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Besides direct contacts of individuals, indirect contacts with environments being the medium is another
route of epidemic transmission, which most previous studies have ignored. Disinfection is one of the most
effective and commonly used measures to prevent and control epidemic spreading. In this paper, we propose
a metapopulationlike model incorporating direct and indirect transmissions for susceptible-infected-susceptible-
like epidemics on heterogeneous networks. Furthermore, we explore the epidemic spreading process with
heterogeneous disinfection on both spatial and time dimensions. Specifically, we put forward three types of
disinfection strategies, namely, the static disinfection strategy, the random time disinfection strategy, and the
event-triggered disinfection strategy. Comparative analysis of the three strategies suggests that managers should
prioritize disinfection resource allocation to large-flow environments, especially when disinfection resources are
limited. In addition, timely disinfection of environments with infected visitors is an effective and economical
strategy. Our model sheds light on the interplay dynamics of indirect transmission and disinfection and the
results provide theoretical support for governors to select proper disinfection strategies in practical scenarios.
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I. INTRODUCTION

Mathematical epidemic models based on complex net-
works [1–3] play an essential role in understanding the
spreading process of epidemics and providing theoretical
methods for epidemic prevention and control. For airborne
diseases such as COVID-19, the gathering of individuals and
their movements among different environments are the main
factors causing epidemic spreading. In this scenario, the social
contacts of individuals can neither be seemed as completely
well-mixed nor networked. Thus, the metapopulation model
[4–6] has become an effective tool for studying such an
intermediate-level case.

In metapopulation models, each node represents a sub-
population where all individuals are well mixed. Links
among nodes depict individuals’ movement routes among
subpopulations. There have been many works based on the
metapopulation model with various assumptions about mo-
bility patterns, epidemic dynamics, and network structures
[7–11]. Most of them treated subpopulations as the meeting
sites of individuals. However, they did not capture some crit-
ical real-world features, such as individuals getting infected
by the pathogens in the environment. In fact, besides direct
contact with the current infected visitors of an environment,
susceptible individuals can also be infected indirectly by
contacting water, air, or objects contaminated by previous
infected visitors. In this situation, environments are not only
meeting sites of individuals but also, in a way, infectious
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pathogens carriers themselves. Recently, in scenarios where
individuals follow the recurrent mobility pattern [10,12],
some researchers [13,14] proposed a special metapopulation
model that divided the subpopulations into two disjoint parts:
residences and locations. Under a proper spatial scale, they
successfully showed the impact of environments as meeting
sites on epidemic spreading. Moreover, they provided us with
a framework to further study the role of environments when
they can keep infectious pathogens.

Disinfection is a well-used measure to eliminate pathogens
and reduce indirect transmission in the environment. Previ-
ous studies [15–17] taking both indirect transmission and
disinfection into consideration have only one environment.
These models are inapplicable when there are multiple en-
vironments following independent disinfection schedules.
Moreover, since environments will keep receiving infectious
pathogens from their infected visitors, disinfecting environ-
ments for one time cannot rid the environment of pathogens
forever, which means we have to disinfect each environment
at intervals. On this condition, the disinfection strategy of
deciding when and how often we disinfect an environment is
an urgent issue that needs to be considered. Compared with
the immunization strategy and the heterogeneous intervention
strategy [18–20] (a spatial resource allocation strategy based
on the metapopulation model), the disinfection strategy also
needs consideration in the time dimension. We innovatively
model the interplay dynamics of indirect transmission and
disinfection on heterogeneous networks and further explore
disinfection strategies.

In this paper, we use the discrete-Markov method [13,21]
to establish a metapopulationlike model with epidemic dy-
namics being a susceptible-infected-susceptible-like (SIS)
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FIG. 1. (a) Model network with five individuals and two environ-
ments. (b) Movements of individuals at t = T . Arrow lines represent
the individuals visiting the environments at t = T .

infection process. We build the model on a bipartite graph
with N individual nodes and M environment nodes. Each in-
dividual has an independent and uniform chance to visit their
neighboring environments at each time step. All visitors of an
environment at the same time step are well-mixed. Infected
visitors will release pathogens into the environment, and
these pathogens can infect other susceptible visitors. Part of
pathogens remains infectious to the next time step. We make
necessary assumptions on the time evolution of pathogens
and the infectivity of environments (see Sec. II A for more
details). In our model, disinfection involves the spreading
process by preventing pathogens from remaining infectious
to the next time step. We find that the disinfection strategy
greatly influences the prevalence of epidemics. Specifically,
we propose three types of disinfection strategies and compare
their effects on suppressing epidemic spreading. On the one
hand, our results theoretically confirm the effectiveness of
several disinfection strategies. On the other hand, the results
provide a basis for making strategic decisions for disinfection
schemes.

The organization of the rest paper is as follows. In Sec. II,
we first describe the stochastic model of epidemic spreading
and then establish numerical models for three types of disin-
fection strategies. In addition, we also present the epidemic
threshold. In Sec. III, we first verify our theoretical results in
Sec. II by numerical simulations and then explore the impact
of the network structure, the mobility rate of individuals, and
the survival rate of pathogens on the prevalence of epidemics.
We further compare the three disinfection strategies and give
some suggestions for disinfection in reality. In Sec. IV, we
summarize the results.

