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Entropy of labeled versus unlabeled networks
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The structure of a network is an unlabeled graph, yet graphs in most models of complex networks are labeled
by meaningless random integers. Is the associated labeling noise always negligible, or can it overpower the
network-structural signal? To address this question, we introduce and consider the sparse unlabeled versions of
popular network models and compare their entropy against the original labeled versions. We show that labeled
and unlabeled Erdős-Rényi graphs are entropically equivalent, even though their degree distributions are very
different. The labeled and unlabeled versions of the configuration model may have different prefactors in their
leading entropy terms, although this remains conjectural. Our main results are upper and lower bounds for
the entropy of labeled and unlabeled one-dimensional random geometric graphs. We show that their unlabeled
entropy is negligible in comparison with the labeled entropy. This means that in sparse networks the entropy of
meaningless labeling may dominate the entropy of the network structure. The main implication of this result is
that the common practice of using exchangeable models to reason about real-world networks with distinguishable
nodes may introduce uncontrolled aberrations into conclusions made about these networks, suggesting a need
for a thorough reexamination of the statistical foundations and key results of network science.
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I. INTRODUCTION

Networks are everywhere, and all of them are labeled. The
labels of people in social networks are their names and all
their other metadata, such as occupation, interests, place of
living, and so on. Similarly, genes in gene regulatory net-
works, routers in the Internet, or countries in the world trade
web all have their unique meaningful names or identifiers.
This labeling information is ignored if one is interested in the
structure of a real-world network. Here we assume that the
structure of a network is defined to be an unlabeled graph,
many visualizations of which can be found in textbooks, pa-
pers, or presentations in network science and graph theory.

Yet all of the popular network models used to study the
structure of real-world networks are not unlabeled. Nodes in
these models are actually labeled. However, there is a drastic
difference between node labels in real-world networks and
node labels in network models. Since network models are
typically abstract mathematical models of random graphs,
node labels in them cannot be as meaningful as the names
of countries in the world, for instance. Node labels in network
models come from arbitrary abstract sets of size n, the network
size. Without loss of generality, such label sets can be and
usually are set to the set of integers from 1 to n, denoted
by [n] := {1, 2, . . . , n}. Furthermore, since graphs in these
models are typically random, so are labels in them. Any node
in any Erdős-Rényi graph of size 100 can have label 99,
for instance, as opposed to the label Bhutan attached to an
individual country in the world trade web.

Can the entropy coming from such random labeling of an
unlabeled graph, the network structure, be safely ignored, or
can it introduce non-negligible aberrations into the system
that we have to account for in a nontrivial way? In other
words, since the meaningless random labels [n] are nothing
but “noise,” assigned to an unlabeled graph uniformly at ran-
dom out of the n! permutations, then can it be the case that this
noise statistically dominates the randomness associated with
the network structure, an unlabeled graph?

The principled way to address this question is to compare
the leading terms of network entropy in the labeled and un-
labeled cases. If the former dominates the latter, then indeed
the noise overpowers the signal. The other reason to focus on
entropy is that entropy is one of the most important proper-
ties of a network model, a central player in the definitions
of the unbiased null models of networks [1–13], network
ensemble equivalence [5,14–16], network typicality [17,18],
and many other fundamental matters [19–30]. Yet our main
motivation are null models, which are network models that
maximize network entropy under various network-structural
constraints.

Here we show that maximizing the entropy of the naked
network structure represented by an unlabeled graph, and
maximizing the entropy of this structure dressed in random
labels represented by a labeled graph, may lead to very
different outcomes in sparse networks. The entropy of mean-
ingless random labeling may be a dominating factor, so it gets
maximized, instead of the intended maximization of network-
structural entropy.

2470-0045/2022/106(5)/054308(11) 054308-1 ©2022 American Physical Society

https://orcid.org/0000-0002-9911-1119
https://orcid.org/0000-0002-0917-6112
https://orcid.org/0000-0002-2993-4304
https://orcid.org/0000-0002-2250-1274
https://orcid.org/0000-0001-9478-8182
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.054308&domain=pdf&date_stamp=2022-11-17
https://doi.org/10.1103/PhysRevE.106.054308


JEREMY PATON et al. PHYSICAL REVIEW E 106, 054308 (2022)

TABLE I. The leading terms of labeled and unlabeled entropies
of the sparse microcanonical Erdős-Rényi random graphs (ER),
configuration model with scale-free degree sequences (CM), and
one-dimensional random geometric graphs (RGG). The scaling of
unlabeled CM entropy is conjectural.

Entropy ER CM RGG

Labeled ≈ (k̄/2)n log n ≈ (k̄/2)n log n ∼n log n
Unlabeled ≈ (k̄/2)n log n ≈ (k̄/2 − 1)n log n � n

In what follows, we first recall in Sec. II the key dif-
ferences between labeled and unlabeled graphs and explain
why in most cases—essentially in all the cases that deal
with maximum-entropy null models of real networks—one
should be interested in unlabeled graph models, versus their
well-known labeled counterparts. In a nutshell, this is be-
cause labels in real networks are “glued” to individual nodes,
like Bhutan to the country, resulting in one network structure,
as opposed to labeled network models where this structure
is repeated as many times as the number of graph isomor-
phisms, i.e., the number of label permutations leading to a
different but isomorphic labeled graph. As a consequence,
labeled models are biased toward more asymmetric graphs,
with larger isomorphism classes, compared to the unbiased
unlabeled models of the network structure with the same
sufficient statistics.

