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Finite-size scaling of human-population distributions over fixed-size cells
and its relation to fractal spatial structure
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Using demographic data of high spatial resolution for a region in the south of Europe, we study the population
over fixed-size spatial cells. We find that, counterintuitively, the distribution of the number of inhabitants per
cell increases its variability when the size of the cells is increased. Nevertheless, the shape of the distributions is
kept constant, which allows us to introduce a scaling law, analogous to finite-size scaling, with a scaling function
reasonably well fitted by a gamma distribution. This means that the distribution of the number of inhabitants
per cell is stable or invariant under addition with neighboring cells (plus rescaling), defying the central-limit
theorem, due to the obvious dependence of the random variables. The finite-size scaling implies a power-law
relations between the moments of the distribution and its scale parameter, which are found to be related with the
fractal properties of the spatial pattern formed by the population. The match between theoretical predictions and
empirical results is reasonably good.
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I. INTRODUCTION

Problems related to human population are going to be
among the most pressing ones our societies will face in the
near future. The so-called new science of cities is trying to
bring a holistic and cross-disciplinary perspective to analyze
all sort of patterns and phenomena that appear in large human
aggregations [1–6]. A fundamental quantity in this endeavor,
which has been studied since long ago [7,8], is the “size” of
human aggregations (villages, towns, cities, megalopolises)
measured in terms of number of inhabitants [2]. This has
been found to be, obviously, very broadly distributed, ranging
from dozens of individuals to several millions. The Zipf’s
paradigm proposes that, for a given country or region, the
distribution of the number of inhabitants in these aggregations
(defined, for instance, as municipalities), follows, at least for
the largest values, a power-law distribution with an exponent
of the probability density close to two [8–12]. But this has
been challenged by other authors, who suggest that a lognor-
mal distribution provides a better fit to the empirical data than
that of the power law [13–15].

Leaving aside the adequacy of each distribution to describe
the population of human aggregations, a drawback of this ap-
proach is that it does not take into account the spatial degrees
of freedom, i.e., how the individuals are distributed in the
territory; the required data are just a list of municipalities with
the number of inhabitants in each one. Recently, Ref. [16] took
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a different point of view, using the exact spatial coordinates of
the living place of all the individuals in a territory to define
clusters of spatially connected individuals (or, more precisely,
clusters of close living places). This provided a somewhat
“natural” definition of what a human aggregation (roughly
speaking, a city) is (see also Refs. [17,18]), and allowed an
unambiguous calculation of its number of inhabitants (depen-
dent only on the width of the cells that constitute the clusters
or on the distance that discriminate if two individuals are
connected or not).

The resulting distribution of number of inhabitants of
these clusters [16] turned out to be even broader than in
the traditional approach, with many clusters consisting only
of one or two individuals, but it was also found that the
lognormal distribution (truncated from below) led to a more
“complete” fit than the power law, providing a good fit from
about 10 individuals to the population of the largest clus-
ter [19–21]. Reference [16] also showed how this broadness
emerged through the integration of neighboring highly popu-
lated cells, highlighting the importance of spatial correlations
in the distribution of individuals through the territory. In other
words, destroying the spatial correlations (through reshuffling
of cells) destroys or reduces the broadness of the distribution
of number of inhabitants.

The high-resolution human-population data used in
Ref. [16] allows for an in-depth study of the spatial structure
of human populations, and this is what we undertake in the
present paper. This sort of questions have been widely ad-
dressed in ecology, regarding both plants or animals, as spatial
patterns play an important role in the spread of diseases,
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predation, mating, etc. [22]. When considering a (relatively)
large region, one typically divides it into smaller cells of the
same area, and counts the number of individuals of a certain
species in each cell. The simplest probability description of
this random variable is given by the Poisson distribution,
which assumes a random structureless population.