II. INDIRECT TRANSMISSION MODEL ON DIFFERENT
DISINFECTION STRATEGIES

A. Stochastic model

Most people have a regular lifestyle and prefer to visit
several fixed places, such as supermarkets, workplaces, and
schools. Thus, we consider a bipartite network consisting
of N individual nodes and M environment nodes (N � M).
Each individual has links with their familiar environments
[see Fig. 1(a) for an example]. At each time step, individuals
visit each of their familiar environments with probability p,

FIG. 2. (a) The infection process between a infected individual
and a susceptible individual. (b) The infection process in an environ-
ment with two infected individuals and two susceptible individuals.

called mobility rate. Here, we assume a uniform mobility rate
for the convenience of discussion. Each individual may visit
more than one environment at each time step [see Fig. 1(b)
for an example]. Individuals are isolated from others if they
do not visit any environments, which means they are unable
to infect others or get infected. We use matrix {ai j}N×M to
represent the bipartite network, where the element ai j = 1 if
individual node i (1 � i � N ) connects to environment node
j (1 � j � M ), otherwise ai j = 0.

Disease transmission between two contacting individuals
in many epidemic models is simplified as a random event.
However, the infection process includes two successive pro-
cesses for most infectious diseases. As shown in Fig. 2(a),
the infected individual will release infectious pathogens, and
the susceptible individual may get infected after exposure
to those pathogens. For example, a COVID-19 patient re-
leases thousands of novel coronavirus droplets into the air
when coughing or sneezing. A healthy person nearby will get
infected if the person inhales some droplets into the body
and the immune system fails to kill the virus. The disease
transmission in a well-mixed group of individuals is similar
to the case between two individuals. As shown in Fig. 2(b),
infected individuals will release pathogens to the surrounding
environment where other susceptible individuals contact the
pathogens and get infected with some probability.

In this paper, we assume that each infected visitor will
release one unit of pathogens to the environment. At each time
step, susceptible individuals will get infected with probability

h(β ) = 1 − (1 − λ)β (1)

after contact β � 0 units of pathogens. Infected individuals
recover to susceptible ones with probability μ at each time
step. When pathogens outside the human body can only sur-
vive for a short time, all pathogens in an environment only
come from the infected visitors at the current time step. On
this condition, our epidemic dynamics has no difference from
the classic metapopulation with an SIS process, where the
transmission rate is λ.

However, the transmission of epidemics becomes quite
different when pathogens can remain infectious for some time.
In this scenario, pathogens of environments will come from
two resources: residual pathogens from the last time step and
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FIG. 3. Time evolution of pathogens in an environment.
Pathogens consist of residual pathogens (RP, the left light blue re-
gion) and new pathogens (NP, the right light green region). New
pathogens at each time step are released by current infected visitors.
For example, there are no new pathogens at time t = T + 1 because
no infected individual visits the environment at time t = T + 1.
Residual pathogens are left over from the last time step. Since we dis-
infect the environment at t = T + 1, there are no residual pathogens
at t = T + 2. Disinfecting environment will not influence the disease
transmission at the current time step.

new pathogens released by the current infected visitors. For
the convenience of discussion, we assume that the proportion
γ , called survival rate, of pathogens in environments will
remain infectious to the next time step. The survival rate is
uniform for all environments. If we define β̃ j (t ) as the number
of pathogens in environment j at time t , the above process
implies

β̃ j (t + 1) = γ β̃ j (t ) + n j (t + 1), (2)

where n j (t ) is the number of infected visitors of environment
j at time t . We call the transmission of disease caused by
residual pathogens indirect transmission and that caused by
new pathogens direct transmission.

In reality, we can disinfect environments to eliminate their
pathogens and reduce indirect transmission. In our model, at
the end of each time step, we can disinfect each environment
to kill all of its pathogens, which means there are no residual
pathogens at the next time step. Equivalently, we can consider
that the survival rate is 0 at the disinfection time step. We
denote γ j (t ), which satisfies

γ j (t ) =
{
γ , not disinfect j at time t
0, disinfect j at time t

(3)

as the survival rate of pathogens in environment j at time step
t . In this way, we rewrite Eq. (2) as

β̃ j (t + 1) = γ j (t )β̃ j (t ) + n j (t + 1) (4)

to include the disinfection process. Figure 3 shows the disease
transmission process and the role of disinfection in an envi-
ronment.

In summary, we made three critical assumptions (A1–A3)
in the above discussion:

A1. Each infected visitor will release a fixed number of
pathogens into the environment.

A2. An environment with β units of pathogens has infec-
tivity as h(β ).

A3. The evolution process of pathogens in an environment
is memoryless or, in other words, a Markov process.

With disinfection not being considered, A1 and A2 are
consistent with the classic metapopulation model with an SIS
process. A3 means that the number of residual pathogens in
an environment only depends on the total pathogens at the
last time step, which is intuitive. In addition, A3 is necessary
for applying the discrete-Markov method, and a non-Markov
process is usually hard to analyze. In fact, the cases are much
more complicated in reality than the assumptions and can
result in complex phenomena [22]. Since this paper aims to
study the impact of indirect transmission and disinfection,
simple assumptions without losing much generality will help
us focus the research on our interest.

B. Numerical model

Denote ρi(t ) as the probability of individual i being in
the infected state at time t . If individual i is infected at time
t + 1, they are either already infected at time t and have not
recovered, or are susceptible at time t and then get infected.
So, the formulation of ρi(t + 1) is

ρi(t + 1) = (1 − μ)ρi(t ) + (1 − ρi(t ))πi(t ), (5)

where πi(t ) is the probability of susceptible individual i get-
ting infected at time t . Since individual i can be infected when
visiting neighboring environments,

πi(t ) = 1 −
M∏

j=1

(
1 − ai j pDi

j (t )
)
, (6)

where Di
j (t ) is the conditional probability that environment j

infects its susceptible visitor i. However, h(β̃ j (t )), which is the
infectivity of environment j, will overestimate Di

j (t ) because
individual i is known to be susceptible. In fact,

n j (t ) =
N∑

s=1

Y s j (t ), (7)

according to the definition of nj (t ). Ys j (t ) = 1 if individual
s is infected and visits environment j at time t ; otherwise
Ys j (t ) = 0. That is,

Ys j (t ) ∼ B(1, as j pρs(t )).