In Sec. III, we then consider the two most basic illus-
trative examples: (1) the “harmonic oscillator” of network
models—the Erdős-Rényi random graphs (ER) and (2) the
configuration model (CM). In the ER case, we consider the
unlabeled versions of both microcanonical Gn,m and canonical
Gn,p labeled ER graphs, denoting these unlabeled ER models
by Un,m and Un,p. Somewhat shockingly, the unlabeled canon-
ical ER graphs Un,p have neither been considered nor even
properly defined before. It is known, however, that even such
a basic property as the degree distribution is very different
in sparse microcanonical labeled Gn,m versus unlabeled Un,m

ER graphs—by sparse graphs we mean graphs with constant
average degree k̄ = 2m/n. Notwithstanding these differences,
we show that the leading term of entropy of both Gn,m and
Un,m is surprisingly the same (k̄/2)n log n. The subleading
entropy terms are different, however. The leading term of
entropy of the unlabeled microcanonical CM with scale-free
degree distributions is unknown but is not excluded to be the
same as in the labeled case, albeit with a different prefactor
(k̄/2 − 1)n log n. The unlabeled canonical CM has never been
mentioned before either, so we define it in Sec. III as well.

Our main results are in Sec. IV. They are tight lower
and upper bounds for the entropy of unlabeled and la-
beled one-dimensional random geometric graphs (RGGs).
The calculation of RGG entropy is an important longstanding
problem that has seen only limited progress as it has been
considered intractable [31–34]. We develop a powerful tech-
nique, rooted in the labeled-unlabeled delineation, that allows
us to show that the leading terms of the entropy of sparse un-
labeled and labeled RGGs are different, � n versus ∼n log n,
respectively, Table I. This disconcerting result implies that the
entropy of labeled graphs is dominated by the entropy of the

FIG. 1. A network of love: a “real-world” network (a) and its
unlabeled (b) and exchangeably labeled (c) versions.

meaningless labeling noise rather than by the entropy of the
network structure.

The entropic equivalence is a necessary but not sufficient
condition for the ensemble equivalence [5,14–16]. Our RGG
result thus says that labeled and unlabeled RGGs are statisti-
cally very different. Yet even if the leading entropy terms are
the same, as in labeled and unlabeled ER graphs, the ensem-
bles can still be very different, up to the point that their degree
distributions can be very different. The main overall conclu-
sions are then that unlabeled network models may behave very
differently from their labeled counterparts, so any predictions
concerning the network structure based on labeled models
may lead to potentially misleading or statistically incorrect
outcomes. These and other implications and challenges are
discussed in Sec. V.

A. Notations and conventions

In what follows, the symbols “�,” “∼,” “≈,” and “�” in
an “∗” bn mean that c = limn→∞ an/bn is c = 0, 0 < c < ∞,
c = 1, and c = ∞, respectively. We call networks sparse or
dense if their (expected) average degree is k̄ ∼ 1 or k̄ ∼ n. All
networks are sparse below, unless mentioned otherwise. The
adjunctive with high probability is implied where needed.

II. LABELED VS. UNLABELED NETWORKS

Consider a “real-world” love network among the four peo-
ple in Fig. 1(a). Masha loves Misha while Dasha loves Pasha.
The nodes are labeled by lovers’ names, so the graph is
labeled. What permutations of labels are allowed in this net-
work? Clearly, we can only swap Masha with Misha and/or
Dasha with Pasha. These swaps are called graph automor-
phisms: Before and after the swap the network is the same
labeled graph. No other permutation of labels is allowed. We
cannot swap Masha with Dasha or with Pasha, for instance,
because such label permutations lead to different labeled
graphs, with different love stories in the real life. Labels in
real-world networks are thus “glued” to nodes since nodes are
distinguishable entities.

It is now critical to recognize that because of this
gluing—or more formally, since no non-automorphism label
permutations are allowed in real networks—we are essentially
dealing with unlabeled networks. Indeed, if we are not con-
cerned who exactly loves whom exactly—that is, if we are
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FIG. 2. The labeled, delabeled, and unlabeled microcanonical
Erdős-Rényi random graphs of size n = 4 with m = 2 edges. The
probabilities of all labeled graphs G are the same P(G) = 1/15 in
Gn,m, while the probabilities of the symmetric and asymmetric unla-
beled graphs Us and Ua are different in the delabeled and unlabeled
models Dn,m and Un,m.

interested only in the network structure—then the network
structure in the example is a pair of couples, represented by the
unlabeled graph in Fig. 1(b). If we are interested in who loves
whom, then again it is just one labeled graph in Fig. 1(a). In
either case, we are dealing with just one graph, either labeled
or unlabeled, and not with the three isomorphic graphs labeled
in all the three possible ways in Fig. 1(c). (Two labeled graphs
are called isomorphic if they are the same unlabeled graph.)
Only one of these three labeled graphs reflects reality; the
other two are “noise.”

Unlabeled graphs can but do not have to be considered as
isomorphism classes of labeled graphs. In fact, representing
unlabeled graphs as isomorphism classes of labeled graphs
can be confusing. The easiest way to understand unlabeled
graphs is via their enumeration [35], a simple example of
which we consider next.

Suppose we are to formulate the statistically correct null
model of networks with n = 4 nodes and m = 2 edges, as
in our example with Misha, Masha, Pasha, and Dasha. By
statistically correct models we mean here the unbiased models
that maximize entropy subject to given constraints [1–13].
In our example, these constraints are n = 4 and m = 2, so
the correct entropy-maximizing null models are defined by
the uniform distributions over the space of all graphs with
n = 4 nodes and m = 2 edges. However, this space is very
different for unlabeled versus labeled graphs. There are only
two unlabeled graphs with 4 nodes and 2 edges, while there
are 15 labeled ones, all shown in Fig. 2. The uniform dis-
tribution P(G) = 1/15 over the 15 labeled graphs G is the
familiar Erdős-Rényi model Gn,m with n = 4 and m = 2, while
the uniform distribution P(U ) = 1/2 over the two unlabeled

graphs U is its virtually unknown unlabeled counterpart Un,m.
Which one, Gn,m or Un,m, are we supposed to work with in
applications to real networks?