Nevertheless, individuals interact, between them and with
other species. In the cooperative case, it is expected that in-
dividuals will show a tendency towards clustering in space,
giving rise to clumped or patchy patterns, with an index of
dispersion (variance divided by mean, also called Fano factor)
larger than one. This has been described by diverse probability
distributions [22,23], but more prominently by the negative
binomial, which can be theoretically justified by a mixture of
Poisson distributions whose rates follow a gamma distribu-
tion (i.e., in each cell, the number of individuals is Poisson,
but with different rates for different cells). On the contrary,
if competition dominates, one expects more even or regular
spatial patterns, with an index of dispersion smaller than one.

Let us note that both the Poisson and the negative binomial
distributions lead to spatial patterns that are scale dependent,
in the sense that the shape parameters of both distributions
change with the size of the cells: It is easy to show that
if one doubles the area of the cells, the Poisson parameter
also doubles, and this changes the shape of the Poisson dis-
tribution, which becomes sharper. For large cells one gets
something very close to a Gaussian distribution, and in the
limit of very large cells one gets a Dirac delta (at the scale of
the mean of the variable). This property of the change of the
shape parameter is inherited by the negative binomial, as this
distribution is a mixture of Poisson distributions (we develop
this in Appendix A).

In this paper, we simply count human individuals in small
spatial cells, and compute the corresponding probability dis-
tributions. Remarkably, we find that the distributions for
different cell sizes are related through finite-size scaling,
representing a “stability” of the distributions under cell aggre-
gation (plus proper rescaling). The corresponding power-law
relations for the moments of the distributions allow us to relate
this scaling with multifractals.

II. DATA

We analyze high-resolution data for the living places of all
citizens in Catalonia, a region in northeast Spain and whose
capital and largest city is Barcelona. Catalonia has an area
of about 32 000 km2 and a total population slightly above
7 500 000 inhabitants (this yields an average population den-
sity around 230 inhabitants per km2 and classifies Catalonia as
a highly populated area). This figures are very similar to those
of Switzerland, for example. Interestingly, the metropolitan
area of Barcelona (in a spot comprising the municipality of
l’Hospitalet and part of Barcelona) has the highest population
density in Europe (at the scale of 1 km2) [24].

Each municipality council in Spain collects a population
register called Padrón Municipal de Habitantes and the Institut
d’Estadística de Catalunya (IDESCAT) receives the infor-
mation referred to Catalonia. IDESCAT georeferences the
postal address of each individual in the register, by means
of the geocoding web service of the Institut Cartogràfic i

FIG. 1. Top: Latitude and longitude of the 7 586 888 inhabitants
of Catalonia at January 1, 2013 (whole data set). Bottom: Zoom of
the data around the Barcelona area. Notice that we are representing
the coordinates of the residence place of each individual, so discrete-
ness effects become apparent in the bottom plot.

Geològic de Catalunya. The complete procedure is detailed
in Ref. [25]. For this study we used the data corresponding to
the population of Catalonia at January 1, 2013, which yields
a total population of M = 7 586 888 inhabitants in 989 997
places of residence, with 7.6% of errors in the georeferencing,
for which an imputation procedure is applied [25]. This is
the same data used in the study of Ref. [16]. The spatial
distribution of the complete data set is displayed in Fig. 1,
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FIG. 2. (a) Empirical probability mass functions f (h) of number of inhabitants h per cell, for several values of cell width �. (b) Corre-
sponding empirical probability densities f (ρ ) of population density ρ per cell, in units of km2 (using that 1 degree2 � 9200 km2 at the latitude
of Catalonia). We find population densities far beyond 105 inhabitants per km2 (larger than the value reported in Ref. [24], as the size of our
cells can be smaller).

including also a zoom over the Barcelona area. The spatial
resolution of this data is higher than that of other previous
studies using high-resolution data for Switzerland and France,
for instance [26,27].

III. ANALYSIS

We work in a simple equirectangular projection of longi-
tude and latitude into Cartesian coordinates; this introduces
little distortion due to the small extent of the territory (Refer-
ence [16] showed that the results there did not depend on the
choice of the projection). The resulting projection is covered
by a grid composed by identical square cells, each of size
� × � (in degrees), aligned with the longitude-latitude axes.
The range of values of � that is of our interest is between
0.0002◦ and 0.1◦ (from 20 m to 10 km, roughly). The min-
imum values of longitude and latitude in the data define the
leftmost and bottom coordinates of the grid, respectively [28].