Thus, by the definition of Di
j (t ),

Di
j (t + 1) = E [h(β̃ j (t + 1))|Yi j (t + 1) = 0]

= 1 − E [(1 − λ)γ j (t )β̃ j (t )]E [(1 − λ)
∑

s �=i Ys j (t+1)]

= 1 − E [(1 − λ)γ j (t )β̃ j (t )]
∏
s �=i

[1 − as j pλρs(t + 1)].

(8)

Similar to what we do here, in the rest of this paper, we will
always neglect the correlation between n j (t + 1) and β̃ j (t ),
and the correlation among {Ys j (t )}1�s�N,1� j�M for each time
step t . For simplicity, we note

Ei
j (t + 1) =

∏
s �=i

[1 − as j pλρs(t + 1)] (9)

and

Cj (t + 1) = E [(1 − λ)γ j (t )β̃ j (t )]. (10)
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FIG. 4. Disinfection status for 100 environments at three time steps for five disinfection strategies. The results for each disinfection strategy
are from a Monte Carlo simulation with p = 0.25. In column SD-R, the disinfection environments do not change over time, and they are
selected randomly. In column SD-T, the disinfection environments do not change over time and they have the largest degree. In column RTD-U,
environments have a uniform probability of being disinfected at each time step. In column RTD, environments have different opportunities to
be disinfected. In this example of RTD, environments with a larger degree are more likely to be disinfected. In column ETD, at t = 1, few
individuals are infected and no environment is disinfected; at t = 7, some individuals are infected, which triggers the disinfection of several
large-degree environments; at t = 20, many individuals are infected and trigger the disinfection of more environments than that at t = 7.

Note that 1 − Ei
j (t + 1) and 1 − Cj (t + 1) is the probability

of getting infected by direct transmission and indirect trans-
mission, respectively.

The disinfection strategy determines the value of γ j (t ) and
thus has great impact on the distribution of β̃ j (t ) in Eq. (4).
We propose three disinfection strategies and obtain their Cj (t )
in the following.

1. The static disinfection strategy

In the static disinfection strategy (SD), an environment will
either be disinfected at every time step or never be disinfected.
Denote X ⊆ {1, 2, · · · , M} as the set of environments that we
disinfect, SD can be expressed as

γ SD
j (t ) =

{
γ , j /∈ X
0, j ∈ X .

(11)

The key of SD is the selection of elements in X . Inspired by
the immunity strategies in Ref. [23], we propose two strategies
for selecting environments to be disinfected: Random selec-
tion and priority selection of environments with the highest
degree. We call the first the static random disinfection strategy
(SD-R) and the latter the static target disinfection strategy

(SD-T). See Fig. 4 for an example of SD-R and SD-T. We will
discuss their efficiency in suppressing epidemic spreading in
Sec. III.

To calculate CSD
j (t ), we need to analyze the distribution of

β̃SD
j (t ) which relies on n j (τ ), τ � t through Eq. (4). Since

n j (t ) is the sum of serveral Bernounlli random variables from
Eq. (7), we suppose that n j (t ) approximately satisfies the
binomial distribution, which is

n j (t ) ∼ B(l j, Pj (t )), (12)

where l j = ∑N
i=1 ai j is the degree of environment j and

Pj (t ) = 1

l j

N∑
i=1

ai jρi(t )

is the average probability of all individuals connected to envi-
ronment j being infected at time t . On the one hand, we find
that

E [(1 − λ)n j (t )] = (1 − λ)E [n j (t )] + O(λ2). (13)

when Eq. (12) holds and λ → 0+. On the other hand, the
number of pathogens in environment j /∈ X can be expressed

054309-4



INDIRECT TRANSMISSION AND DISINFECTION … PHYSICAL REVIEW E 106, 054309 (2022)

as

β̃SD
j (t ) =

t−1∑
s=0

γ sn j (t − s). (14)

With Eq. (14), the formulation of CSD
j (t ) becomes

CSD
j (t + 1) =

t−1∏
s=0

E [(1 − λ)γ
s+1n j (t−s)]. (15)

By applying Eq. (13) to Eq. (15), we obtain

CSD
j (t + 1) = (1 − λ)γ E [β̃SD

j (t )]) + O(λ2). (16)

(See Appendix A 1 for more details.) For j ∈ X , we simply
have CSD

j (t ) = 1.
The time evolution of E [β̃SD

j (t )] is easy to determine. By
taking expectation and using

E [n j (t )] = p
N∑

s=1

as jρs(t ) (17)

in Eq. (4), we obtain

βSD
j (t + 1) = γ SD

j (t )βSD
j (t ) +

N∑
s=1

as j pρs(t + 1), (18)

where we note βSD
j (t ) = E [β̃SD

j (t )] for convenience. With
Eqs. (16) and (18), we finally establish a solvable numerical
model for SD.