The answer to this question depends on whether the nodes
in a real network are distinguishable or indistinguishable.
The most crucial difference between the considered “real”
love network and the labeled ER G4,2 is that the nodes in the
love network are distinguishable, while they are indistinguish-
able in G4,2. Indeed, the label set in G4,2 is not {Misha, Masha,
Pasha, Dasha} but {1, 2, 3, 4}, and the model is exchangeable.
A model of labeled graphs is called exchangeable if the prob-
abilities of any two isomorphic graphs in the model are the
same. Exchangeability is thus a statistical formalization of the
idea that node labels “do not matter” and can be permuted
arbitrarily. In other words, exchangeability is a formalization
of statistical indistinguishability.

Therefore, the very common practice of applications of
exchangeable models of labeled graphs to real networks
with distinguishable nodes is statistically questionable. Either
nonexchangeable models, in which node labels “do matter and
are glued to nodes,” must be used for such networks, or—as
far as null models of network structure are concerned—the
statistically correct null models of such networks must be
models of unlabeled graphs. In either case, we are dealing
not with three graphs in Fig. 1(c) but with one graph, either
in Fig. 1(a) or in Fig. 1(b).

The other way around, if nodes in a real-world network are
indistinguishable, such as atoms in material networks [36],
then the statistically correct null models of such networks
must be exchangeable models of labeled graphs. Indeed,
different atoms are different atoms, but since they are indistin-
guishable, any permutation of individual atoms in a particular
configuration is equally good, a typical situation in statistical
physics [37], perhaps the most vivid illustration of which is
the infamous Gibbs paradox [38]. However, such situations
in the science of real-world complex networks are rare ex-
clusions rather than a rule, since in a vast majority of real
networks, nodes are distinguishable.

But does it really matter which models to use, labeled or
unlabeled, as they may be equivalent in some way? The key
message of this paper is that it really does matter what models
we deal with as the labeled and unlabeled versions of the
same model can be very nonequivalent. We already see clear
signs of this in our toy example with G4,2 and U4,2 in Fig. 2.
The two models are clearly very different in many respects.
For instance, the probability of the asymmetric Ua scenario
in Fig. 2 with one lucky person loving two others, while the
unlucky fourth is left loveless, is 80% in the labeled G4,2,
while it is only 50% in the unlabeled U4,2. That is, the two
models give different predictions concerning the likelihoods
of different “love scenarios in the real life.”

The last observation illustrates the role of the symmetry of
a graph in analyzing the statistical differences between labeled
and unlabeled graph models. The graph Ua in Fig. 2 is “more
asymmetric” than the pair of couples Us because there are
more label permutations on Ua’s labeled version that lead to
different labeled graphs. In graph theory, a graph is called
asymmetric if any permutation of its labels is not an auto-
morphism, i.e., if any label permutation leads to a different
labeled graph. The graph is called symmetric otherwise. The

054308-3



JEREMY PATON et al. PHYSICAL REVIEW E 106, 054308 (2022)

FIG. 3. The graph symmetry extremes: the smallest and sparsest
fully asymmetric graph (a) and the fully symmetric empty (b) and
complete (c) graphs of the same size.

smallest asymmetric graphs are of size 6, and there are eight
such graphs. The single one with the fewest edges (6) is shown
in Fig. 3(a). In U6,6, it is just one unlabeled graph, but in G6,6,
it corresponds to 6! = 720 labeled graphs, in stark contrast
with the fully symmetric empty or complete graphs, Figs. 3(b)
and 3(c), represented by only one graph, either unlabeled or
labeled, since any label permutation of an empty or complete
graph is an automorphism.

These observations are directly related to the common
confusion between unlabeled graph models and delabeled
graph models [39,40]. A delabeled graph model starts with
a labeled graph model, generates a labeled graph, and then
simply removes the node labels in it. The result is a model of
unlabeled graphs, in which more asymmetric graphs attract
higher probability masses. In our example above, the dela-
beled ER model Dn,m with n = 4 nodes and m = 2 edges
is the probability distribution on the two unlabeled graphs
in Fig. 2, which assigns the probability of 12/15 = 80% to
the freaky asymmetric scenario Ua, and only 3/15 = 20%
to the more conventional pair of couples Us, as opposed to
the unlabeled Un,m, which says the two scenarios are equally
likely, the probability of each is 1/2 = 50%. In other words,
if you generate a random Gn,m graph (e.g., by placing m
edges randomly among

(n
2

)
node pairs), and then consider the

generated graph as unlabeled, then you have sampled a ran-
dom unlabeled graph not from the unlabeled model Un,m but
from the delabeled model Dn,m. This shows that as far as the
probability of the network structure is concerned, a delabeled
graph model is equivalent to its labeled source, while both are
different from the corresponding unlabeled model as Fig. 2
illustrates.

The key points of this illustrative section motivating what
follows are as follows:

(i) exchangeability is indistinguishability of random vari-
ables;

(ii) therefore, models of real networks with distinguish-
able nodes can be either nonexchangeable or unlabeled;

(iii) the correct null models of the structure of real
networks with distinguishable nodes must be models of un-
labeled graphs;

(iv) the statistical properties of unlabeled graph models
can be very different from their labeled and delabeled coun-
terparts;

(v) compared to their labeled and delabeled counterparts,
unlabeled graph models have been studied much more poorly
because they are much more difficult to deal with, see Sec. V.