A. Occupation of cells

The most fundamental issue in our approach is counting
the number of inhabitants (individuals) h in each cell. For
the values of cell width � considered, the resulting values of
h turn out to be broadly distributed, from one inhabitant per
cell to hundreds of thousands (we will disregard unpopulated
cells, for reasons that will become clear later). Notice that h is
not as broadly distributed as the population of the clusters of
Ref. [16], reaching millions, as one cluster there can consist
of many cells.

The corresponding probability mass function of the num-
ber of inhabitants, f (h), was shown in Ref. [16]; nevertheless,
for completeness, we show it also in Fig. 2(a) for different
values of � (it would have been more precise to write f�(h)
for f (h), but at this point we prefer to keep the notation at
minimum). As it can be seen in the figure, the larger the value
of �, the larger the variability in h (this is quantified not only
by the standard deviation of h but also by its coefficient of
variation, both increasing with �); this is counterintuitive, as

under aggregation one naively expects that fluctuations com-
pensate and eventually become irrelevant; see Appendix A.

Further, the population density in each cell is calculated
simply as ρ = h/�2, and its probability density f (ρ) is shown
in Fig. 2(b), for the sake of illustration. The upper tails of these
distributions contain the highest population density in Europe,
being reached next to Barcelona [24]. The large variability in
population densities implies that the concept of mean popu-
lation density is of little use for the description of population
data (being, in addition, scale dependent if unpopulated cells
are disregarded, as we will see below).

B. Scaling of the inhabitants-per-cell distribution

A data collapse of all the distributions f (h) for different
cell width � is possible (except for small values of h). As
Fig. 3(a) shows, and in contrast to the case of Ref. [16], this
is not achieved by a naive scaling by the mean but by the
rescaling

h → 〈h〉
〈h2〉 h, (1)

f (h) → 〈h2〉2

〈h〉3
f (h), (2)

with 〈h〉 and 〈h2〉 the (empirical) expected values of h and
h2, respectively (and equivalently for ρ and f (ρ); notice that
the rescaling makes the axes of the plot dimensionless); the
reason of this rescaling is explained after Eq. (5), (alterna-
tively see Ref. [29]). The expected values should depend on �,
but we omit this dependence from the notation (although it is
capital). The overlap of the rescaled distributions shown in the
figure indicates that all the distributions have the same shape
for z = h〈h〉/〈h2〉 = ρ〈ρ〉/〈ρ2〉 > 0.05, approximately. So, in
this range, it is only a scale parameter that distinguishes the
distributions for different �.

As also can be seen in Fig. 3(a), a gamma distribution
truncated from below fits reasonably well the collapsed data.
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FIG. 3. (a) Same distributions rescaled in terms of the moment ratios as stated in Eqs. (1) and (2). The continuous line is a fit of the
form ∝ e−z/θ /z1.23 in the range z > 0.05 for all the curves, resulting in θ = 1.23 (notice that ν is fixed to 1.23, as derived in the main text).
(b) Alternative scaling, corresponding to finite-size scaling, using τ2 = 1.68 and ντ2 = 1.23 × 1.68 = 2.07. In the rescaling, we have redefined
� as �/1000. Both data collapses are an indication that all distributions have the same shape for h > 100, roughly, despite their different scales.

Its probability density takes the form

f (z) ∝
(

1

z

)1−δ

e−z/θ (3)

with parameters δ and θ . The shape parameter δ turns out to
be smaller than zero (we will see below that 1 − δ � 1.2); this
implies that the standard deviation is larger than the mean (at
least in certain limit, see the scaling of moments below). From
the collapsed distributions displayed in the figure it is clear
that, although the body of the distribution shows a power-law
decay, at the end, for the largest values of h, the power law
transforms into an exponential-like tail.