2. The random time disinfection strategy

The second type of disinfection strategies is the random
time disinfection strategy (RTD). At each time step, we inde-
pendently disinfect each environment j with probability u j .
When all environments have the same disinfection probabil-
ity, that is u j = u, 0 � u � 1, ∀ j ∈ {1, 2, · · · , M}, we call it
the uniform random time disinfection strategy (RTD-U). See
Fig. 4 for an example of RTD-U and RTD. In RTD, γ RTD

j (t ) is
a random variable following the distribution

P
(
γ RTD

j (t ) = x
) =

{
u j, x = 0

1 − u j, x = γ ,

which is time independent.
When the spreading process is stable and Eq. (12) holds,

we prove in Appendix A 2 that

CRTD
j (t ) = u j + (1 − u j )φ((1 − λ)γ βRTD

j (t ), u j, γ ) + O(λ2),
(19)

where

φ(x, u, γ ) = u

1 − u

∞∑
s=1

(1 − u)sx
1−γ+γ u

1−γ
(1−γ s+1 )

. (20)

Finally, by taking expectation in Eq. (4), we have

βRTD
j (t + 1) = (1 − u j )γ βRTD

j (t ) +
N∑

s=1

as j pρs(t + 1). (21)

3. The event-trigger disinfection strategy

Inspired by the terminal disinfection commonly adopted in
containment of epidemics, we introduce the event-triggered
disinfection strategy (ETD). We disinfect environment j at
time t only when the number of its infected visitors reaches
a given threshold nc ∈N. See Fig. 4 for an example of ETD.
Thus,

γ ETD
j (t ) =

{
γ , n j (t ) � nc

0, n j (t ) > nc
(22)

in ETD.
Since n j (τ ) � nc for all τ , we have

γ ETD
j (t )β̃ETD

j (t ) � γ

1 − γ
nc. (23)

Thus, when nc is small enough,

CETD
j (t ) = E

[
(1 − λ)γ

ETD
j (t )β̃ETD

j (t )
]

≈ 1 − λE
[
γ ETD

j (t )β̃ETD
j (t )

]
≈ (1 − λ)E [γ ETD

j (t )β̃ETD
j (t )].

(24)

In Appendix A 3, we prove that

CETD
j (t + 1) = (1 − λ)E [γ ETD

j (t )β̃ETD
j (t )] + O

(
n2

cλ
2
)
. (25)

Similar to E [β̃SD
j (t )], the time evolution function of

E [γ ETD
j (t )β̃ETD

j (t )] can be easily obtained from Eq. (4). When
Eq. (12) holds, the probability of not disinfecting environment
j at time t is

q j (t ) =
nc∑

s=0

(
l j

s

)
Pj (t )s(1 − Pj (t ))l j−s. (26)

By multiplying both sides of

β̃ETD
j (t ) = γ j (t − 1)β̃ETD

j (t − 1) + n j (t ) (27)

by γ ETD
j (t ) and taking expectation, we obtain

θETD
j (t + 1) = γ q j (t )θETD

j (t )
+γ

∑nc
s=0 Pj (t )s(1 − Pj (t ))l j−ss,

(28)

where θ̃ETD
j (t + 1) = γ ETD

j (t )β̃ETD
j (t ) and θETD

j (t ) =
E [θ̃ETD

j (t )]. In fact, θ̃ETD
j (t ) represents the number of residual

pathogens in environment j at time t .

C. Epidemic threshold

We obtain the epidemic threshold by analyzing the stabil-
ity of the disease-free equilibrium. Although the three types
of disinfection strategies proposed above have various ex-
pressions, they possess the same linearized form near the
disease-free equilibrium (See Appendix B for detailed deriva-
tion of the threshold expression). Thus, SD, RTD, and ETD
have the same threshold expression as

λmax(−μIN + p2λ[K − A(G0 − IM )−1G0AT]) < 0, (29)

where (K )ss = 0, (K )sl = (AAT)sl ,∀1 � s �= l � N and
G0 = diag(γ1, γ2, · · · , γM ). The only difference of the
threshold expression among disinfection strategies is the
value of G0. For SD, γ j = γ if j ∈ X ; otherwise, γ j = 0. For
RTD, γ j = (1 − u j )γ , 1 � j � M according to Eq. (21). As
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FIG. 5. The prevalence ρ without disinfection (X = ∅) as a function of mobility rate p on (a) ER-ER network, (b) ER-SF network,
(c) SF-ER network, and (d) SF-SF network. Triangles are the average results of 20 independent Monte Carlo simulations, and solid lines are
the results of numerical model obtained in Sec. II B 1. Vertical dotted lines are the theoretical threshold obtained by Eq. (29). Simulations are
carried out when the survival rate γ is 0, 0.4, and 0.8.

ETD only disinfects environments when the epidemic has
outbroken, it has the same threshold as that for the condition
without disinfection, which means γ j = γ , 1 � j � M for
ETD.

III. NUMERICAL SIMULATIONS AND ANALYSIS

A. Impacts of network structures and model parameters
without disinfection

To verify the theoretical results obtained in the previous
section, we carry out Monte Carlo simulations on networks
with N = 1000, M = 100, and 4000 edges. The network
structure significantly impacts the dynamic behavior of epi-
demic spreading [24–26], so we apply different networks in
our simulations. Since our network is a bipartite graph, we
first give degree sequences of environment nodes and individ-
ual nodes and then generate a configuration model network.
Specifically, we use two degree sequences for each node type,
following the power-law distribution and Poisson distribution,
and generate four networks by the pairwise combination of
degree sequences. If the degree sequences of environment
nodes and individual nodes follow the power-law distribution
and Poisson distribution, respectively, we call this network the
SF-ER network. In the same way, we name the other three
networks the SF-SF, ER-SF, and ER-ER networks.