III. ERDŐS-RÉNYI GRAPHS AND CONFIGURATION
MODEL

A. Erdős-Rényi graphs

As discussed in the previous section, the microcanonical
labeled and unlabeled Erdős-Rényi (ER) graph models Gn,m

and Un,m are defined by the entropy-maximizing uniform prob-
ability distributions P(G) = 1/|Gn,m| and P(U ) = 1/|Un,m|
over all labeled graphs G ∈ Gn,m and, respectively, unlabeled
graphs U ∈ Un,m with n nodes and m edges. While the num-
ber of labeled graphs with n nodes and m edges is exactly
|Gn,m| = (N

m

)
where N = (n

2

)
, the number of unlabeled graphs

with n nodes and m edges |Un,m| is known only asymptotically
for large graphs [41].

The conjugated canonical versions of Gn,m and Un,m are
Gn,p and Un,p. These are the maximum-entropy labeled and
unlabeled graphs of size n in which the number of links is
not fixed exactly to m; instead, the average number of links
m̄ is fixed to pN , or equivalently, the average graph density
d̄ = m̄/N is fixed to p. While Gn,p is as well studied as Gn,m,
the unlabeled canonical ER graphs Un,p has never been consid-
ered before, so we define them next, after recalling the basic
entropic facts about Gn,p.

1. Unlabeled canonical ER graphs Un,p

As is well known, a Gn,p graph G can be generated by
linking all pairs of labeled nodes independently with proba-
bility p. The resulting probability to generate graph G in the
model is

P(G) = pm(G)(1 − p)N−m(G), (1)

where m(G) is the number of edges in G. This probability
distribution is the canonical entropy-maximizing Gibbs (a.k.a.
exponential family) distribution, since it can be rewritten in
the Gibbs form [1]

P(G) = exp[βm(G)]

Z
, (2)

where the partition function involves the summation over all
labeled graphs Gn of size n,

Z =
∑
G∈Gn

exp[βm(G)], (3)

which can be shown simplifies to

Z = (eβ + 1)N . (4)

The inverse temperature parameter β ∈ R is related to
p ∈ [0, 1] via

p = 1

e−β + 1
, (5)

which is the solution of the standard free-energy equation

∂ log Z

∂β
=

∑
G∈Gn

m(G)P(G) = m̄ = pN. (6)

The unlabeled ER graphs U in Un,p are thus defined by
the entropy-maximizing probability distribution of the same
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FIG. 4. The labeled, delabeled, and unlabeled canonical Erdős-
Rényi random graphs of size n = 3 and average density p = 1/2.
The probabilities of all graphs in the models are shown at the bottom
of each row. The entropies of the three models are SL = 3, SU = 2,
and SD ≈ 1.81 bits, reflecting the general inequality SD � SU � SL .

Gibbs form,

P(U ) = exp[βm(U )]

Z
, (7)

except that the graphs are unlabeled, so the partition function
involves the summation not over all the n-sized labeled graphs
Gn but over the much smaller but also much more intractable
space Un of all the unlabeled graphs of size n,

Z =
∑

U∈Un

exp[βm(U )]. (8)

Unfortunately, this sum does not in general simplify to any-
thing as nice looking as (4). As a consequence, there is no
nice-looking analogy of (1) for P(U ), which, among many
other things, implies that the Un,p graphs cannot be generated
by placing edges independently with probability p among N
unlabeled node pairs. By doing so, you generate an unlabeled
graph not from the unlabeled model Un,p but from the dela-
beled one Dn,p. The free-energy equation (6) linking β to p
holds,

∂ log Z

∂β
=

∑
U∈Un

m(U )P(U ) = m̄ = pN, (9)

but does not lead to anything as simple as (5). Yet we can show
that the solution of (9) exists and is unique for any n, p.

Using graph complementarity arguments, we can also
show that the solution of (9) with p = 1/2 yields β = 0
(infinite temperature) for any n, resulting in the uniform dis-
tribution over all the unlabeled graphs Un of size n as Fig. 4
illustrates for the simplest nontrivial case n = 3. In U3,p, the
direct evaluation of (8) yields the partition function

Z = e4β − 1

eβ − 1
, (10)

so the probability of the four unlabeled graphs of size 3 with
m = 0, 1, 2, 3 edges is P(m) = emβ/Z , while (9) leads to

p = 1

3

[
1

e−β + 1
+ tanh β + 1

]
. (11)

Figure 4 also illustrates the key statistical differences between
the labeled and unlabeled ER graphs. For instance, the prob-
ability to generate a graph with m = 0, 1, 2, 3 edges in the

FIG. 5. The degree distributions in the canonical labeled Gn,p and
unlabeled Un,p ER graphs of size n = 5. The solid and dashed curves
show the exact solutions for the probability P(k) that a random
node in a random labeled G5,p graph and, respectively, unlabeled
U5,p graph has degree k for all values of degree k = 0, 1, 2, 3, 4 and
density p ∈ [0, 1].

labeled and delabeled cases with β = 0 is given by the bino-
mial distribution 1/8, 3/8, 3/8, 1/8, while in the unlabeled
case this probability is uniform, 1/4 for any m. The statistical
similarities between the delabeled and labeled graphs, both
different from the unlabeled ones, are similar to those in the
microcanonical case in Fig. 2.

2. Degree distribution

Another key difference between (de)labeled and unlabeled
ER graphs is the degree distribution. As can be deduced
from Fig. 4, the degree distribution in the unlabeled graphs is
uniform, P(k) = 1/3 for degrees k = 0, 1, 2, versus the cor-
responding binomial distribution 1/4, 1/2, 1/4 in the labeled
graphs. Figure 5 shows the exact degree distributions in the
canonical labeled and unlabeled ER graphs Gn,p and Un,p of
size n = 5. We see that they are different for any values of
p 
= {0, 1}. The unlabeled graphs always have more nodes of
degree 0, for instance.