We will show in the next subsection that the scaling prop-
erty of f (h) allows one to anticipate a fractal behavior for the
spatial distribution of the population. First, let us consider a
general scaling law for the probability mass function of the
number of inhabitants per cell,

f (h) = 1

m

(m

h

)ν

G

(
h

c

)
, (4)

valid for h above a cut-off value m > 0 (so h = 0 is not
counted, it is not considered an event), with c a scale param-
eter, ν > 1 a power-law exponent (being the shape parameter
of the distribution), and G a scaling function that can be a
decreasing exponential [corresponding to the case given by
Eq. (3)] or any other function with similar asymptotic proper-
ties (going to a constant for small arguments and decaying fast
for large ones). Comparison with Eq. (3) implies ν = 1 − δ,
but c �= θ , as Eq. (3) refers to the rescaled variable z and the
scaling law is written in terms of the number of inhabitants h.
We expect c to increase with �, whereas θ is a constant. Note
that the � dependence of f (h) is through the scale parameter
c. Below we will see that the scaling law (4) is related with
finite-size scaling.

The scaling property (4) implies that the moments of the
distribution scale (when ν > 1), as

〈hq〉 ∝
{

mq for q < ν − 1,

mν−1cq+1−ν for q > ν − 1;
(5)

see Ref. [30] for q > ν − 1 or our Appendix B, in general.
The idea is that in the limit c → ∞ all the moments above
ν − 1 diverge, but those below do not. From the previous
expressions we can easily justify the rescaling in Eqs. (1)
and (2); indeed, for ν < 2 consider 〈h〉 and 〈h2〉 to obtain the
moment ratio

〈h2〉
〈h〉 ∝ c, (6)

which is a particularly useful relation; see Refs. [29,31]. Fur-
ther, one can notice that

〈h2〉2

〈h〉3
∝ cν

mν−1
. (7)

Using both moment ratios (which are valid for 1 < ν < 2) in
Eq. (4) one obtains

f (h) = 〈h〉3

〈h2〉2
F

(
h〈h〉
〈h2〉

)
, (8)

which motivates the rescaling in Eqs. (1) and (2) [that is,
the scaling law (4) implies the rescaling], with the scaling
function F including a power-law decay with exponent ν

multiplying the original scaling function G. In the case of the
gamma distribution, Eq. (3), we can include θ in the relation,
i.e., c ∝ θ〈h2〉/〈h〉; nevertheless, note that θ is a constant (in
contrast to c, which depends on �, through the moments). In
summary, the data collapse in Fig. 3(a) implies the scaling
of the moments given by Eq. (5), which will be empirically
verified below.

C. Relation with the multifractal canonical partition function

Let us see how we can relate the multifractal canonical
partition function Zq(�) with the moments of h. The definition
of Zq(�) is [32,33]

Zq(�) =
∑

i|μi>0

μ
q
i , (9)
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where the sum is for the occupied cells (μi > 0), labeled by i;
μi is the empirical probability of occupation of cell i given by
μi = hi/M, with M = ∑

i hi (that is, the total population); and
q can take any value (also negative ones, as hi > 0). In other
words, μi is the probability that a randomly chosen individual
(uniformly from a list of individuals) belongs to cell i.

As 〈hq〉 can be calculated as
∑

i|hi>0 hq
i /N (�), with N (�)

the number of occupied cells, it is obvious that

Zq(�) = N (�)〈hq〉
Mq

. (10)

Thus, in some sense, Zq(�) computes the moments of f (h)
but introducing a different normalization. Under the mul-
tifractal scenario one has that, over a certain � range,
N (�) ∝ 1/�d f and

Zq(�) ∝ �τ (q), (11)

with d f the box-counting fractal dimension and τ (q) the
so-called mass exponents, which depend on q [32] (in fact,
N (�) = Zq=0(�) and thus, τ (0) = −d f ). Substituting N (�) and
Zq(�) into Eq. (10) and isolating

〈hq〉 ∝ �τ (q)+d f , (12)

from which one obtains

〈h2〉
〈h〉 ∝ �τ2 ,

using that τ (1) = 0 by construction (as Zq=1 = 1) and de-
noting τ2 = τ (2). This, together with Eq. (6), allows one to
establish a relation between the scaling factor c in the distri-
bution of h and the cell width �, which is simply

c ∝ �τ2 . (13)

