep track of the
individual configurations. For all g values we get a consensus
state finally for states starting from partially disordered states.
For g # 1, this is the same result obtained from analytical
treatment. However, it is not expected that consensus will be
obtained for ¢ = 1 for any initial state and for g # 1, for
initially fully disordered configurations. This contradictory
result obtained in the simulations is argued to be due to
finite size effects. In finite systems, random fluctuations can
drive the system to a consensus state (which implies that the

absolute value of the order parameter is unity) even if the
initial configuration is fully disordered. This has been ob-
served in spin models also, e.g., in the one-dimensional
Ising-Glauber model for which the ensemble averaged or-
der parameter is conserved but still consensus states can be
reached in numerical simulations starting from disordered
states. Numerical simulations also show that for g = 1, the
growth follows a power law behavior, which is much slower
than exponential. As a result, the consensus time is linear in N
for g = 1, compared to the weak logarithmic dependence on
the system size when g # 1.

The exit probability for ¢ # 1 indicates a step function
behavior in the thermodynamic limit. It shows strong finite
size effects as indicated from the numerical simulations. As
observed in some other models, a scaling behavior is obtained,
dictated by two parameters ¥ and A. The value of  is indepen-
dent of ¢, a result similar to that in several other models where
also v does not depend on the model parameter. However, the
value of b & 2 is clearly different from the ones found earlier
for Ising-like and other opinion dynamics models [18,24-27].
A, on the other hand, is dependent on the parameter g, which
was also found to be true in the other models. The linear vari-
ation of the exit probability in the g = 1 case, independent of
system size, also indicates that one will get minority spreading
here [53].

In conclusion, the present results indicate that a society
attains stability when people have less influence on oth-
ers, i.e., ¢ is small, with the consensus state attained very
fast. Essentially, the ¢ # 1 model is qualitatively similar to
the ¢ = 0 model, with a g dependent time scale to reach
the consensus state which diverges as 1/a o (1 —¢)~'. So
the extreme switches cause a delay in reaching the consensus
as they increase in number. ¢ = 1, which allows the maximum
possible switches between extreme opinion values, essentially
leads to a fragmented society. That this does not happen usu-
ally signifies that real systems may be mimicked by a g # 1
value in this model. It also shows that an initially disordered
society will remain so when one considers the ensemble av-
erage; however, individual configurations do reach consensus.
From the perspective of statistical physics, we have presented
a model with a rich behavior as ¢ is changed; at g =1 a
voter-model-like behavior is seen that changes to a finite di-
mensional spin-model-like behavior for any ¢ < 1. As future
studies, it will be interesting to consider negative interactions
between the agents which will introduce a noise that can drive
an order-disorder transitions. This will also make it closer to
reality and would open up the possibility to compare with
time dependent real data. Another interesting possibility is to
consider general opinion values instead of £1, 0 [54-56] and
introduce transition between any two states and see how it
compares with the present case.
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