The degree distribution in Un,p is unknown, and we leave
it as an open problem to compare it against the degree dis-
tribution in Un,m, which, as was shown in Ref. [42], is very
different from the Poisson one in sparse Gn,m. In particular, if
m = k̄n/2 with constant k̄, then the Un,m graph consists of a
connected component of size

� ≈ 2m

log m
, (12)

the average degree and degree distribution in which are

k̄>0 = 2m

�
≈ log m ≈ log � ≈ log n, (13)

P�(k) ≈ logk �

�k!
, k > 0. (14)

However, most nodes are not in this component and have
degree 0; their number is n − � ≈ n. The graph is thus domi-
nated by isolated nodes. However, if they are ignored, then it
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has a Poisson-like degree distribution P�(k) with a logarithmi-
cally diverging average degree.

3. Entropy

Notwithstanding these drastic structural differences re-
flected in the degree distribution, the leading terms of entropy
of Gn,m and Un,m are surprisingly the same. As can be deduced
from Ref. [41], the entropy of Un,m is

SU = k̄

2
n log n − k̄n log log n + k̄

2
(log k̄ − 1)n + o(n) (15)

for k̄ � log n. While the leading term is the same, the sublead-
ing terms are different than in the labeled Gn,m whose entropy
for k̄ � n is [5]

SL = k̄

2
n log n − k̄

2
(log k̄ − 1)n + o(k̄n), (16)

so SU < SL for sufficiently large n. Due to the connectivity
phase transition at k̄ ∼ log n, the Un,m graphs with k̄ � log n
do not have any degree-0 nodes and consist of a single con-
nected component, which is asymmetric [42]. Since the graph
is asymmetric, the labeled and unlabeled entropies are related
by SU = SL − log n! in this denser case, but since k̄ � log n,
this difference is negligible.

Nothing is known about the entropy of the canonical Un,p

model in any regime, including whether there is any ensemble
equivalence between Un,p and Un,m akin to the one established
for the labeled Gn,p and Gn,m [14,15]. We leave these as open
problems as well.

B. Configuration model

While the entropy of the labeled microcanonical config-
uration model (CM) is a well-explored subject [2–5,43–45],
very little is known about its unlabeled version. The existing
results [46,47] tell only whether the CM graphs are asym-
metric or symmetric, i.e., whether they have any nontrivial
automorphisms, not how many automorphisms they have, as
is needed for entropy calculations.

As far as sparse power-law degree sequences with expo-
nent γ are concerned, the latest results in Ref. [47] show
that if γ > 3, then the CM graphs are symmetric. However,
it remains unknown what happens for γ � 3. Since the key
ingredients that break asymmetry (“most graphs are asym-
metric” [48]) are hubs in tandem with low-degree nodes (star
graphs are “very symmetric”), the proofs of graph asymme-
try (leading to SU = SL − log n!) involve strict bounds on
the maximum degree and the numbers of nodes of degree
1 and 2 [46,47], which are violated in sparse scale-free
degree sequences with γ � 3. However, it is still not ex-
cluded that such graphs are asymmetric or, much more likely,
that the number of their automorphisms is � n!. If so,
then their unlabeled entropy would be SU ≈ (k̄/2 − 1)n log n
since SL ≈ (k̄/2)n log n [4]. (Dis)proving this is yet another
open problem.

Similarly to the unlabeled canonical ER Un,p, the unlabeled
canonical CM has not been mentioned in the past, so we
define it here. We first recall that the labeled canonical CM,
or the soft configuration model (SCM) [1,2,7], is defined by a
sequence of expected degrees {κi} of nodes i ∈ [n]. The Gibbs

probability distribution of random labeled graphs in the model
is

P(G) = exp
[ ∑n

i=1 βidi(G)
]

Z
, (17)

where di(G) is the degree of node i in graph G ∈ Gn, and the
parameters {βi} are found as the solution of the system of n
free-energy equations,

∂ log Z

∂βi
=

n∑
j=1

pi j = κi, (18)

where

pi j = 1

e−βi−β j + 1
(19)

are the probabilities of edges between nodes i and j. The
model is not exchangeable, unless all κis are the same.

This vanilla SCM definition is clearly not directly applica-
ble to unlabeled graphs since it explicitly refers to node labels
i via κi. However, the following alternative SCM definition
based on the empirical degree distribution in graph G ∈ Gn

avoids this problem:

P(G) = exp
[ ∑n−1

k=0 αknk (G)
]

Z
. (20)

Here nk (G) is the number of nodes of degree k in G. This
version of the labeled SCM is exchangeable, and its definition
is directly applicable to unlabeled graphs U ∈ Un:

P(U ) = exp
[ ∑n−1

k=0 αknk (U )
]

Z
. (21)

As in the ER case, the main difference between the labeled
and unlabeled SCMs defined in Eqs. (20) and (21) is that the
partition function Z involves the summation over all labeled
versus unlabeled graphs of size n. Both models are defined by
desired expected numbers {νk} of nodes of degree k, and the
parameters {αk} are the solutions of the standard free-energy
equations,

∂ log Z

∂αk
= νk . (22)

IV. RANDOM GEOMETRIC GRAPHS

Calculating the entropy of random geometric graphs
(RGGs) is a cornerstone problem in estimating entropy of
a large class of labeled network models with hidden vari-
ables [49–52], where the connection probability between
nodes i and j is pi j = p(xi, x j ), where p(x, y) ∈ [0, 1] is a
function of i, j’s random coordinates xi, x j in some space.
These models include not only all spatial networks and latent
space models but also the soft versions of the configura-
tion model, preferential attachment, stochastic block model,
as well as graphons in dense graphs. In dense graphs, the
number of edges is m ∼ n2, so that their entropy, known as
graphon entropy [53], always dominates the coordinate en-
tropy coming from random xis. However, in sparse graphs,
the numbers of edges and node coordinates are of the same
order ∼n, so their entropies may be comparable. In RGGs, the
graph entropy is exactly the coordinate entropy, since given
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the coordinates, edges exist deterministically. Therefore, the
estimation of the RGG entropy is of utmost importance for
disentangling the edge and coordinate entropies.