In the following discussion, we fix μ = 0.5, λ = 0.02 and
only consider the impact of p and γ on the spreading pro-
cess. For the four networks and different values of γ , we
compare the theoretical results with Monte Carlo simulations

in Fig. 5, which show perfect agreement. It is worth noting
that no indirect transmission occurring in environments when
the survival rate γ = 0. Thus, the indirect transmission brings
the prevalence gap between curves of γ = 0 and γ �= 0. The
prevalence of epidemics ρ is defined as

ρ = lim
t→∞

1

N

N∑
i=1

ρi(t ).

Figure 5 shows indirect transmission will significantly in-
crease the prevalence ρ. By comparing the subgraphs in the
same row or column in Fig. 5, we demonstrate that the net-
work with the power-law distribution has a smaller threshold
than the one with Poisson distribution, regardless of environ-
ment nodes or individual nodes. The SF-SF network has the
smallest threshold.

To verify the threshold expression Eq. (29), we proceed
with Monte Carlo simulations on various values of p and γ in
Fig. 6. The theoretical threshold (red lines) agrees well with
the boundary of the disease-free region (yellow regions) in
the phase diagram. The threshold of mobility rate declines
with the increase of γ . When γ = 1, the number of pathogens
will not decay over time but accumulate infinitely. Even a
small mobility rate p will lead to an epidemic outbreak in this
situation. That is, the threshold of p is 0.

Considering the practical implications of our model, we
conclude that the risk of a large-scale epidemic outbreak will
increase when pathogens are easy to remain infectious in
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FIG. 6. Phase diagram for the prevalence ρ average on 20 independent simulations without disinfection (X = ∅) under different values of
p and γ . The results are obtained on (a) ER-ER network, (b) ER-SF network, (c) SF-ER network, and (d) SF-SF network. Red solid lines are
the theoretical thresholds obtained by Eq. (29).

environments. This conclusion confirms the necessity and the
importance of disinfection in reality.

B. Comparative analysis of different disinfection strategies

In the following part, to find out the critical factors of
disinfection strategies, we will discuss the efficiency of five
disinfection strategies: SD-R, SD-T, RTD-U, RTD, and ETD.
To judge their efficiency in containing epidemics, we compare
the prevalence ρ when they have the same cost of disinfection
resources. We quantify the disinfection resources used for
environment j by its disinfection frequency, which is defined
as

Fj = lim
T →∞

1

T

T∑
t=0

δγ (t ),0, (30)

where

δx,y =
{

1, x = y
0, x �= y.

Furthermore, we take the average frequency

AF = 1

M

M∑
j=1

Fj

to measure the average disinfection resources used for all
environments. The two indices, Fj and AF , are calculated for
different disinfection strategies.

We start by comparing the efficiency of SD-R, SD-T, RTD-
U. On the one hand, Fig. 7(a) clearly shows that SD-T has
the smallest prevalence and SD-R has the largest prevalence
among the three strategies for the same level of AF . On the
other hand, Fig. 7(b) shows that for the mobility rate, SD-T
has a greater threshold than RTD-U and RTD-U has a greater
threshold than SD-R. Thus, on containing epidemics, the effi-
ciency of SD-T, RTD-U, and SD-R is a decreasing sequence.

The analysis above suggests that the management should
prioritize disinfection to environments with large visitor flow.
When the visitor flow of environments is unknown (that is, we
can not know the degree of environment nodes), it is better to
allocate resources to all environments than only some of them.

Since Fig. 7 demonstrates that SD-T performs better than
SD-R and RTD-U, we only need to compare SD-T, RTD,
and ETD in the following. However, we want to show some
basic features of ETD before the comparison. ETD bet-
ter reflects the complexity of the disinfection strategy than
SD and RTD. Both SD and RTD focus on the spatial al-
location of disinfection resources to environments and act
homogeneously on the time dimension. However, ETD is a
dynamic strategy associated with the spreading process of
epidemics.
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FIG. 7. (a) Epidemic prevalence ρ and (b) the mobility threshold varying with the average disinfection frequency (AF ) for the three
disinfection strategies. Solid lines represent the theoretical results, and the scatters are results averaged over 20 independent simulations on the
SF-ER network with γ = 0.8. The mobility rate in (a) is fixed as the theoretical threshold when AF = 1. Each simulation of SD-R is conducted
on 25 different selections of X .

In Fig. 8, we investigate the prevalence ρ varying with the
mobility rate p for different trigger thresholds nc. In Fig 8(a),
curves nc = 1, 2, 4 are sandwiched between curves nc = 0
and nc = ∞ and asymptotically approach to the former with
the increase of p. It is easy to understand as the number of in-
fected visitors and the disinfection frequency of environments
will simultaneously increase with the mobility rate p.

Figure 8(b) clearly shows that the disinfection frequencies
of environments are positively correlated to the mobility rate
and their degrees. In Fig. 8(a), curve nc = 1 is significantly
lower than curve nc = ∞ when p = 0.2. Figure 8(b) shows
that AF is small when p = 0.2. Therefore, we demonstrate
that when p is small, ETD can significantly reduce the preva-
lence ρ at a small AF , which implies a low cost in disinfection
resources.

When p = 0.3, curves nc = 1 and nc = 0 in FIG. 8(a) are
very close. However, FIG. 8(b) shows that there are still many
environments with both low degree and low disinfection fre-
quencies when p = 0.3. This investigation proves once again
that the disinfection of environments with larger visitor flow
is essential for suppressing epidemic spreading.

