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Local and global ordering dynamics in multistate voter models
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We investigate the time evolution of the density of active links and of the entropy of the distribution of agents
among opinions in multistate voter models with all-to-all interaction and on uncorrelated networks. Individual
realizations undergo a sequence of eliminations of opinions until consensus is reached. After each elimination the
population remains in a metastable state. The density of active links and the entropy in these states varies from
realization to realization. Making some simple assumptions we are able to analytically calculate the average
density of active links and the average entropy in each of these states. We also show that, averaged over
realizations, the density of active links decays exponentially, with a timescale set by the size and geometry of the
graph, but independent of the initial number of opinion states. The decay of the average entropy is exponential
only at long times when there are at most two opinions left in the population. Finally, we show how metastable
states comprising only a subset of opinions can be artificially engineered by introducing precisely one zealot in
each of the prevailing opinions.
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I. INTRODUCTION

One of the most popular classes of models of opinion
dynamics is that of so-called voter model (VM) [1–5]. VMs
describe populations of individuals, who are each character-
ized by their discrete opinion state, and where the principal
mechanism of change is imitation (i.e., one individual copies
the opinion state of another individual). VMs are not only
a paradigmatic model of opinion formation, they are also of
interest in statistical physics. They operate out of equilibrium,
and have absorbing states and certain symmetries, defining an
interesting universality class [1,6].

In the most simple version of the VM each individual can
take one of two opinion states. Individuals are assumed to
reside on the nodes of an interaction network (this includes
the special case of all-to-all interaction). At each step an
individual is chosen at random and then copies the state of one
randomly chosen neighbor on the network. This simple sys-
tem has Z2 symmetry, and two absorbing “consensus” states
(if all individuals hold the same opinion, no further change is
possible). The features of most interest to physicists include
the time required to reach absorption, and the coarsening
dynamics during the process leading to consensus [4–11].

Many variants of the voter model have been introduced in
order to capture different features of social interaction. Exam-
ples are the so-called noisy voter model in which individuals
can change opinion spontaneously [12–15], or populations
including so-called “zealots.” These are individuals who are
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less prone to changing opinion than regular agents, or who
never change opinion [16–19]. A further variation, which
we focus on here, is the so-called multistate voter model
(MSVM) [20,21]. These are voter models in which there are
more than two possible opinion states, and consequently mul-
tiple absorbing states. The path to one of these states involves
a sequence of successive extinctions of opinions. One main
distinction is between models in which the different opinion
states are ordered in some way (representing, e.g., the political
spectrum) versus models in which all states are equivalent. We
here focus on the latter case.

Existing literature on MSVM with equivalent states in-
cludes in particular work on consensus and extinction
times [20,22,23]. For the case of all-to-all interaction the
authors of Ref. [20] derived analytical expressions for objects
such as the mean consensus time, and the mean number of
different states in the population as a function of time. Ref-
erence [20] also contains numerical studies of the model in
low-dimensional lattices.

The authors of Ref. [22], among other results, further
provided closed-form expressions for all moments of the con-
sensus time for uniform initial distributions on the all-to-all
interaction. Baxter et al. [23] obtain a solution for a model
describing neutral genetic drift at a single locus with multiple
alleles. This model, while set up in a biological context, is
mathematically very similar to the MSVM in an all-to-all
geometry, and the bulk of the ideas and results therefore carry
over. It should be noted that the authors of [23] work in the
diffusion approximation.

Many of the results in the existing literature concern quan-
tities such as the consensus time, the time until the extinction
of the different opinions, or the properties of the stationary
state (the latter becomes nontrivial if spontaneous opinion
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changes are added to the dynamics, as this removes the ab-
sorbing states).

The question how consensus is reached in MSVMs, and
what the coarsening process before absorption looks like,
on the other hand, appear to have received relatively little
attention. In this work, we therefore study the VM with a
general number of initial opinion states, and with a focus on
the dynamics before consensus is reached.

We focus on the cases of a complete graph (all-to-all inter-
action), uncorrelated networks such as Erdős-Rényi graphs,
and scale-free networks [24]. Throughout our paper scale-
free networks are generated using the Barabási-Albert growth
process of preferential attachment [25] and have a degree
distribution which decays as p(k) ∼ k−3. We will simply refer
to these as Barabási-Albert networks

We focus on two key quantities in our analysis. One is the
familiar “density of active links” [6,10–12,26–28], that is, the
proportion of connected pairs of agents that do not share the
same opinion. This quantity characterizes the organization of
individuals on the graph. A low density of active links indi-
cates the presence of domains of individuals of the same state
(neighbors tend to be in the same opinion states). The pattern
is more scattered if the density of active links is high [29].
Additionally, we look at the entropy of the distribution of
agents across the different opinion states. This is a global
measure of order (it does not make use of pairs of neighbors),
indicating how dispersed the individuals are across the differ-
ent opinions.

The time evolution of the density of active links in the two-
state model has been studied on complete graphs [7,27] and on
uncorrelated graphs [10–13,26]. Averaged over an ensemble
of realizations, an exponential decay of the mean density
of active links with time is here typically found. The decay
time is proportional to the population size, N , for complete
graphs and Erdős-Rényi networks [9,27]. On Barabási-Albert
networks the timescale is proportional to N/ ln N [8].

The behavior in individual realizations is quite different.
Both in the all-to-all scenario and on graphs one finds that
single runs of the two-state VM typically settle to quasistable
“plateau” of the density of active links, before a sudden
fluctuation then takes the system to consensus [10,30]. The
density of active links at the plateau differs in the cases of
all-to-connectivity or networks. It also depends on the initial
proportion of agents in the two opinion states [11].

In the two-state model consensus is reached after a single
extinction of an opinion. The multistate model on the other
hand undergoes a sequence of extinctions. Our main objective
is to study how this affects the time evolution of the density
of active links, and of the entropy. We address this both at the
ensemble level (i.e., as an average over realizations) and on
the level of individual runs.

The remainder of the paper is set out as follows. In Sec. II
we define the model. Section III then focuses on the time
evolution of the density of active links and of the entropy
at the level of an ensemble average. The phenomenology of
individual realizations is studied in more detail in Sec. IV. We
find a sequence of metastable states and characterize some
of the statistical features of these states. We then use this to
establish how the ensemble-level behavior can be understood
from that of single realizations. In Sec. V we then proceed

to show that zealots can be used to “engineer” steady states
of mixed opinions similar to the metastable states found in
individual realizations in Sec. IV. Finally, Sec. IV contains a
summary and our conclusions.

II. MODEL DEFINITIONS

A. Setup and interaction network

The model describes N individuals, who can each be in
one of M discrete states or opinions. We label individuals
i = 1, . . . , N and states α = 1, . . . , M. During the course of
the dynamics each individual can interact with its nearest
neighbors on a static network. We use the notation ci j for the
adjacency matrix of the undirected interaction network. We
have ci j = c ji = 1 if individuals i and j are neighbors, and
ci j = c ji = 0 otherwise. We also set cii = 0. We will use the
notation j ∈ i to indicate that j is among the neighbors of i.
We write ki for the degree of the node representing individual
i, i.e., ki = ∑

j ci j . The total number of links in the graph is
E = ∑

i< j ci j . In the complete graph (ci j = 1 for all i �= j)
one has E = N (N − 1)/2.

B. Dynamics and transition rates

The variable si(t ) ∈ {1, . . . , M} represents the state of in-
dividual i at time t . At the start of the dynamics (t = 0)
the states of all individuals si(t = 0) are initialized. Different
initial conditions can here be chosen. We typically consider
homogeneous initial conditions [20], that is a configuration
in which the same number of agents in each opinion state
are randomly distributed in the nodes of the network. For the
model on networks, these individuals are placed on the graph
at random.