Here we focus on the sparse one-dimensional RGGs de-
fined by

(1) sprinkling n points uniformly at random over the inter-
val [0, n], and then

(2) linking all pairs of points at distance < r on [0, n],
where r > 0 is a constant,

so the expected average degree converges to k̄ = 2r. Step
(1) implements the binomial point process of rate 1 on [0, n],
while step (2) says that p(x, y) = 1{|x − y| < r}, where 1 is
the indicator function.

Observe that as defined above, the graphs are actually
unlabeled because we did not label the sprinkled points. This
is consistent with the general definition of a point process
in probability as a random point measure [54], which does
not involve any labeling. Denote the entropy of the resulting
unlabeled RGGs by SU .

We can also modify step (1) in the definition of unlabeled
RGGs above to the following:

(1’) sample the coordinates xi of nodes i ∈ [n] from the
uniform distribution on [0, n] i.i.d.’ly.

The points are now labeled by integers i ∈ [n], so the re-
sulting graph is labeled as well, but its labels are completely
random. That is, it is easy to see that generating the labeled
graph using steps (1′, 2) is equivalent to generating the un-
labeled graph using steps (1,2) first and then labeling it by
one out of the n! possible permutations of labels [n] selected
uniformly at random. Denote the entropy of the resulting
labeled RGGs by SL.

Going back from the labeled to unlabeled graphs is
achieved by generating a labeled graph and then delabeling
it. This means that in contrast with ER, the unlabeled and
delabeled models of RGGs are actually identical. This is not a
surprise but a reflection of the general situation: If a network
model is a maximum-entropy null model, as is the case with
ER, then its unlabeled and delabeled versions are usually
different. However, if a network model is defined by a graph-
generation process in which labels do not matter, as is the
case with RGGs, then the unlabeled and delabeled versions
are identical.

Unfortunately, the entropy of neither unlabeled RGGs SU

nor labeled ones SL is amenable to any brute-force calcula-
tions due to the intractable dependencies among edges, so
we need to devise some tricks, which are described in the
following sections.

A. An upper bound for unlabeled entropy

First, we upper bound the unlabeled entropy SU by the
entropy of the uniform distribution over all unlabeled graphs
that can be realized as one-dimensional geometric graphs, i.e.,
unit interval graphs. This entropy is logNU , where NU is the
number of such graphs, which is

NU = 4n

c
√

πn3
, (23)

where c is approximately 5.01 [55]. As a side note, the
number of orderly labeled geometric graphs with x1 < x2 <

. . . < xn, whose entropy SO is squeezed between SU and
SL, SU � SO � SL, is the Catalan number (Exercise 6.19 in
Ref. [56]),

NO =
(2n

n

)
n + 1

≈ 4n

√
πn3

. (24)

Therefore, our first result is that the entropy of unlabeled
RGGs is

SU � logNU ≈ n log 4. (25)

The application of the same technology to SL would tell
us that SL � n log n, since logNL ∼ n log n [55], but it would
not lead to any lower bound for SL, so it could still be that
SL ∼ n ∼ SU . We derive much tighter upper and lower bounds
for SL using a different route.

B. An upper bound for labeled entropy

We first recall a very simple and general relation between
the labeled and delabeled entropies [39,40]. We call the latter
the unlabeled entropy below, since unlabeled RGGs are iden-
tical to delabeled RGGs.

Consider any model of labeled graphs G ∈ Gn of size n
with distribution P(G) whose entropy is

SL = −
∑
G∈Gn

P(G) log P(G). (26)

Let UG be the unlabeled version of G, and let GU be the iso-
morphism class corresponding to an unlabeled graph U ∈ Un:

GU = {G ∈ Gn : UG = U }. (27)

Denote its size by NU = |GU | and observe that

NU = n!

|Aut(U )| , (28)

where Aut(U ) is the group of automorphisms of any labeled
version of U . Let P(U ) be the delabeled probability distribu-
tion induced by P(G),

P(U ) =
∑

G∈GU

P(G). (29)

Observe that since any labeled graph G has only one unlabeled
graph UG corresponding to it, we have that

P(G) =
∑

U∈Un

P(G|U )P(U ) = P(G|UG)P(UG). (30)

From here it follows that the conditional distribution of graph
G ∈ GU given that its unlabeled graph is UG is

P(G|UG) = P(G)

P(UG)
. (31)

If the model is exchangeable, as is the case with labeled
RGGs, then P(G|UG) is uniform,

P(G|UG) = 1

NUG

, (32)

hence

P(G) = P(UG)

NUG

. (33)
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Substituting this into SL yields

SL = −
∑
G∈Gn

P(G) log

[
P(UG)

NUG

]

= log n! −
∑

U∈Un

∑
G∈GU

P(G)[log P(U ) + log |Aut(U )|]

= log n! −
∑

U∈Un

P(U ) log P(U )

−
∑

U∈Un

P(U ) log |Aut(U )|. (34)

That is,

SL = SU + log n! − A, (35)

where

SU = −
∑

U∈Un

P(U ) log P(U ) (36)

is the unlabeled entropy and

A = 〈log |Aut(U )|〉 =
∑

U∈Un

P(U ) log |Aut(U )| (37)

is the expected logsize of the automorphism group.
Equation (35) provides the following useful upper and

lower bounds for the labeled entropy:

SL � SU + log n!, (38)

SL � log n! − A. (39)

Since SU � n in our RGGs, we immediately arrive at the
upper bound for their labeled entropy using (38):

SL � n log n. (40)

An upper bound on A would yield a lower bound on SL

using (39), which we deal with next.