As shown in Fig. 9, RTD is significantly superior to SD-T.
It is intuitive that if disinfection resources are only allocated
to large-degree environments as SD-T does, there will be
many pathogens in low-degree environments. Instead, allocat-
ing parts of disinfection resources to low-degree environments
reduces the number of their pathogens. At the same time, it
will not bring much increment to large-degree environments,
which is ultimately more conducive to suppressing epidemic
spreading.

Although RTD and ETD have the same Fj (1 � j � M ),
ETD always performs better than RTD in Fig. 9, for ETD has
a better strategy than RTD on the time dimension. In general,
ETD can allocate disinfection resources efficiently on both
spatial and time dimensions in the case of limited resources.

In Figs. 9(c) and 9(d), we find that the disinfection fre-
quencies of environments are low when the prevalence gap
between RTD (or SD-T) and ETD in Figs. 9(a) and 9(b)
reaches its maximum. Therefore, ETD is more cost effective
than RTD and SD-T, especially when disinfection resources
are insufficient.

FIG. 8. (a) The prevalence ρ under ETD as a function of mobility rate p for trigger thresholds nc = 0, 1, 2, 4, ∞. Scatters are average
results of 20 independent simulations and solid lines are theoretical results. Simulations are carried out on the SF-ER network and γ = 0.8.
In particular, nc = ∞ will lead to AF = 0 and nc = 0 will lead to no residual pathogens in environments. (b) The relation of degree l j and
disinfection frequency Fj for all environments j when nc = 1 with different mobility rates p = 0.2, 0, 3, 0.4.
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FIG. 9. Comparison of SD-T, RTD, and ETD average on 20 independent simulations on the SF-ER network with trigger thresholds as
(a) nc = 1 and (b) nc = 4. For the scatters in (a) and (b), the horizontal values are the prevalence ρ of ETD, and the vertical values are the
prevalence of RTD (or SD-T) with the same Fj, 1 � j � M (or AF ) as ETD. The solid lines are theoretical results. (c) and (d) show the
disinfection frequencies for three environments with their degree as 16,29,59, respectively. There are 25%, 50%, and 75% of environments
with degree lower than 16,29, and 59, respectively. The solid lines in (c) and (d) are theoretical results obtained from Eq. (26). To draw this
figure, we first record the environments’ disinfection frequencies in ETD when doing simulations with various mobility rates. Then, under
the same disinfection frequencies (or average disinfection frequency) as ETD, we obtain the prevalence ρ of RTD (or SD-T) by Monte Carlo
simulations and finally summarize all results to form this figure. Note that we use the prevalence ρ in ETD, instead of mobility rates, as the
horizontal coordinate.

IV. CONCLUSION

In this paper, we modeled the indirect transmission where
environments can infect their visitors. We first demonstrated
that both indirect transmission and heterogeneous networks
facilitate epidemic spreading. Then, we considered disin-
fection and studied the efficiency of the static disinfection
strategy, the RTD strategy, and the event-triggered disin-
fection strategy. We obtained the threshold of the epidemic
outbreak and provided insights on the allocation of disinfec-
tion resources to prevent epidemics. Based on the comparative
analysis of the three disinfection strategies on the heteroge-
neous network, we found that environments with more visitors
should be allocated with more disinfection resources. Mean-
while, we discovered that disinfecting environments with few
visitors is necessary to suppress epidemic spreading. Studies
about ETD confirm that the timely disinfection of environ-
ments with infected visitors is effective and economical.

In a word, we have conducted an initial study on indi-
rect transmission and the disinfection strategy. Besides these
simple and basic disinfection strategies, we have provided
some theoretical support for epidemics prevention and control
measures.
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APPENDIX A: THE APPROXIMATION OF Cj (t )

In Sec. II B 1, we roughly described the derivation of
CSD

j (t ),CRTD
j (t ), and CETD

j (t ) for brevity. This Appendix will
provide the details of how to get the approximations.

First, we redeclare the problems we need to solve here.
Taking CSD

j (t ), for example, we obtain in the text that

CSD
j (t ) = E [(1 − λ)γ β̃SD

j (t )], (A1)
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where

β̃SD
j =

t−1∑
s=0

γ sn j (t − s). (A2)

In the text, we explain that n j (t ) approximately satisfies a
Bernoulli distribution, which is

n j (t ) ∼ B(l j, Pj (t )), (A3)

where

Pj (t ) = 1

l j

N∑
i=1

ai jρi(t ).

Since our system is an SIS process, the distribution of
n j (t ) will reach an stable state when t is large enough.
From Eqs. (A3) and (A2), it is easy to know that βSD

j (t ) =
E [β̃SD

j (t )] is the scale parameter of the distribution of β̃SD
j (t )

when the spreading process is stable. Thus, CSD
j (t ) must be

an function of βSD
j (t ) from Eq. (A1). Our purpose is to find

an approximation of this function. Similarly, we want to find
the relations between CRTD

j (t ),CETD
j (t ) and βRTD

j (t ), βETD
j (t ),

respectively.
For the sake of further discussion, we introduce three im-

portant conclusions here.
Lemma 1. If X ∼ B(n, p) and 0 < λ, s < 1, then

|E [(1 − λ)sX ] − (1 − λ)sE [X ]| < npsλ2

Proof. Since

E [(1 − λ)sX ]
= ∑n

k=0(1 − λ)sk
(n

k

)
pk (1 − p)n−k

= ∑n
k=0

(n
k

)
[p(1 − λ)s]k (1 − p)n−k

= [p(1 − λ)s + 1 − p]n

and

(1 − λ)sE [X ] = (1 − λ)snp,

we have

|E [(1 − λ)sX ] − (1 − λ)sE [X ]|
= |[p(1 − λ)s + 1 − p]n − [(1 − λ)sp]n|
< n[p(1 − λ)s + 1 − p − (1 − λ)sp].