Now we are able to compare Eq. (12) with Eq. (5), arriving
at

τ (q) = −d f for q < ν − 1 (14)

and

τ (q) = τ2(q + 1 − ν) − d f = τ2(q − 1) for q > ν − 1,

(15)
where we have used that

d f = τ2(2 − ν), (16)

coming from the fact that τ (1) = 0. As 1 < ν < 2, the pre-
vious equations include the particular values τ (0) = −d f and
τ (1) = 0. If we compute the so-called generalized fractal di-
mensions [33], defined as Dq = τ (q)/(q − 1), these become
constant (Dq = τ2) for q > ν − 1 (notice then that the mea-
sures of diversity [Zq(�)]1/(1−q), explained in Refs. [34,35],
scale as �−Dq under the multifractal scenario).

Coming back to the scaling shape of f (h), Eq. (4), and
substituting there Eq. (13) we get

f (h) = 1

m

(
mν

�ντ2

)
F

(
h

�τ2

)
= mν−1

�2τ2−d f
F

(
h

�τ2

)
, (17)

where we have obviated the proportionality constant between
c and �τ2 and we have also introduced the relation between ν,
τ2, and d f , Eq. (16). It is clear that the previous expression for
f (h) constitutes a finite-size scaling law [36,37], with the cell

TABLE I. Linear regression fits of ln Zq(�) vs ln �. Two global
fits are performed, one for q = −4, −3, −2, and −1, and another one
for q = 2, 3, and 4. The Pearson correlation coefficient is denoted
by r.

Fitting range in � τ (q) τ (q)
q (degrees) r indiv. fit global fit

−4 0.001–0.032 −0.997 −1.279 ± 0.048 −1.285
−3 0.001–0.032 −0.997 −1.278 ± 0.049 −1.285
−2 0.001–0.032 −0.997 −1.282 ± 0.051 −1.285
−1 0.001–0.032 −0.997 −1.301 ± 0.050 −1.285
0 0.001–0.032 −0.998 −1.110 ± 0.031 –

1 0.001–0.064 – 0.000 0.000
2 0.001–0.064 0.9998 1.624 ± 0.016 1.672
3 0.001–0.064 0.9998 3.348 ± 0.028 3.344
4 0.001–0.064 0.9996 5.030 ± 0.063 5.016

width � playing the role of system size; thus, in this context,
the cell is the “system” and the region under study providing
multiple copies (an ensemble) of the system.

A straightforward consequence of the scaling of moments,
Eq. (12), is that the mean population per cell scales as 〈h〉 ∝
�d f , and the mean population density (per cell) as 〈ρ〉 ∝
1/�2−d f . The reason, is that, obviously, we do not consider un-
populated cells (this is fundamental in the two approaches that
we use, the study of the distribution of h, and its scaling, and
the multifractal approach). This has the consequence that the
mean population density is an “elusive” concept, in the sense
that it fully depends on the scale of observation. Although this
behavior arises from the fact that we do not consider empty
cells, this cannot be considered an artifact, as it makes sense
to measure the population density that the individuals see (in
empty areas the individuals do not feel the emptiness).

D. Empirical support

Figure 3(b) provides empirical support for the finite-size
scaling law (using the values of the parameters determined
below by means of the multifractal analysis). As the involved
exponents are positive it turns out to be that in an hypothetical
infinite-� limit the exponential-like tail, given by F , disap-
pears (goes to infinite) and one obtains a pure power-law tail
for the distribution of cell inhabitants, f (h). In practice, for
the studied region, this is close to be observable for � � 0.032
degrees; see Fig. 2(a) (note that although some authors refer
to power-law distributions as fractal distributions, we avoid
such identification, as there is no direct relation, in general;
nevertheless, we present here a far-from-trivial but particular
connection).