The dynamics then proceeds through pairwise interactions
between individuals. An interaction of individual i with in-
dividual j ∈ i consists of an imitation process, i.e., i copies
the opinion state of j. It is important to notice that, although
the interaction network is undirected, each interaction event
is directed. An interaction of i with j is not the same as an
interaction of j with i.

The rates with which interactions between agent i and j
occur are given by

Ti j = ci j

ki
=

{
1/ki j ∈ i
0 j /∈ i .

(1)

In this setup time is continuous and measured in units of
Monte Carlo steps (“generations” in the language of popula-
tion dynamics), i.e., O(N ) imitation events take place in the
population per unit time.

We denote the number of individuals holding opinion α by
nα , and we write n(t ) = [n1(t ), . . . , nM (t )]. We also introduce
xα = nα/N as the fraction of individuals in opinion state α.

C. Density of active links

At each point in time the links on the interaction network
can be grouped into links that are “active” or “inactive” re-
spectively. A link (i, j) is said to be active when the two nodes
at its ends are in different states (si �= s j), otherwise the link
is inactive.
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It is further useful to introduce the fraction of links of type
αβ, where α, β ∈ {1, . . . , M}. This is the fraction of links
which have an agent in state α at one end, and an agent in
state β at the other end. Suppressing the time dependence of
the {i(t )} we then have

ραβ = 1

E

∑
i< j

ci j (δsi,αδs j ,β + δs j ,αδsi,β ) (2)

for α �= β, and with δ the Kronecker delta. We recall that E
is the total number of links in the graph. The total density of
active links in the system is then

ρ =
∑
α<β

ραβ = 1

E

∑
i< j

ci j (1 − δsi,s j ). (3)

The overall rate of events in the population leading to
state changes is proportional to the fraction of links that are
active (an imitation process involving individuals connected
by an inactive link will not result in any opinion change). The
density of active links therefore characterizes the amount of
(potential) “activity” and indicates how far the system is from
reaching an absorbing state.

The density of active links can also be seen as a measure
of disorder in the configuration of opinions on the interaction
network. Consider a particular configuration n of individuals
in the different opinion states. If the individuals were located
at random nodes on the graph with no particular order, then the
probability that a randomly chosen link is active is ρrandom =
2

∑
α<β nαnβ/[N (N − 1)]. This is also the fraction of active

links on a complete graph, ρCG(n), given the {nα}. If there is
order in the network (i.e., the neighbors of a node in state α

also tend to be in state α), then the density of links will be
lower than ρCG(n). At an absorbing state one has complete
order, ρ = 0. Thus, ρ(n) indicates the amount of disorder in
a configuration of the networked system. The behavior of this
quantity in time can be used to characterize the coarsening
dynamics. We stress that the density of active links arises
from a local definition of disorder (the state of an individual
is compared with that of its neighbors).

D. Entropy

We now introduce a second measure of disorder, namely,
the entropy of a configuration of the system. This quantity
relates to the distribution of individuals across opinion states
in that configuration and is defined as

S = −
∑

α

xα ln xα, (4)

where we recall that xα = nα/N . No use of neighborhood re-
lationships between nodes is here considered. Hence entropy
as a measure of disorder has a global character. We stress that
the entropy as defined in Eq. (4) can be evaluated (in simula-
tions) at any time and for any specific realization. It therefore
characterizes the global order in a particular snapshot of a
simulation. This can then be averaged (at a fixed time) over
realizations.

States of maximum entropy are those for which xα = 1/M
for all α, i.e., states with equally many individuals in each
opinion state. This leads to S = ln M. If the system has

reached consensus (xα = 1 for one value of α, and xβ = 0 for
all β �= α), we have S = 0. This is the state of maximal order.

E. Master equation for the model on a complete graph

In an all-to-all geometry all individuals are equivalent in
terms of their position on the graph, and the system is there-
fore fully specified by n = (n1, . . . , nM ). The rates in Eq. (1)
become Ti j = 1/(N − 1) for all i �= j. This in turn means
that the total rate with which individuals in state α in the
population are converted to individuals in state β is

Tα→β (n) = nαnβ

N − 1
. (5)

The dynamics of the system is then described by the master
equation

d

dt
P(n) =

∑
α �=β

(EαE−1
β − 1)[Tα→β (n)P(n)], (6)

where Eα is the “raising operator” acting on functions of n by
increasing the argument nα by one, Eα f (n) = f (n1, . . . , nα +
1, . . . , nM ).

III. CHARACTERIzATION OF THE COARSENING
PROCESS AT THE LEVEL OF THE ENSEMBLE AVERAGE

To set the scene we will first focus on the time evolution of
averaged quantities. By this we mean an average over realiza-
tions of the stochastic voter model dynamics, each realization
with a different initial condition. We will refer to this as an
“ensemble average” and use angle brackets 〈· · ·〉 to describe
it. In numerical simulations we obtain this average from 5000
independent realizations.

A. Evolution of the average density of links

1. Complete graph

In the basic case of all-to-all interactions one has, for any
function f (n),

d

dt
〈 f 〉 =

∑
n

f (n)
d

dt
P(n), (7)

with d
dt P(n) as in Eq. (6).

From Eqs. (1) it is also clear that the rate for events con-
verting individuals from state α to state β is the same as that
for the reverse event. Therefore, the ensemble average of xα is
constant in time,

d

dt
〈xα〉 = 0. (8)

If an individual of type α adopts opinion β in an event,
then we have nα → nα − 1 and nβ → nβ + 1. Given that
ραβ = 2nαnβ/[N (N − 1)] this means that ραβ changes by
2(nα − nβ − 1)/[N (N − 1)]. We therefore have

d

dt
〈ραβ〉 = 2

N (N − 1)
〈Tα→β (n) × (nα − nβ − 1)

+ Tβ→α (n) × (nβ − nα − 1)〉

= − 2

N − 1
〈ραβ〉. (9)
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FIG. 1. Average density of links in the MSVM with all-to-all
interaction and homogeneous initial conditions (see text) for different
values of initial number of opinions M and different system sizes
N . Symbols show results from numerical simulations, averaged over
5000 realizations. Lines are the analytical prediction in Eq. (12).

We conclude

〈ραβ (t )〉 = 〈ραβ (0)〉e−t/τ , (10)

with a timescale τ given by [27]

τ = N − 1

2
. (11)

From this and using Eq. (3) we have

〈ρ〉 = 〈ρ(0)〉e−t/τ . (12)

We note that τ is independent of the number of opinion states
M.

For homogeneous initial conditions (nα = N/M for all α),
we have

〈ρ(0)〉 = (M − 1)N

(N − 1)M
≈ 1 − 1

M
, (13)

where the approximation applies for N 	 1.
In Fig. 1 we confirm the validity of Eq. (12) in simulations.

The expression in Eq. (11) is verified in Fig. 2.

FIG. 2. Decay timescale τ in the MSVM on a complete graph
for different values of initial number of opinions M, as a function of
the system size N . Markers are obtained from fitting an exponential
curve to simulation data for 〈ρ(t )〉. The solid line shows Eq. (11).

2. Pair approximation for the two-state model on
uncorrelated networks

In a networked geometry it is not straightforward to obtain
closed laws for the time evolution of macroscopic average
quantities such as the density of active links. This is because
the state of the system is no longer fully described by the
numbers n1, . . . , nM . The correlations that build up between
nodes in the network are one key element distinguishing the
voter process on networks from that with all-to-all interaction.