C. A lower bound for labeled entropy

We first assume that n is sufficiently large, so we can
approximate the binomial point process of rate 1 on [0, n]
with the Poisson one, where the distances d between consec-
utive points are independent exponentially distributed random
variables with PDF P(d ) = e−d [57]. We then recall that the
percolation threshold in one-dimensional RGGs is infinite,
simply because d > r with probability p = e−r . It follows
that the sizes sc of connected components c ∈ [C] are in-
dependent geometrically distributed random variables with
PDF P(s) = p(1 − p)s−1, while the number of components
C is approximately binomial, P(C) = (n−1

C−1

)
pC−1(1 − p)n−C ,

C ∈ [n].
The key observation then is that for a label permutation to

be an automorphism, it must permute nodes within a compo-
nent, permute the components, or both. A trivial upper bound

A = C!
C∏

c=1

sc! (41)

for the number of automorphisms is when all components c
are maximally symmetric, i.e., when they all are complete
graphs of size sc. It follows that

log A ≈ C logC − C +
C∑

c=1

log sc!, (42)

and since 〈C〉 ≈ pn and 〈sc〉 = 1/p = er , we see that the
leading term in 〈log A〉 is 〈C logC〉, which one can check is
≈pn log n. We thus have that

A � pn log n. (43)

Substituting this into (39), and combining with the upper
bound obtained earlier, we finally get

(1 − e−k̄/2)n log n � SL � n log n. (44)

We note that the larger the average degree, the tighter these
bounds, although they are asymptotic, holding for 〈C〉 � 1,
meaning n � ek̄/2.

Comparing (44) with (25), we conclude that SU � SL. That
is, the entropy of random labeling log n! in (38) and (39)
dominates the network-structural entropy (25).

V. CONCLUSIONS

Null models of networks are typically used to assess the
statistical significance of network features in a given real-
world network and to investigate whether such features are
relevant for a particular set of network functions [58]. Col-
loquially, null models are “maximally random” models of
networks constrained to have a set of particular network prop-
erties. Real networks are compared against their null models
to detect statistically significant deviations in the values of
network properties that are not constrained in the null model.
The “maximum randomness” of null models is formally
achieved by maximizing the model entropy under the imposed
constraints. But should these models be models of labeled or
unlabeled networks? This elephant-in-the-room question has
been magically ignored in the past research.

Here we began with a crucial observation that if nodes
in a real-world network are labeled and distinguishable, then
correct null models for such a network must be either nonex-
changeable or unlabeled, simply because exchangeability is
statistical indistinguishability. Exchangeable models repre-
sent a world which is statistically very different from any
data source generating distinguishable labels. And if we are
interested only in the network structure, then the correct null
models of the structure of real networks with distinguishable
nodes must be models of unlabeled graphs.

The logical next two questions are then as follows:
(1) Does it really matter what models to consider, labeled

or unlabeled, as they may be equivalent upon some simple
transformation?

(2) If it does matter, and unlabeled models should have
been studied all these years as much as—if not more than—
labeled ones, then why has this not been the case?

To address the first question, we have shown here that
labeled and unlabeled models of sparse networks can be very
different and nonequivalent. The emphasis on sparse networks
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is important here. Almost all dense networks are asymmet-
ric [48]. Therefore, there exists a simple relation between
their labeled and unlabeled models: Almost every unlabeled
network corresponds to exactly n! labeled ones with all pos-
sible permutations of labels. It follows then that as far as
entropy is concerned, for instance, the general equation (35)
relating the labeled and unlabeled network entropies SL and
SU becomes trivial: SL ≈ SU + log n!. But since the unlabeled
entropy of dense networks is SU ∼ n2 [13,53], this difference
between SL and SU is negligible, SL ∼ SU ∼ n2. In other
words, in dense networks, there is room for huge diversity of
network structure. Therefore, randomness associated with net-
work structure, represented by the unlabeled entropy SU ∼ n2,
dominates the labeling entropy SL = SL − SU ≈ n log n.

We have shown that in sparse networks, the situation is
very different. The sources of network-structural and labeling
randomnesses are comparable in their power, so the network-
structural entropy SU may or may not be the leading factor,
depending on the model. We have considered three examples
demonstrating all of the three possibilities:

(i) in Erdős-Rényi graphs, the network-structural entropy
dominates the labeling entropy:

SU � SL;
(ii) in the scale-free configuration model, the two en-

tropies are conjecturally comparable:
SU ∼ SL;
(iii) in random geometric graphs, the labeling entropy

dominates the network-structural entropy:
SU � SL.
Even though the network-structural entropy wins in sparse

Erdős-Rényi graphs, this example is still a source of concerns
for at least two reasons. First, by definition, Erdős-Rényi
graphs are maximally random graphs with a given average
degree, so this is where we could expect to see the strongest
domination of SU over SL compared to other sparse network
models. However, this domination is not really strong. In fact,
it is marginal: As can be seen from (15) and (16), SU /SL ≈
(1/2) log n/ log log n.

Worse, the entropic equivalence is definitely a neces-
sary but not sufficient condition for model equivalence. The
Erdős-Rényi example shows that even though the labeled and
unlabeled models are entropically equivalent (SL ≈ SU ), their
very basic structural property—the degree distribution—is
very different between the two models.