Numerical analysis fully confirms our predictions for the
mass exponents. We can compute, for the population data, the
partition function Zq(�) as a function of � for different values
of q, and fit straight lines to ln Zq(�) as a function of ln � [one
fit for each value of q, with the slope being τ (q)]. The results
appear in Table I. Alternatively, we can take advantage that the
values of τ (q) are fully determined by just two parameters, d f

and τ2; see Eqs. (14) and (15). In this way, we perform just one
fit for all values of q < ν − 1 to get d f , and another single fit
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FIG. 4. Power-law dependence of the partition function Zq(�) as
a function of �, for different values of q, in agreement with the
behavior predicted by Eqs. (14) and (15). Values of q are, from
top to bottom, q = −4, −3, . . . up to q = 4. The displayed linear-
regression fits correspond to the individual fits whose values are
provided in Table I.

for q > ν − 1 to get τ2, leading to d f � 1.29 and τ2 � 1.67
(Appendix C explains how to do these global fits).

Table I shows that the results of the individual and the
global fits of Zq(�) are very close to each other (for equal
values of q), supporting our theoretical results. Plots with
some illustrative fits are shown in Fig. 4. Thus, we conclude
that τ (q) = −d f � −1.29 for q � 0 and τ (q) � 1.67(q − 1)
for q � 1. From both values and Eq. (16) we can calculate
the power-law exponent ν = 2 − d f /τ2 � 1.23. Notice that
the procedure of performing global fits is preferable to com-
puting averages from the results of the individual fits; see
Appendix C. Notice also that this procedure allows the fitting
of parameters in a model that is not fully parametric (the
scaling function is unspecified).

E. Relation with the singularity spectrum

Another equivalent way to characterize multifractal behav-
ior is by means of the multifractal spectrum, or singularity
spectrum. This has a much clearer geometrical interpretation
than the partition function. What one has for a multifractal is
that the mass scales with the cell width differently from point
to point [33], i.e., for a point i the scaling should go as

μi ∝ �αi , (18)

where αi is the singularity strength at i (for a monofractal αi

must be the same for all i).
The multifractal spectrum, or singularity spectrum [33],

f (α), describes the points i for which αi takes a particular
value α in such a way that 
α (�) counts the number of cells
with such a value of α, scaling as


α (�) ∝ 1

� f (α)
(19)

[note that f (α) is neither a probability mass function nor a
probability density, although we use the same symbol as for
f (h) and f (ρ)]. A Legendre transform relates the multifractal
spectrum and the mass exponents,

f (α) = αq − τ (q), with α = ∂τ

∂q
; (20)

see our Appendix D or Ref. [32]
Applying these two equations to our case, we obtain, from

Eqs. (14) and (15), that

α =
{

0 for q < ν − 1,

τ2 for q > ν − 1,
(21)

and

f (α) =
{

d f for α = 0,

τ2 for α = τ2,
(22)

and undefined otherwise. So the multifractal turns out to be
a bifractal. In the analogy with statistical mechanics we see
that in the microcanonical description there are only two
macrostates, with energy 0 and τ2 = d f /(2 − ν).

IV. DISCUSSION AND SUMMARY

An intriguing finding of this research is that we provide
an empirical realization of a different central-limit theorem
(CLT). In the usual CLT, the addition of a large but fixed
number of independent identically distributed random vari-
ables (with finite variance) leads to a normal distribution,
whereas in the generalized CLT the limiting distributions are
Lévy distributions if the added independent variables have
infinite variance [38,39]. Here we have an empirical distri-
bution (fitted reasonably well by the gamma distribution) that
is invariant under addition with rescaling, not being neither
normal nor Lévy. So, neither the usual nor the generalized
CLT is fulfilled. The reason of this apparent discrepancy, is,
of course, the existence of strong (spatial) dependence be-
tween the added variables. To be more concrete, if we double
the width of the cells (transforming �2 to 4�2), the resulting
number of inhabitants is the sum of four realizations of h
at the small scale (�). The resulting h has to be rescaled as
h/4τ2/2 = h/3.18 to yield a “stable” distribution, which is a
highly nontrivial result.