Analytical progress for the model on networks is pos-
sible as an approximation. One prominent approach is the
so-called “pair approximation” [11,13,26,31], capturing cor-
relations between nearest-neighbor nodes, but not between
nodes which are further apart on the graph. The pair ap-
proximation is known to capture the behavior on uncorrelated
networks to a good accuracy [11–13,26]. These networks can
have an arbitrary degree distribution, but the degrees of nodes
are uncorrelated, including the degrees of the nearest neigh-
bor [32] (the probability that any two nodes are connected
therefore depends only on their degrees). This includes Erdős-
Rényi and Barabási-Albert networks.

Within the pair approximation the following expression
can be found for the average density of active links in the VM
with two opinion states [11,13]:

〈ρ(t )〉 = 2〈x1(0)[1 − x1(0)]〉k − 2

k − 1
e−t/τ for t > t�, (14)

where k is the mean degree of nodes in the network. The
quantity x1(0) is the initial fraction of individuals in opinion
state 1. If this fraction is fixed then the average 〈· · ·〉 on the
right-hand side of Eq. (14) can be removed. Within the pair
approximation the timescale τ is given by [11]

τ = (k − 1)k
2
N

2(k − 2)k2
. (15)

In this expression, k2 is the second moment of the degree
distribution of the interaction network. A detailed derivation
of Eqs. (14) and (15) can be found in [11].

It is important to note that Eq. (14) is valid only after
a short transient of duration t∗. During this transient, the
average density of active links reduces from its initial value
2〈x1(0)[1 − x1(0)]〉 by a factor of (k − 2)/(k − 1). Unlike the
decay time τ , the timescale t� does not increase with N , i.e.,
we have t� = O(N0) [11].

The time evolution of the average density of links in the
two-state VM in Eq. (14) consists of three main factors: (1)
the initial average density of active links, 2〈x1(0)[1 − x2(0)]〉,
one would obtain in an all-to-all geometry for the same dis-
tribution of initial proportions of agents in the two opinion
states, (2) a factor (k − 2)/(k − 1) accounting for the network
geometry, and (3) exponential decay.

3. Pair approximation for the MSVM

We will now use a simple argument to show that this
general structure carries over to the multistate model. The
only change required is to adapt the expression for the initial
density of active links to the case of multiple opinion states,
given initial proportions of agents in these different states.
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The argument is based on the fact that the dynamics of one
single opinion in the multistate voter model can be understood
from a reduction to a two-state model. This was first proposed
in the context of the VM in Ref. [5] and later used also in
Ref. [14]. The same ideas can also be found in earlier work by
Kimura and Littler in the field of genetics [33,34].

If the focus is on the dynamics of one single opinion (say,
α = 1) then it is not necessary to resolve the different other
opinion states. Instead what is relevant for an individual to
change out of state α = 1 is that they interact with an individ-
ual in any of the other states. Similarly, an individual changes
into state α = 1 if they were previously in any other state
and interact with an individual in state 1. For the purposes
of studying individuals in state α = 1 it is not required to
know what these other states were. This means that all other
opinions (β = 2, . . . , M) can be amalgamated into one single
opinion state. This then reduces the model to a two-state voter
process: one state represents opinion α = 1 and the second
state stands for “all other opinions.” We label these states as
+ and − respectively. The dynamical rules in Eq. (5) are such
that this reduced models follows the dynamics of a two-state
voter model.

Suppose now that we start the multistate voter process
from homogeneous initial conditions, xα (0) = 1/M for α =
1, . . . , M, and focus on a particular opinion. We then have
x+(0) = 1/M, and x−(0) = 1 − 1/M. The reduced model is
therefore a two-state voter model with inhomogeneous initial
conditions.

Using Eq. (14) we have the following average density of
active links in this reduced model,

〈ρred(t )〉 = 2
1

M

(
1 − 1

M

)
k − 2

k − 1
e−t/τ . (16)

We note that this is the average fraction of links between
states + and − in the reduced model. In the original model
(before the reduction) this corresponds to the fraction of links
connecting an individual in state α = 1 with an individual in
any other state β �= 1, i.e., ρred = ∑

β>1 ρ1,β . Carrying out
the ensemble average, and exploiting the symmetry between
states in the MSVM with homogeneous initial conditions we
have 〈∑β>1 ρ1,β〉 = 〈∑β �=α ρα,β〉 for any fixed α. Hence, the
resulting average density of active links in the MSVM is

〈ρ(t )〉 = 1

2

∑
α �=β

〈ραβ (t )〉 = M

2
〈ρred(t )〉. (17)

(In this expression both α and β are summed over.) Using
Eq. (16) we then obtain

〈ρ(t )〉 = ξ (M, k)e−t/τ for t > t�, (18)

with

ξ (M, k) ≡
(

1 − 1

M

)
k − 2

k − 1
, (19)

for the multistate voter model with homogeneous initial con-
ditions. The decay time τ is as in Eq. (15). As before, the
exponential law in Eq. (18) is valid only after a short initial
transient of duration t� = O(N0).

Similar to the two-state model, we notice that the prefactor
ξ (M, k) in Eq. (18) is made up of the network-specific factor
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FIG. 3. (a) Time evolution of the average density of active links
in the multistate voter model with M = 4 for different systems sizes
N . Markers show results from simulations, started from random
homogeneous initial conditions, and averaged over 5000 realizations.
We show data for Erdős-Rényi graphs (ER, orange open symbols)
and for Barabási-Albert networks (BA, black full symbols). All
networks have mean degree k = 6. Solid lines are the analytical
prediction in Eq. (18). Panel (a) is on linear-log scale. (b) The same
data on double logarithmic scale, the density of active links shows a
plateau ξ ≈ 0.6, in line with Eq. (19). The lifetime of the plateau is
finite for finite populations and increases with N . The inset provides a
further zoom-in, highlighting the initial decay of the density of active
links from its initial value to ξ = 0.6.

(k − 2)/(k − 1), and the density of active links 1 − 1/M in
Eq. (13), resulting from a configuration in which equally many
individuals hold each opinion (xα = 1/M ∀α), and in which
these individuals are placed on the network at random. The
network-specific factor depends only on the mean degree.

4. Test against simulations and metastable state in
the coarsening dynamics

We now test the predictions of the previous section in
numerical simulations. These were carried out on uncorrelated
networks with different degree distributions, specifically the
Erdős-Rényi and Barabási-Albert ensembles.

We first verify the validity of Eq. (18). We show the time
evolution of the average density of active links, 〈ρ(t )〉, from
simulations in Fig. 3, along with the analytical predictions
from the pair approximation. As seen in the figure, satisfactory
agreement is found. In Fig. 3(b) we replot the same data as in
Fig. 3(a) but on a double logarithmic scale. This allows us
to focus on the early stages of the time evolution. As also
appreciated in the inset, the average density of active links
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FIG. 4. (a) Density of active links, ξ (M, k), in the metastable
state as function of M for different values of k. Markers show sim-
ulations with homogeneous initial conditions for the complete graph
(CG, orange stars), and for Erdős-Rényi network with different mean
degrees (the model on the Barabási-Albert network has the same
plateaux values as on Erdős-Rényi graphs). The data are obtained
by measuring 〈ρ(t )〉, and then fitting to an exponential decay. Lines
are from Eq. (19), shown also for noninteger values of M for optical
convenience. Panel (b) shows ξ (M, k)/ξ (2, k) as function of M.
Symbols are the simulations from (a); the solid line is Eq. (20).

〈ρ〉 quickly decays to a value of ξ = 0.6, in line with the
prediction of Eq. (19).

This initial decay of the density of active links is a signature
of a rapid growth of local clusters of individuals with the
same opinion state on the graph. As in the binary VM [11],
this initial decay is not described by the exponential law for
〈ρ(t )〉 from the pair approximation. After this initial phase the
system is in a partially ordered metastable state, characterized
by a density of active links ξ (M, k). The system remains in
this state indefinitely in the limit of infinite system size, we
note that τ → ∞ for N → ∞ in Eq. (15). If there are finitely
many individuals in the network, then the system will eventu-
ally exit this state, triggered by fluctuations. Further ordering
then occurs on a timescale of τ , and the average density of
active links decays exponentially.