Compared to Erdős-Rényi graphs, the random geomet-
ric graph example is much more disconcerting, as it clearly
demonstrates that even the entropic equivalence between
labeled and unlabeled models can be broken in sparse net-
works and that the entropy of meaningless labeling noise SL
may easily be the leading factor, overpowering the network-
structural signal SU . This result is disconcerting because it
implies that entropy maximization in sparse networks may
easily be the maximization of the entropy of meaningless
labeling that you do not care about versus the intended maxi-
mization of the entropy of the network structure. Such caveats
can easily lead to profound aberrations and statistical errors
in conclusions made about the structure of sparse real-world
networks based on their maximum-entropy labeled models.

It is important to note that in some situations, working with
labeled network models is justified. As mentioned in Sec. II,

models of real-world networks with indistinguishable nodes
must be labeled. Other examples include situations where
labeling is statistically meaningful. One such example, briefly
mentioned in Sec. IV, is the random geometric graph labeled
in the order of increasing coordinates. Thus labeled, random
geometric graphs can be formulated as a growing network
model [59]. This example generalizes to any growing net-
work model, such as preferential attachment whose symmetry
properties were considered in Ref. [60], where the preferred
labeling is by nodes’ birth times. Yet another example of a
different sort is the stochastic block model where nodes can
be labeled by communities they belong to [21,22].

Unfortunately, even in cases where there exists a (unique)
preferred labeling scheme, the models that have been actually
studied at depth in the past are the models of networks labeled
by [n] arbitrarily. Even more unfortunate is that this practice
is nearly never spelt out explicitly. As a rule of thumb, if
unsure what networks, labeled or unlabeled, a particular result
in network science or graph theory is about, then assume it is
about arbitrarily labeled networks.

Perhaps the main implication of the results in this paper
is that this practice of silence about the differences between
labeled and unlabeled network models should be abandoned,
at least as far as applications to sparse networks are concerned.
It is really imperative to understand in what situations the
replacement of the correct representation of the network struc-
ture, an unlabeled network, by its simpler labeled surrogate, is
statistically justified. As a bare minimum, it should always
be made clear what networks we are dealing with, labeled
or unlabeled, and why. As we have seen here, the answer to
this why question may be very difficult. It may not even exist,
suggesting a dire need for a thorough reexamination of the
foundational results in the science of sparse networks. To mo-
tivate this reexamination, note that its very basic starting point,
the degree distribution in unlabeled Erdős-Rényi graphs, is not
what you would have expected.

Given that the very core of network science is all about the
structure (and function) of complex networks [61], one may
ask why all of the best-studied null models of the structure of
networks are labeled, not unlabeled, as they should have been.
Why did unlabeled graphs not attract the deserved attention
even in textbooks on network science and graph theory? We
speculate that the main reason is that it is actually quite dif-
ficult not only to think about unlabeled networks but also to
deal with them in practice.

First, it is quite a challenge to store an unlabeled graph on
a computer. The standard practice to represent an unlabeled
graph in textbooks, web sites, or computer programs like
Mathematica is to picture it. Yet storing graphs in pictures
does not get you far computationally, so Mathematica and
similar programs rely on canonical labeling [62] of unlabeled
graphs, an important area of research in graph theory and
computer science looking for computationally efficient ways
to assign a unique labeling to an unlabeled graph.

This “mundane” graph representation issue is a nu-
ance, compared to the problem of graph generation. It is
quite a challenge to generate even the simplest unlabeled
graphs, i.e., unlabeled Erdős-Rényi graphs. Some of the best
results on how to generate microcanonical unlabeled Erdős-
Rényi graphs are available in Ref. [63]. Since the canonical
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unlabeled Erdős-Rényi graphs have not been considered or
even mentioned before, there are no results whatsoever on
how to generate them. Nor are we aware of any results on
how to generate graphs in the unlabeled configuration model,
either microcanonical or canonical, the latter also defined for
the first time in this paper only.

Yet it is not the case that there are no strongly positive
results on unlabeled graphs at all. The optimistic results in
Ref. [42] say that in microcanonical unlabeled Erdős-Rényi
graphs, the values of a huge class of network properties can
be linked to their values in the corresponding labeled graphs.
Roughly, the unlabeled values are the labeled values in graphs
of a different effective size. Unfortunately, these results apply
mostly to denser graphs with the average degree k̄ � log n.

Another source of optimism is that sufficient statistics in
exchangeable models are unlabeled properties. By unlabeled
properties, we mean those network properties whose values
are identical across all labeled graphs in any isomorphism
class. Therefore, there exists a unique unlabeled model corre-
sponding to each exchangeable model, and vice versa, having
identical sufficient statistics, differing only in their sample
spaces, i.e., unlabeled vs. labeled graphs. As discussed in
Sec. II, if all of the network properties that a researcher has
data for and wants to model in a null model are unlabeled,
then a natural setting for the sample space would be that of
unlabeled graphs. Regardless of the choice of an unlabeled

versus exchangeably labeled model in such cases, the dis-
cussed connection between these two types of models may
help to translate ideas, methods, and techniques between the
two settings.

To end on a truly positive note, the last remark is that unla-
beled network models completely avoid the exchangeability
conundrum in sparse networks. On the one hand, if node
labels are meaningless integers that “do not matter,” then the
network model must be exchangeable since the probability of
a network in the model cannot depend on how the network is
labeled. On the other hand, the thermodynamic limit of any
sparse exchangeable network model necessarily consists of
empty networks due to the Aldous-Hoover theorem [64,65].
Exchangeability makes no sense in the realm of unlabeled
graphs, so the paradox dissolves there. The Aldous-Hoover
theorem simply implies that the limits of sparse unla-
beled networks—whatever they are—cannot be exchangeably
labeled by integers.
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