Note

g(λ) = p(1 − λ)s + 1 − p − (1 − λ)sp.

It is easy to find that

g(0) = 0,

g′(0) = 0,

g′′(λ) < 2ps.

According to the Taylor expansion of g(λ) with a Lagrange
remainder, we obatin

g(λ) < psλ2,

which means

|E [(1 − λ)sX ] − (1 − λ)sE [X ]| < npsλ2.

Lemma 2. If 0 < ai, bi < 1 and |ai − bi| < εi, 1 < i < n,
then ∣∣∣∣∣

n∏
i=1

ai −
n∏

i=1

bi

∣∣∣∣∣ <

n∑
i=1

εi.

We omit the proof of Lemma 2 here.
Lemma 3. If positive random variable X � a and 0 < λ <

1, then

|E [(1 − λ)X ] − (1 − λ)E [X ]| < max

{
1

4
, a2

}
λ2

(1 − λ)2
.

Proof. Notice that

(1 − λ)y = 1 − yλ + y(y − 1)(1 − ξ )y−2 λ2

2
for arbitrary y, where 0 < ξ < λ is a function of y. On the one
hand, since X (X − 1) < max{ 1

4 , a2} and (1 − ξ )X−2 < (1 −
λ)−2,

|E [(1 − λ)X ] − 1 + λE [X ]| < max

{
1

4
, a2

}
λ2

2(1 − λ)2
.

On the other hand, we have E [X ] < a, therefore

|(1 − λ)E [X ] − 1 + λE [X ]| < max

{
1

4
, a2

}
λ2

2(1 − λ)2
.

�
In conclusion,

|E [(1 − λ)X ] − (1 − λ)E [X ]| < max

{
1

4
, a2

}
λ2

(1 − λ)2
.

Since λ = 0.02 in our simulations, we treat λ as a number
close to 0 in the following analysis.

1. Derivation of CSD
j (t )

For SD, β̃ j (t ) = 0 for j /∈ X . For j ∈ X ,

β̃SD
j (t ) =

t−1∑
s=0

γ sn j (t − s). (A4)

Assuming n j (τ ), 1 < τ < t are independent, we can fur-
ther obtain that

CSD
j (t + 1) = E [(1 − λ)γ

∑t−1
s=0 γ sn j (t−s)]

=
t−1∏
s=0

E [(1 − λ)γ
s+1n j (t−s)]. (A5)

By applying Lemmas 1 and 2, we have∣∣CSD
j (t + 1) − (1 − λ)γ βSD

j (t )]
∣∣

=
∣∣∣∣∣

t−1∏
s=0

E [(1 − λ)γ
s+1n j (t−s)] −

t−1∏
s=0

(1 − λ)γ
s+1E [n j (t−s)]

∣∣∣∣∣

<

t−1∑
s=0

|E [(1 − λ)γ
s+1n j (t−s)] − (1 − λ)γ

s+1E [n j (t−s)]|

<

t−1∑
s=0

γ s+1l jPj (t − s)λ2 <

t−1∑
s=0

l jγ
s+1λ2 <

γ l j

1 − γ
λ2,

(A6)
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which means

CSD
j (t + 1) = (1 − λ)γ βSD

j (t ) + O(λ2).

2. Derivation of CRTD
j (t )

In RTD, if the last time we disinfect environment j is
at time step t − s (s � 1), the number of pathogens at the
current time step t is

∑s−1
k=0 γ kn j (t − k), which happens with

probability (1 − uj )s−1u j . Thus,

CRTD
j (t + 1)

= E [(1 − λ)γ
RTD
j (t )β̃RTD

j (t )]

= u j + (1 − u j )E [(1 − λ)γ β̃RTD
j (t )]

= u j +
t∑

s=1

(1 − u j )
su jE [(1 − λ)

∑s−1
k=0 γ k+1n j (t−k)].

(A7)

Similar to Eq. (A6), for every term in Eq. (A7), we have

|E [(1 − λ)
∑s−1

k=0 γ k+1n j (t−k)] − (1 − λ)
∑s−1

k=0 γ k+1E [n j (t−k)]|

<
γ − γ s+1

1 − γ
l jλ

2 <
γ l j

1 − γ
λ2.

Thus,

CRTD
j (t + 1)

= u j + ∑t
s=1(1 − u j )su j (1 − λ)

∑s−1
k=0 γ k+1E [n j (t−k)] + R

(A8)
and |R| < (1 − u j )

γ l j

1−γ
λ2.

Unfortunately, it is hard to further simplify Eq. (A8) to
make CRTD

j (t ) a function of βRTD
j (t ). As we have discussed

before, we can be sure that CRTD
j (t + 1) is a function of β j (t )

only when the spreading process reaches the stable state.
Since we are mainly interested in the equilibrium of an SIS
process, we give the iteration method of getting the equilib-
rium for ETD in the following. In the stable state, we denote

Pj = 1

l j

N∑
i=1

ai jρi

as the average probability of individuals connected to environ-
ment j in an infected state. On the one hand, if at time step τ ,
the spreading process is stable, then

n j (τ ) ∼ B(l j, Pj ). (A9)

On the other hand, the value of βRTD
j (t ) is dominated by the

n j (t − k) where k is small compared to t . Thus,

s−1∑
k=0

γ k+1E [n j (t − k)] = γ (1 − γ s+1)

1 − γ
Pjl j (A10)

and

βRTD
j (t ) =

t∑
s=0

(1 − u j )
sγ sE [n j (t − s)] = Pjl j

1 − (1 − u j )γ
(A11)

when t is large enough for the spreading process to be stable.
From Eqs. (A11) and (A10),

s−1∑
k=0

γ k+1E [n j (t − k)] = γ (1 − γ + u jγ )

1 − γ
(1 − γ s+1)βRTD

j (t )

(A12)
holds when t is large enough. If we note

φ(x, u, γ ) = u

1 − u

∞∑
s=1

(1 − u)sx
1−γ−γ u

1−γ
(1−γ s+1 )

and use Eq. (A12), Eq. (A8) becomes

CRTD
j (t + 1) = u j + (1 − u j )φ((1 − λ)γ βRTD

j (t ), u j, γ ) + R.