We now make some further observations about the partially
ordered state. As seen in Fig. 4(a), the density of active links in
this initial metastable state, ξ (M, k), increases with the mean
degree of the network, k, and with the number of opinion
states, M. From Eq. (19) we find

ξ (M, k)

ξ (2, k)
= 2

(
1 − 1

M

)
, (20)

as confirmed in Fig. 4(b). We note the limiting value
ξ (M, k)/ξ (2, k) → 2 for M → ∞.
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12000
BA k = 6:

M = 2
M = 3
M = 4
Eq. (15)�

ER k = 6:
M = 2
M = 3
M = 4
Eq. (15)

N

FIG. 5. Timescale τ of the exponential decay of the average
density of active links for Erdős-Rényi (ER) graphs (empty symbols)
and Barabási-Albert (BA) networks (full symbols). The black and
gray lines corresponds to Eq. (15) for ER (k = 6) and BA (k = 6),
respectively. In line with Eq. (15) τ is independent of M, i.e., the
timescale τ in the MSVM is identical to that in the two-state model.
Simulation data are obtained from measuring 〈ρ(t )〉, and a subse-
quent fit to an exponential decay.

Finally, we briefly discuss the timescale τ in Eq. (18),
which is given by the expression in Eq. (15), and does not de-
pend on the number of opinion states M. As such the timescale
in the multistate model is the same as that in the conventional
voter model with two opinion states. We note that the network
structure enters not only through the mean degree k, but also
through the second moment k2 of the degree distribution. As a
consequence the exponential decay of 〈ρ(t )〉 at fixed network
size N and mean degree is slower on an Erdős-Rényi graph
than on a Barabási-Albert network; see Figs. 3 and 5. As
in the two-state model we have τ ∝ N for complete graphs
and ER networks, but τ ∝ N/ ln N for large N in the BA
network [8,10,11].

B. Time evolution of average entropy

In numerical simulations we have also investigated the be-
havior of the average entropy, 〈S(t )〉 = −∑

α〈xα ln xα〉 over
time. Simulation results are shown in Fig. 6. Inspection of our
simulations shows that, at long times, the data are consistent
with an exponential decay of the form

〈S(t )〉 = ξS (M, N ) e−t/τ , for t � t2; (21)

see Fig. 6(a) and Fig. 7. The simulation data also indicate
that the decay timescale τ of this exponential decay at long
times is the same as that for the average density of active links
[e.g., Eq. (18)]. A theoretical argument for these observations
is given below in Sec. IV C 2. The time t2 from which (approx-
imately) the decay of the mean entropy becomes exponential
can be estimated as the mean time at which only at most two
opinions are left in the population. This time can be approx-
imated analytically (see Sec. IV C below). When M = 10,
we find t2 ≈ 0.38N for complete graphs, and t2 ≈ 0.07N on
Barabási-Albert networks. These time points are indicated in
Fig. 6(a). We stress that the deviations from an exponential
for t � t2 are not short lived as those for the average density of
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FIG. 6. Time evolution of the average entropy 〈S〉 for a system
started from homogeneous initial conditions and M = 10. Panel
(a) shows results on complete graphs (CG) and on Barabási-Albert
networks (BA, mean degree k = 8) on linear-log scale. Markers
are from simulations (averaged over 5000 realizations). Lines are
Eq. (21) with τ given by Eq. (11) for the complete graph, and
Eq. (15) for the BA networks. Vertical dashed lines indicate the time
t2 beyond which there are typically at most two opinions present
in the population (see Sec. IV C). Panel (b) shows 〈S〉 on a doubly
logarithmic scale for the CG (black diamonds), BA networks (k = 8,
purple triangles), and Erdős-Rényi graphs (k = 8, orange squares),
all for M = 10 and system size N = 15 000. The horizontal dashed
line is S = S(t = 0) = ln M. The inset shows a further zoom in, and
highlights that on networks there is no short-time drop of the entropy
from the initial value.

active links on networks. Instead we find that t2 scales linearly
with the population size N . . . .

Focusing on short times (of order N0) in Fig. 6(b) we
note the absence of an initial drop of the mean entropy on
networks. Instead the mean entropy remains at its initial value
for homogeneous initial conditions, S(0) = ln M. This is in
contrast with the behavior of the average density of active
links; compare with Fig. 3(b).

This suggests the following picture of the coarsening pro-
cess on networks.

(1) Once released from the homogeneous initial condition
the system first undergoes a quick local relaxation process
during the time interval up to t = t� = O(N0). In this phase
the (average) density of active links reduces from its initial
value 1 − M−1 to the value ξ (M, k) given in Eq. (19). The av-
erage entropy however, remains unchanged, 〈S(t )〉 = S(0) =
ln M. This indicates that during this phase some local ordering
takes place on the network (hence the reduction in 〈ρ〉), but
that the proportions of individuals in the different opinion
states do not materially change across the graph as a whole.

0 5000 10000 15000 20000

2000

4000

6000

8000

10000

N

BA k = 8:
M = 2
M = 4
M = 10
Eq.(15)�

ER k = 8:
M = 2
M = 4
M = 10
Eq.(15)

CG:

M = 2
M = 4
M = 10

FIG. 7. Decay time of the average entropy for the complete graph
(CG), and for Erdős–Rényi graphs (ER) and Barabási-Albert net-
works (BA) with mean degree k = 8 when, in average, there are two
opinion states left. Markers are from fits of simulation data for 〈S(t )〉
to an exponential at large times. The black solid line correspond to
Eq. (15), evaluated for the ER graph where hence τ ≈ N/2 for k = 8,
identical to the result for the complete graph. The gray line is from
Eq. (15) evaluated for BA graphs with k = 8.

One possible explanation is the formation of local domains. In
each domain a particular opinion starts to outnumber the other
opinion states. However, different domains do not “communi-
cate,” hence the effects of the local ordering average out across
the system.

(2) After this initial phase the system tends towards con-
sensus, and 〈ρ(t )〉 decays exponentially, with a timescale τ =
O(N ). The decay of the average entropy is not exponential
until time t ≈ t2 = O(N ).

(3) At long times (t � t2), when only two opinions are
left in the system, the average entropy 〈S(t )〉 also decays
exponentially, on the same timescale τ as the average density
of active links.

We will discuss this further in Sec. IV C.

IV. PATH TO CONSENSUS IN INDIVIDUAL
TRAJECTORIES

We now ask how representative the average behavior dis-
cussed in Sec. III is of the dynamics of individual realizations.
We first focus on the density of active links, and subsequently
study the entropy of the distribution of individuals across the
different opinion states.

A. Evolution of the density of active links for individual
realizations

1. Sequence of plateaux in individual realizations

Figure 8 illustrates the time evolution of the density of
active links for individual realizations of the model with M =
3 opinion states on a complete graph [Fig. 8(a)] and on an
Erdős-Rényi graph [Fig. 8(b)].

The density of links is first found to fluctuate around an
initial plateau (on networks this is preceded by a short tran-
sient.) For the complete graph this plateau is located at a
point consistent with the initial value of the density of active
links for homogeneous initial conditions, ρ = 1 − M−1 [see
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FIG. 8. Time evolution of the density of active links for three
individual realizations indicated by different colors. Panel (a) is on a
complete graph (M = 3, N = 6000), panel (b) for an Erdős-Rényi
graph (k = 6, M = 3, N = 6000). Simulations were started from
homogeneous initial conditions. The dashed lines indicate the val-
ues obtained from Eq. (13) [〈ρ(0)〉 = 0.66] and Eq. (19) [ξ (M =
3, k = 6) = 0.66], for the complete graph and Erdős-Rényi graphs,
respectively.