In summary, using high-spatial resolution data for the hu-
man occupation of a region, we have unveiled the existence
of a finite-size scaling relation for the distribution of the num-
ber of inhabitants in fixed-size cells. The calculation of the
moments of a distribution fulfilling finite-size scaling allows
to establish a relation with the multifractal partition function,
and the mass exponents can be obtained from here. The two
different behaviors of the moments (depending on whether
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q < ν − 1 or q > ν − 1) lead to existence of only two sin-
gularity exponents, as given by Eq. (21). Our approach has
been developed from the study of a single (small) region in
western Europe. Given the degree of universality of this sort of
phenomena, we expect other regions to behave very similarly,
but, of course, this speculation has to be validated empirically.
Further, it would be of the maximum interest to study the
applicability of this beyond human populations, and consider
in the same framework the spatial distribution of animals and
plants.
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APPENDIX A

Let us start with the simplest random distribution of points
in space, that given by a Poisson process. If we introduce a
grid of equal cells, the number of points (individuals or inhab-
itants) h in each cell will be given by the Poisson distribution,
with parameter (mean value) λ. If we double the area of the
cells, the parameter λ of the Poisson distribution (which is
a shape parameter) doubles (λ → 2λ), and the shape of the
distribution changes under cell aggregation (this is a basic
property of the Poisson distribution).

The use of the negative binomial distribution constitutes
one step further. This can be justified as coming from a mix-
ture of Poisson distributions with different parameters λ given
by the gamma distribution,

NBD(h; γ , 1/(a + 1))

=
∫ ∞

0
Poisson(h; λ)gamma(λ; γ , a) dλ,

where NBD(h; γ , 1/(a + 1)) denotes a negative bino-
mial distribution with shape parameters γ and 1/(a + 1),
Poisson(h; λ) denotes a Poisson distribution with parameter
(mean) λ, and gamma(λ; γ , a) denotes a gamma distribution
with shape γ and scale a. This means that the number of
points (inhabitants) in each cell follows a Poisson distribution,
but each cell with its own value of λ, given by the gamma
distribution. The mixture of the different Poisson distributions
along all cells leads to the negative binomial.

Let us double the area of the cells in such a way that we
merge contiguous cells, then merging cells 1 and 2 we get for
the merged cell h = h1 + h2, with hi Poisson distributed with
parameter λi. As the sum of independent Poisson is Poisson,
h will be Poisson distributed with parameter λ = λ1 + λ2.
We are interested in the distribution of λ. Both λ1 and λ2

are gamma distributed, with shape parameter γ . But the sum

of gammas is gamma, with shape parameter the sum of the
individual shape parameters; thus, λ (the parameter of the
Poisson distribution for the merged cells) will be gamma
distributed with shape parameter 2γ . In other words, the larger
the cells, the larger the shape parameter of the gamma distri-
bution (as it happened for the Poisson process). This means
that the resulting negative binomial distribution describing
the number of points (inhabitants) in the merged cells is
given by NBD(h; 2γ , 1/(a + 1)), and the resulting distribu-
tion has a different (doubled) shape parameter. In other words,
the negative binomial, if it arises as a mixture of Poisson
processes, cannot account for the invariance of f (h) under
cell aggregation observed empirically. The negative-binomial
model would be ill-defined, in the sense that it is only valid
for the particular scale for which it is defined.

APPENDIX B

Let us clarify the scaling of the moments of the distribution
of h. For exponent ν > 1, the scaling of the distribution with
the scale parameter c is given by Eq. (4), defined in the range
h > m with m > 0. Therefore, the moments of order q are
given by

〈hq〉 =
∫ ∞

m
hq f (h) dh

= mν−1
∫ ∞

m
dhhq−νG(h/c)

= mν−1c1+q−ν

∫ ∞

m/c
dzzq−νG(z)

∝ mν−1c1+q−ν

[
z1+q−ν

1 + q − ν

∣∣∣∣
z=m/c

+ const

]
,

where the constant does not depend neither on c nor m. In the
limit c 
 m,

〈hq〉 ∝
{

mq if 1 + q − ν < 0,

mν−1c1+q−ν if 1 + q − ν > 0,

as shown in Eq. (5). Note that normalization requires ν > 1,
as the zeroth-order moment cannot scale with c.