(A13)
Notice that CRTD

j (t + 1) is now a function of βRTD
j (t ). Even

though Eq. (A13) only holds when t is large enough, on which
condition the spreading process is stable, we find it works well
on obtaining the equilibrium by iteration.

3. Derivation of CETD
j

We obtain in the text that

β̃ETD
j (t ) = γ ETD

j (t − 1)β̃ETD
j (t − 1) + n j (t )

and define θ̃ETD
j (t + 1) = γ ETD

j (t )β̃ETD
j (t ), where

γ ETD
j (t ) =

{
γ , n j (t ) � nc

0, n j (t ) > nc.

Thus,

θ̃ETD
j (t + 1) = γ ETD

j (t )θ̃ETD
j (t ) + γ ETD

j (t )n j (t ).

It is obviously that θ̃ETD(t + 1) � γ θ̃ETD
j (t ) + γ nc from the

above equation, which indicates that

θ̃ETD
j (t ) � γ nc

1 − γ
. (A14)

Since

CETD
j (t ) = E [(1 − λ)θ̃

ETD
j (t )],

by applying Lemma 3, we have

∣∣CETD
j (t ) − (1 − λ)E [θ̃ETD

j (t )]
∣∣ < max

{
1

4
,

(
γ nc

1 − γ

)2}
λ2

(1 − λ)2
,

which means

CETD
j (t ) = (1 − λ)E [θ̃ETD

j (t )] + O
(
n2

cλ
2
)
.

APPENDIX B: DERIVATION OF THRESHOLD
EXPRESSION

Since ρi(t )  1, β j (t )  1 near the disease-free equilib-
rium, we have approximation

Di
j (t ) ≈ λγ jβ j (t − 1) +

∑
s �=i

as jλpρs(t )  1,

πi(t ) ≈
M∑

j=1

ai j pDi
j (t ).

(B1)
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Substituting Eq. (B1) into Eq. (5), we can obtain the lin-
earized equation near the disease-free equilibrium as

⎧⎨
⎩

ρi(t + 1) = (1 − μ)ρi(t ) + ∑M
j=1

∑N
s �=i as jai j p2λρs(t )

+∑M
j=1 ai j pλγ jβ j (t − 1)

β j (t + 1) = γ jβ j (t ) + ∑N
s=1 as j pρs(t + 1).

(B2)
Define θ j (t ) = γ jβ j (t − 1), then Eq. (B2) becomes

⎧⎨
⎩

ρi(t + 1) = (1 − μ)ρi(t ) + ∑M
j=1

∑N
s �=i as jai j p2λρs(t )

+∑M
j=1 ai j pλθ j (t ),

θ j (t + 1) = γ jθ j (t ) + γ j (t )
∑N

s=1 as j pρs(t ).

(B3)

Setting x(t ) = (ρ1(t ), · · · , ρN (t ), θ1(t ), · · · , θM (t ))T and
G0 = diag(γ1, γ2, · · · , γM ), we can rewrite Eq. (B3) as

x(t + 1) = Hx(t ), (B4)

where

H =
(

(1 − μ)IN + p2λK pλA
pG0AT G0

)
(B5)

and (K )ss = 0, (K )sl = (AAT)sl ,∀1 � s �= l � N . Obviously,
x = 0 is a fixed point of Eq. (B4) and is stable when ρ(H ) <

1. Perron-Frobenius theorem ensures that the nonnegative ma-
trix H has a positive dominant eigenvalue. Thus, ρ(H ) < 1 if

and only if λmax(H ) < 1. Note

Q =
(

λ1/2IN 0
0 G1/2

0

)
,

then Q−1HQ is sysmmetric. Thus, all the eigenvalues of H are
real and H is diagonalizable, which implies λmax(H ) < 1 if
and only if H − I is negative definite. Note

Q1 =
(

IN 0
−p(G0 − IM )−1G0AT IM

)
,

then

QT
1 (H − I)Q1 =

(−μIN + p2λH1 pλA − pAG0

0 G0 − IM

)
,

where

H1 = K − A(G0 − IM )−1G0AT. (B6)

Therefore, H − I is negative definite only if

λmax(−μIN + p2λH1) < 0. (B7)

The above discussion proves that Eq. (B7) is a necessary
condition for the disease-free equilibrium to be stable. In
fact, our model endows A with additional properties, making
the necessary condition almost surely also sufficient. Since
A is a randomly generated matrix which is independent to
G0 − IM , the probability of H1 having a common eigenvalue
with G0 − IM is almost 0. That means QT

1 (H − I)Q1 is almost
surely diagonalizable where QT

1 (H − I)Q1 is negative definite
if and only if Eq. (B7) holds. Thus, Eq. (B7) is almost surely
a necessary and sufficient condition for the disease-free equi-
librium to be stable.
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