Eq. (13)]. For the Erdős-Rényi network the density at this
plateau is consistent with that predicted by Eq. (19).

Subsequently, the density of active links falls to a second
plateau, where it then spends some time before a finite-size
fluctuation takes the system to one of the absorbing states,
where ρ = 0.

Unlike the initial plateau, the value of the density of ac-
tive links at this second plateau differs from realization to
realization (see Fig. 8). The process leading to this interme-
diate plateau can be better understood from the inspection
of the evolution of the number of agents in each opinion
state in Figs. 9(b) and 10(b). As shown, opinions go ex-
tinct one after the other. Each extinction takes the density
of active links ρ to a new plateau (at a value lower than
that of the previous plateau), until consensus is reached
and ρ = 0.

When K extinctions have taken place in the model with
initially M opinions, we are left with a MSVM with L =
M − K states. Crucially, however, the initial condition for this
model with L states is the result of the previous dynamics
up to the time when the K th extinction takes place. This
initial condition in turn determines the value of the density
of active links at the subsequent plateau. Given that different
realizations result in different configurations at the time of
the extinctions the ensuing plateau densities also vary across
realizations. This is the reason for the spread of plateaux in
Fig. 8.
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� S

t
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FIG. 9. (a) Evolution of the density of active links (purple curve),
of the entropy (green curve) for the model on a complete graph.
(b) The fraction of agents in each opinion state. Data are from a
single simulation with M = 4 and N = 3000. The vertical dotted
lines indicate the points in time at which the first and second opinions
go extinct respectively. Dashed lines represent the plateau value ξ

considering a voter model with “4,” “3,” and “2” opinion states
and the corresponding initial conditions; for the second and third
plateaus, the value was computed considering the number of agents
in the surviving opinions once the extinction of opinions “4” and “2”
took place.

2. Density of active links at the different plateaux

We now proceed to calculate the mean density of active
links in the model with initially M opinions at the first point in
time where only L opinions are left. Suppressing any possible
dependence on M, we will denote this quantity by 〈ρ〉L.

Without loss of generality we assume that the L opinions
left in the population are α = 1, . . . , L. For an all-to-all inter-
action we then have

ρ = 1

2

L∑
α=1

[2xα (1 − xα )], (22)

where
∑L

α=1 xα = 1. Each term 2xα (1 − xα ) accounts for
links involving individuals of type α connected with individu-
als of any other opinion, and the overall prefactor 1/2 corrects
for double counting. After taking an average over realizations
we thus have

〈ρ〉L =
〈

L∑
α=1

xα (1 − xα )

〉
= L

∫ 1

0
dx PL(x)x(1 − x), (23)

where the quantity PL(x) is the distribution of the fraction
of agents found in a particular opinion state when only L
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FIG. 10. (a) Evolution of the density of active links (purple
curve) and of the entropy (green curve) for the model on Erdős-Rényi
graphs. (b) The fraction of agents in the different opinion states.
Data are from a single simulation with M = 3 and N = 6000. The
graph has mean degree k = 6. The vertical dotted line indicates the
time at which the first opinion state becomes extinct. Dashed lines
represent the plateau value ξ considering a voter model with “3”
and “2” opinion states and the corresponding initial conditions; the
second plateau value was obtained considering the number of agents
in the surviving opinions once opinion state “2” disappears.

opinions are left. We have used the fact that, by symmetry,
no opinion state is preferred over any other.

The distribution PL(x) can be obtained making the follow-
ing hypothesis. We assume that, at the extinction point leaving
only L opinions in the system, all configurations with xα � 0
and

∑L
α=1 xα = 1 are equally likely, i.e., the distribution of

(x1, . . . , xL ) at that time is assumed to be

PL(x1, . . . , xL ) = [(L − 1)!] × δ

(
L∑

α=1

xα − 1

)
, (24)

where δ(·) is the Dirac delta function.
The distribution PL(x) in Eq. (23) is the single-variable

marginal of PL(x1, . . . , xL ),

PL(x1) = (L − 1)!
∫

dx2 · · · dxL δ

(
L∑

α=1

xα − 1

)

= (L − 1)(1 − x1)L−2. (25)

For further details see Appendix A.
We can then directly calculate 〈ρ〉L in Eq. (23),

〈ρ〉L = L − 1

L + 1
. (26)

0
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P(x�)
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(a)

CG, M = 5, L = 4

P(x�) = 3 (1 - x�)
2

0

1

2

ER, M = 5, L = 2

P(x�) = 1

CG, M = 4, L = 3

P(x�) = 2 (1 - x�)

FIG. 11. Marginal distribution PL (xα ) for the fraction of agents
in any one opinion at the first point in time when L opinions are left
in a model with initially M > L states. Gray bars are from numerical
simulations (N = 5000, averaged over 5000 realizations), the solid
lines are Eq. (25). Panel (a) is for Erdős-Rényi networks, panels
(b) and (c) for complete graphs.

The argument so far applies to complete graphs, where the
initial condition is known to directly set the typical density of
active links at the plateau that follows (see Sec. III). As also
discussed in Sec. III, the system undergoes a brief transient
when it is started on an uncorrelated graph, and the subsequent
plateau value of 〈ρ〉 is obtained applying a multiplication
factor (k − 2)/(k − 1). For uncorrelated graphs we therefore
predict

〈ρ〉L = k − 2

k − 1

L − 1

L + 1
. (27)

3. Test against simulations

We now test these predictions against simulations. First,
we verify the validity of our hypothesis of a flat distribution
for (x1, . . . , xL ) at the first point in time when there are only L
opinions in the population. Figure 11 shows simulation results
for the marginal distribution for xα for different choices of M
and L on complete graphs and on Erdős-Rényi networks. As
can be seen from the figure, these simulations are consistent
with the predictions of Eq. (25).
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FIG. 12. (a) Evolution of the density of links in realizations for
which only L = 2 opinion states are left in the system for the CG,
and the ER and BA networks with k = 8. The plateau is located at
〈ρ〉L=2 ≈ 0.33 for the CG and at 〈ρ〉L=2 ≈ 0.28 for the networks, in
good agreement with Eq. (26) and Eq. (27), respectively. (b) The
location of the intermediate plateaux, 〈ρ〉L as a function of L in a
model with initially M = 15 states. Markers are from simulations
on CG (triangles), on BA networks (squares), and on ER networks
(circles). Lines are from Eqs. (26) and (27) respectively.

We next introduce the concept of restricted ensemble at a
given time. This is the ensemble of trajectories that, at this
time, have precisely L surviving opinions. In Fig. 12 we show
the average of the density of active links over this restricted
ensemble. The data in Fig. 12(b) were obtained by first av-
eraging over the restricted ensemble at any given time, and
subsequently an average over time is performed. Figure 12(b)
thus demonstrates that the average density of interfaces at the
first point in time at which there are only L opinions in the
system is given by Eqs. (26) and (27) for all-to-all interaction
and on networks respectively, and that this average density of
active interfaces is then maintained by the system until the
next extinction occurs.

B. Connection to exponential decay of the ensemble
averaged density of links

1. Sequence of “jumps” in the model with multiple opinions

We have described the dynamics at the ensemble level and
at the level of individual realizations. We now proceed to a
characterization in terms of the restricted ensembles that we
have just introduced.

The average density of active links, 〈ρ〉 decays exponen-
tially, as indicated in Eqs. (10) for complete graphs, and in
Eq. (14) for uncorrelated networks. The decay timescales are
given in Eqs. (11) and (15) respectively.