APPENDIX C

Let us consider Zq(�) ∝ �τ (q), which we can write yq =
aq + τ (q)xq, with yq = ln Zq(�) and xq = ln � (note that the
latter does not necessarily depend on q, but we keep the
subindex for convenience). In principle, if we consider nq

different values of q, we have to fit 2nq independent parame-
ters. But for q > ν − 1 we have τ (q) = τ2(q − 1), and in this
scenario we only deal with nq + 1 independent parameters (in
fact, we are not interested in the nq values of aq, and thus,
we end with only one parameter of interest, τ2). As usual, in
linear least squares we have the function

∑
∀q ∀i

(yqi − aq − τ (q)xqi )
2,

where xqi and yqi denote the ith data point of each respec-
tive variable xq and yq. Differentiation with respect aq and

054310-7



CORRAL AND GARCÍA DEL MURO PHYSICAL REVIEW E 106, 054310 (2022)

equating to zero leads to the usual solution aq = ȳq − τ (q)x̄q,
with x̄q and ȳq the respective sample means. Differentiation
with respect τ2 and substitution of aq leads to

∑
∀q

(q − 1)
[
cov(xq, yq ) − τ (q)s2

xq

] = 0

with s2
xq the (biased) sample variance of xq, cov(xq, yq ) the

covariance, and the factor q − 1 arising from dτ (q)/dτ2 =
q − 1. Then the solution for τ2 is

τ2 =
∑

∀q(q − 1)cov(xq, yq )∑
∀q(q − 1)2s2

xq

,

which is valid for q > ν − 1 (note that the case q = 1 has no
influence in the solution). In the derivation it is implicit that
all values of q contribute with the same number of data points.

In the opposite case, corresponding to q < ν − 1 we know
that τ (q) = −d f , and an analogous derivation leads to

d f = −
∑

∀q cov(xq, yq )∑
∀q s2

xq

.

The solution for aq remains the same as before. This also
holds for the relation between α and f (α) with �, with the
corresponding redefinition of yq.

APPENDIX D

The relation for αi given by Eq. (18) is not useful from an
operational point of view (see nevertheless Ref. [40]). Instead,
we can better use a well-known analogy with the ensem-
ble theory of statistical mechanics [41]. The correspondence

multifractals ←→ statistical mechanics is given by

q ←→ β,

αi ←→ Ei,

ln
1

�
←→ V,

Zq(�) ←→ Zβ,

with β = (kBT )−1, Ei the energy per unit volume of a mi-
crostate i, and V the volume (kB is Boltzmann constant and
T is the temperature, and the thermodynamic limit V → ∞
corresponds to � → 0). In this way, the multifractal parti-
tion function Zq(�), Eq. (9), results exactly the same as the
partition function of the canonical ensemble in statistical me-
chanics, Zβ = ∑

i e−βEiV , using Eq. (18) also. Further, from
Eq. (11), the mass exponents turn out to be directly related to
the Helmholtz free energy F as

τ (q) = ln Zq(�)

ln �
←→ βF

V
= − ln Zβ

V
,

for small � (large V ).
Remember that the multifractal spectrum [33], under the

multifractal scenario, verifies 
α (�) ∝ 1
� f (α) , where 
α (�)

counts the number of cells with such a value of α. Under
the multifractal ←→ statistical-mechanics correspondence,

α (�) counts microstates with energy V E , so its logarithm
[Eq. (19)] is related to the entropy through the Boltzmann
formula

f (α) = ln 
α (�)

ln �−1
←→ S

kBV
= ln 
E

V
,

when � is small. Therefore, the usual Legendre transform
F = U − T S (with U = V E = ∂ (βF )/∂β) can be written
(by direct substitution) as a Legendre transform relating the
multifractal spectrum and the mass exponents [32], f (α) =
αq − τ (q), with α = ∂τ/∂q, as stated in the main text.
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