FIG. 13. Illustration of the jump process different realizations of
the MSVM undergo. Each jump is associated with the extinction of
one opinion. The density of active links in the resulting sequence
of plateaux differs from realization to realization (as indicated by
the scatter of markers), the mean density in the plateaux is given by
Eqs. (26) or (27), respectively. In the final state (L = 1) consensus
has been reached, and hence ρ = 0. The residence time in each level
varies from realization to realization as well, the mean time spent
in level L is given by Eq. (29). The illustration is for a model with
initially M = 5 states. For homogeneous initial conditions one then
has ρ = 4/5.

Individual realizations can be characterized as undergoing
a sequence of “jumps” in the density of active links, from
one plateau to another, as illustrated in Fig. 13. Each of these
jumps is associated with the extinction of an opinion. As we
have seen the density of active links along the sequence of
plateaux differs across realizations. We have established that
the average density of active links at the plateau at which L
opinions are left in the population is given by Eq. (26) for
complete graphs, and by Eq. (27) on uncorrelated networks.

2. Exponential decay in the ensemble on complete graphs

We would now like to connect the observations at ensemble
level with those at the level of realizations. In order to do this
we need information about the typical residence time in the
different plateaux. We first discuss this for the model on the
complete graph.

Following [20] the mean time the system spends in the
metastable state with L opinions can be estimated as the
difference between the mean consensus times in voter models
with initially L or L − 1 states respectively. The consensus
time from a state with K opinions in the model with all-to-all
interaction is given by [20]

〈TN (K )〉 = N
K − 1

K
, (28)

for a system of size N , and assuming that all initial conditions
are equally likely. We then have the following mean residence
time in the state with exactly L opinions,

〈	t〉L = 〈TN (L)〉 − 〈TN (L − 1)〉 = N

L(L − 1)
. (29)
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We also know that the mean density of active links at the
plateau with L opinions is 〈ρ〉L = (L − 1)/(L + 1) [Eq. (26)].
Therefore the mean change of the density of links when tran-
sitioning from the plateau with L opinions to that with L − 1
opinions is

〈	ρ〉L→L−1 = 〈ρ〉L−1 − 〈ρ〉L = −2

L(L + 1)
. (30)

Using these results for 〈	ρ〉L→L−1, 〈	t〉L and 〈ρ〉L we con-
clude

〈	ρ〉L→L−1

〈	t〉L
= − 2

N
〈ρ〉L. (31)

The left-hand side is a proxy for the time derivative of 〈ρ〉
when there are exactly L opinions in the system. The mean
density of active links in this situation is 〈ρ〉L. Therefore we
have d

dt 〈ρ〉L = −(2/N )〈ρ〉L , and we recover the exponential
decay in Eq. (10). The timescale of the decay matches that in
Eq. (11), up to the replacement N → N − 1 (which becomes
irrelevant for large N).

The exponential decay law [Eq. (12)] for the average den-
sity of active links in the ensemble can therefore be recovered
from the picture of jumps in Fig. 13, and is a consequence of
the specific relation between the level spacings and the mean
residence time in each level.

3. Uncorrelated networks

A similar argument applies on uncorrelated networks. The
〈ρ〉L, and hence the 〈	ρ〉L→L−1, are then multiplied by the
common factor (k − 2)/(k − 1); see Eq. (27). This therefore
drops out in Eq. (31). In order to recover the exponential decay
in Eq. (18) with a decay time as in Eq. (15) we then need to
show that the result of [20] generalizes to uncorrelated graphs
as follows:

〈TN (K )〉 = N
K − 1

K
× (k − 1)k

2

(k − 2)k2
. (32)

This can be demonstrated using a reduction to an effec-
tive two-state model, and the properties of the two-state VM
on uncorrelated graphs, where it is known that the relevant

timescales undergo rescaling by a factor [(k − 1)k
2
]/[(k −

2)k2] relative to the case of all-to-all connectivity [11]. This
is described in more detail in Appendix B. The validity of
Eq. (32) is demonstrated in Fig. 14.

C. Evolution of the entropy for individual realizations
and in the ensemble average

1. Absence of simple exponential decay at ensemble level

In Figs. 9 and 10 we also observe intermediate plateaux
in the time evolution of entropy for individual realizations. In
Fig. 15(a) we therefore proceed as we did for the density of
active links and perform averages over restricted ensembles
of realizations with fixed L surviving opinions, L < M, at
different times. In the example in the figure, we find that
〈S〉L=2 ≈ 0.5.

Analytically, we find

〈S〉L = −L
∫ 1

0
dx PL(x) x ln x = HL − 1, (33)

2 4 6 8 10

2000

3000

<TN(K)>

(K-1)/K

ER N = 2000

k
FIG. 14. Test of Eq. (32) for the model on Erdős-Rényi networks

with N = 2000. Markers represent the ratio 〈TN (K )〉/[(K − 1)/K]

from simulations. The line is [k − 1)k
2
]/[(k − 2)k2], where k2 =

N p(1 − p), with p = k/(N − 1).

where the HL = ∑L

=1(1/
) are the harmonic numbers. The

distribution PL(x) is given in Eq. (25). The prediction in
Eq. (33) is tested against numerical simulations in Fig. 15(b).

We can now use this to understand in more detail why the
decay of the entropy at ensemble level does not follow an
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FIG. 15. (a) Time evolution of the entropy, at any time averages
only over realizations for which exactly L = 2 opinions are present
in the population. Simulations are for the CG, ER, and BA graphs
of size N = 10 000 and initially M = 3 opinion states. The plateau
is located at 〈S〉L = 0.5 in agreement with Eq. (33). (b) Symbols
show simulation results for 〈S〉L as a function of L in a model with
initially M = 15 opinions. Markers are from simulations for the CG
(squares), ER graphs (triangles) and BA networks (circles). These
are obtained from performing a time average on data such as the one
in panel (a). The solid line is the analytical prediction in Eq. (33).
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exponential law initially, but becomes exponential at long
times. From Eq. (33) we find 〈	S〉L→L−1 = 1/L. Using
Eq. (29) we then have

〈	S〉L→L−1

〈	t〉L
= − L − 1

N (HL − 1)
〈S〉L. (34)

Interpreting the left-hand side again as a time derivative, we
therefore have

d

dt
〈S〉 = − 1

τS (L)
〈S〉 (35)

in the time regime when there are L opinions left in the
system, with

τS (L) = N
HL − 1

L − 1
(36)

for complete graphs, and τS (L) = N HL−1
L−1 × (k−1)k

2

(k−2)k2
on uncor-

related graphs.
The prefactor −1/τS (L) on the right in Eq. (35) explicitly

depends on L. In the corresponding equation (31) for the av-
erage density of active links the prefactor is instead constant.
This is why the average density of links decays exponentially,
and the average entropy does not. For L = 10, τs(L) evaluates
to (approximately) 0.21N , for L = 9 to 0.23N , for L = 8 to
0.25N , and so on. This demonstrates that the relative decay
of the average entropy 〈S(t )〉 slows down as more and more
opinions become extinct.

We note that at any one time t different realizations of the
MSVM process will be in states with different numbers of
opinions L left in the population. It is therefore not straight-
forward to aggregate the mechanics of the decay of entropy
for a fixed value of L [Eq. (35)] into a global picture for the
behavior of entropy at the ensemble level. This is at variance
with the decay of the average density of links. Given that all
τs(L) scale linearly in N , we can, however, conclude that all
timescales governing the decay of entropy are O(N ), as also
demonstrated in Fig. 6(a).

2. Regime at large times

One can identify a regime in which most realizations will
either have reached consensus or in which the population con-
tains only two opinions. In a model with initially M opinions
this will be the case at times which are greater than

t2 ≡
M∑

L=3

〈	t〉L. (37)

This is the sum of average times spent in states with M, M −
1, . . . , 3 opinion states respectively, i.e., it is the mean time
until only two opinion states are left in the system.

When L = 2 opinions are left, we find τS (L) = N/2 for the
complete graph in Eq. (36). In this long-time regime, we then
have d

dt 〈S〉2 = −(2/N )〈S〉2, leading to an exponential decay
with the same timescale as that for the average density of
active links. This provides a theoretical argument for the ex-
ponential law in Eq. (21) observed in numerical simulations.
On uncorrelated networks this timescale is multiplied by the

factor (k − 1)k
2
/[(k − 2)k2].

FIG. 16. Illustration of the dynamics when only at most two
opinions are left in the population. Some realizations are in the
active state (two opinions). Each such realization is in a metastable
state with different plateau values for ρ and S across realizations.
Transitions to consensus occur with rate τS (L = 2)−1 = 2/N , leading
to exponential decay of 〈ρ〉 and 〈S〉 with a decay timescale N/2.

We can interpret this as the dynamics of a two-level system;
see Fig. 16 for an illustration. Each realization will either
have two opinions left in the population, or have reached
consensus. There is hence an active state (two opinions) and
a passive consensus state. Realisations in the active state have
positive densities of active links and positive entropies. There
is some scatter across realizations, and averages among active
realizations are given by 〈ρ〉2 > 0 and 〈S〉2 > 0, respectively.
In the consensus state both ρ and S are zero. Each realization
is first in the upper level (L = 2), and then reaches consen-
sus through a sudden fluctuation. This can be thought of as
a Markovian jump process. Realizations transition from the
upper to the lower level independently, with rate 2/N . The
population of the upper level hence decays exponentially in
time. This then leads to the exponential decay of both 〈ρ〉 and
〈S〉.

V. STABILIZING INTERMEDIATE STATES THROUGH
THE INTRODUCTION OF ZEALOTS

The sequence of plateaux discussed in previous sections is
a consequence of long-lived metastable states in individual
realizations. Eventually a finite system leaves each of these
states, and proceeds to the next plateau and finally to absorp-
tion. In this section, we now seek to engineer a MSVM in
which these intermediate states are stable indefinitely. We do
this by adding zealots to the population, that is, agents who do
not change their opinion state during the dynamics [17–19]. If
such agents are added for more than one opinion state, then the
system no longer has any absorbing states, and the dynamics
continues indefinitely. The question we address here is if and
how a configuration of zealots can be chosen so as to stabilize
the metastable states in Sec. IV.

A. Competing zealots

We consider a population of N conventional agents and Z
zealots. As before nα is the number of agents in each opinion
state α = 1, 2, . . . , M (not including zealots). We write zα for
the number of zealots for opinion state α. Regular agents can
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FIG. 17. (a) Time evolution of the average density of active links
(complete graph) when there are two zealots of different opinions.
At fixed number of opinions M, the size of the population was
varied (N = 2000, 4000, and 6000). The horizontal dashed line indi-
cates the value 〈ρ〉 = 0.33 obtained from setting L = 2 in Eq. (26).
(b) Filled symbols show the stationary density of active links, 〈ρ〉, in
a model with one zealot in each of L different opinion states. Squares
are for a complete graph, circles for ER networks. Open symbols
show the density 〈ρ〉L in a model with initially M = 15 states (and no
zealots). Stars are for a complete graph, triangles for ER networks.
The lines are from Eqs. (26) and (27). respectively. (c) Simulation
results for the stationary density of active links in a model with L
opinions and z zealots in each of these opinions. Simulations are on
complete graphs with system size N = 4000.

change their opinion by interacting with another regular agent
or a zealot. Zealots never change their opinion.

We first focus on the model on a complete graph. The
transition rates for this model are then

Tα→β = nα (nβ + zβ )

N + Z
. (38)

Suppose now, we start the VM with initially M states, and
with two zealots of two different opinions. The remaining
M − 2 opinions will go extinct eventually. In Fig. 17(a) we

show the time evolution for 〈ρ〉 for this system. The stationary
density of active links is found as 〈ρ〉 ≈ 0.33 in simulations,
irrespective of the initial number of opinions M. This density
of active links is consistent with that at the plateau for L = 2
in the model without zealots in the previous section [Eq. (26)].

If, more generally, we populate L opinions with one zealot
each, then, as seen in Fig. 17(b), the stationary density of
active links also agrees with the plateau value 〈ρ〉L in the
model without zealots. This is found both on the complete
graph and on uncorrelated networks.

The data in Fig. 17(c) show that the agreement in
Figs. 17(a) and 17(b) between the density of active links of the
model with one zealot in each of L opinions and the plateau
〈ρ〉L in a zealot-free model with initially M > L opinions
holds only when there is precisely one zealot in each of
the L opinions. We further corroborate this in the next two
subsections.

B. Flat stationary distribution of opinions when there is one
zealot in each opinion state

1. Analytical treatment of the model on a complete graph

We can demonstrate analytically that the stationary distri-
bution [in the space (n1, . . . , nL )] of the model with z zealots
in each of L opinion states on the complete graph is flat if and
only if z = 1. To do this we consider the master equation

dP(n)

dt
=

∑
α �=β

P(nα + 1, nβ − 1)
(nα + 1)[(nβ − 1) + z]

N + Z

−
∑
α �=β

P(n)
nα (nβ + z)

N + Z
, (39)

where the notation P(nα + 1, nβ − 1) is a shorthand for
P(EαE−1

β n), with the raising operator Eα defined in Sec. II E.
Direct algebra shows that P(n) = const. is a stationary solu-
tion of Eq. (39) if and only if z = 1.

2. Numerical evidence for the model on networks

While an analytical solution for the model on networks is
not easily available, simulation results are consistent with the
assertion that placing one zealot in each opinion state leads
to a flat stationary distribution in the space of (n1 . . . , nL ).
We show the marginal stationary distribution P(xα ) for the
model with z zealots in each of L opinions in Fig. 18. For
z = 1 these marginals are well described by the expression in
Eq. (25), which is in turn derived from the assumption of a flat
distribution P(x1, . . . , xL ). Figures 18(b), 18(d), and 18(f) on
the other hand demonstrate that the marginals are markedly
different when z �= 1.

VI. SUMMARY AND CONCLUSIONS

In summary, we have investigated the approach of mul-
tistate voter models to consensus. We have distinguished
between the behavior of individual realizations and that of
the ensemble average, and we have compared descriptions
in terms of local and global properties. We have described
local order by the density of active links, and global order
by a time-dependent entropy. On networks, we find that local
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FIG. 18. Marginal distribution PL (xα ) for the fraction of agents
in any one opinion for a MSVM with z zealots in each of L opinions.
Gray bars are from numerical simulations for ER graphs of size
N = 1000 averaged over 5000 realizations. The solid lines are the
prediction of Eq. (25), derived from the assumption of a flat station-
ary distribution.

ordering can occur without global ordering. There is an initial
coarsening process up to a time t�, in which the average
density of active links decays to a value ξ (M, k) on networks,
while the average entropy remains constant. The timescale t�

is independent of the size of the system. This initial decay is
not observed in a complete graph where there is no distinction
between local and global order.

At the level of an ensemble average, we further find that
the density of active links decays exponentially after time
t∗, with a time constant τ which diverges with system size
and which is independent of the number of initial opinions.
This is observed both on complete graphs and on uncorre-
lated networks. As in the model with two opinion states, the
amplitude and timescale of the exponential decay depend on
the structure of the graph. The amplitude and the timescale
can be characterized analytically using a pair approxima-
tion combined with a reduction to an effective two-state
dynamics.

The behavior of the average entropy is more intricate. We
find nonexponential behavior up to approximately the time at
which only two opinions survive. For larger times the entropy
decays exponentially with the same time constant τ as the
density of active links. All timescales associated with the

decay of the average entropy diverge with the system size.
The timescale t� (which is of order N0) has no particular
significance for the average entropy. For large systems, the
average entropy therefore remains at its initial value for very
long times. On networks this is in contrast with the density of
active links, which remains at a value associated with partial
local ordering and which is lower than the initial density of
active links.

Individual realizations undergo a sequence of extinctions
of opinion states, akin to a “jump process.” We find that each
realization remains in plateau values of the active links and
entropy between successive extinctions. The location of these
plateaux varies from realization to realization, and is deter-
mined by the configuration of the system at the time of the
preceding extinction. The nonequilibrium ensemble average
does not provide a proper description of this process, the
individual realizations are not self-averaging.

To describe the ordering process we therefore introduce
restricted ensembles of realizations which, at a fixed time,
have a given number of surviving opinions. Averaging over
these restricted ensembles in simulations allows us to study
the mean plateau values exhibited by individual realizations.
The average location of the plateaux can also be estimated
analytically. The picture we develop is consistent with a max-
imum spread of configurations at the time of the intermediate
extinctions. Using results from Ref. [20] for the mean time
between extinctions we are also able to recover the exponen-
tial decay of the average density of active links from the jump
process for individual realizations.

The restricted ensembles are a useful concept, and allow
us to identify partially ordered states along the way to con-
sensus. These states are very long lived in large populations,
but eventually the system exits from these states. Arguably,
the construction of these ensembles of realizations with L
opinions in the system is also somewhat artificial. We have
however shown that these partially ordered states can be engi-
neered as genuine stationary states. This is achieved through
the introduction of precisely one zealot in each of the L opin-
ions.

In closing, we think that the combination of global and
local measures of order provides an interesting way of looking
at the coarsening dynamics in models of opinion formation.
Our work also highlights that the time evolution of individual
realizations can be very different from that of the ensemble
average. Randomness can significantly influence individual
trajectories, and the effects can last for substantial amounts
of time. In other words, “history is contingent” [35]. The
average path to consensus by opinion extinction is therefore of
limited use for the description of a given historical empirical
occurrence.
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APPENDIX A: NORMALIZATION AND MARGINALS OF
THE DISTRIBUTION PL(x1, . . . , xL )

1. Simplex in K dimensions

For any K ∈ N and y � 0, we define

SK (y) =
{

(x1, . . . , xK ) : xα � 0,

K∑
α=1

xα � y

}
, (A1)

as the simplex of size y in K dimensions. We define its volume
in K dimensions

VK (y) =
∫
SK (y)

dx1 · · · dxK , (A2)

and we have VK (y) = yKVK (1) by simple scaling.
To evaluate VK (1) we note

VK (1) =
∫ 1

0
dx1

∫
SK−1(1−x1 )

dx2 · · · dxL

= VK−1(1)
∫ 1

0
dx1(1 − x1)K−1

= VK−1(1)

K
. (A3)

We also have V1(1) = 1. By induction therefore, VK (1) =
1/K!, and

VK (y) = yK

K!
. (A4)

2. Normalization of PL(x1, . . . , xL )

We start from the definition

PL(x1, . . . , xL ) = A δ(x1 + · · · + xL − 1), (A5)

where the xα are required to be nonnegative, and
where A is the appropriate normalization constant. Using∫

dx1 . . . dxLPL(x1, . . . , xL ) = 1, we have after integrating
over xL,

A−1 =
∫
SL−1(1)

dx1 · · · dxL−1 = VL−1(1) = 1

(L − 1)!
. (A6)

Therefore, A = (L − 1)!.

3. Single-variable marginal of PL(x1, . . . , xL )

We now calculate the single-variable marginal of
PL(x1, . . . , xL ),

PL(x1) =
∫

dx2 · · · dxLPL(x1, . . . , xL ). (A7)

Using the normalization constant in Eq. (A6) we have

PL(x1) = (L − 1)!
∫

dx2 · · · dxL δ(x1 + x2 + · · · + xL − 1)

= (L − 1)!
∫
SL−2(1−x1 )

dx2 · · · dxL−1

= (L − 1)!VL−2(1 − x1). (A8)

Hence, using Eq. (A4), we find

PL(x1) = (L − 1)! × VL−2(1 − x1) = (L − 1)(1 − x1)L−2.

(A9)

APPENDIX B: EXTINCTION AND CONSENSUS TIMES IN
ALL-TO-ALL GEOMETRIES AND ON GRAPHS

In Sec. IV B we use a result for the average consensus
time of the multistate voter model with K opinion states on
an all-to-all geometry, and when initial conditions are chosen
at random with flat distribution from the simplex defined by∑L

α=1 xα = 1. Specifically,

〈TN (L)〉 = N
L − 1

L
. (B1)

This was previously reported in Starnini et al. [20]. Starnini
et al. derive this from the backward Fokker-Planck equation of
the multistate model (valid in the limit of large, but finite
N), and using a separation ansatz exploiting the exchange
symmetry between the different opinion states.

We use this consensus time to obtain the mean time,
〈t〉L→L−1 that elapses in a model with initially L opinions until
the first extinction, assuming again a uniform distribution of
initial conditions in the simplex

∑L
α=1 xα = 1.

The main purpose of this Appendix is to justify the gener-
alization of the expression for the consensus time 〈TN (L)〉 to
uncorrelated networks, Eq. (32). For convenience we repeat
this expression here,

〈TN (L)〉 = N
L − 1

L
× (k − 1)k

2

(k − 2)k2
. (B2)

Our argument is based on two principles. (1) 〈TN (L)〉 can
be obtained from the so-called “mean conditional consensus
time” of a suitable two-state model. This applies both in the
case of all-to-all interactions and on networks. (2) The mean
conditional consensus time for the two-state model in turn
can be calculated (in the limit of large, but finite N) from the
backward Fokker-Planck equation (BFPE) of the respective
model. It is known that the Fokker-Planck equation for the
two-state model (and hence also the BFPE) on an uncorrelated
network can be obtained from that for the model with all-to-all
interactions by a rescaling of time by a factor of (k−1)k

2

(k−2)k2
[11].

This is also discussed in [8,9] although the factor is slightly
different as explicitly acknowledged in [11].

We now address these two principles in turn.

1. Reduction to two-state model

Suppose the dynamics of the L-state model is started from
an initial condition x = (x1, . . . , xL ) (with

∑
α xα = 1) at time

t = 0. Writing pC (x, t ) for the probability that consensus (on
any opinion) has been reached by time t , we have

pC (x, t ) =
L∑

α=1

fα (x, t ), (B3)

where fα (x, t ) is the probability that consensus on opinion
α occurs by time t . We note that the events on the right in
Eq. (B3) are all mutually exclusive.

054307-15



RAMIREZ, SAN MIGUEL, AND GALLA PHYSICAL REVIEW E 106, 054307 (2022)

The arrival time distribution at consensus (on any opinion)
is then d pC (x, t )/dt , and the density of arrivals (per time) at
consensus on opinion α is dfα (x, t )/dt .

We note that

qα (x) ≡
∫ ∞

0
dt ′ fα (x, t ′) (B4)

is the probability that consensus occurs in opinion α (as op-
posed to another opinion). We have

∑
α qα = 1 (consensus

occurs with certainty eventually), and in general qα < 1 for
any one opinion α (i.e., the fα are not normalized probability
densities).

We are interested in mean arrival times, so we calculate

〈TN (L, x)〉 ≡
∫ ∞

0
dt ′ t ′ d

dt ′ pC (x, t ′)

=
∑

α

∫ ∞

0
dt ′ t ′ d

dt ′ fα (x, t ′). (B5)

This is the mean time to consensus (on any opinion). We have
explicitly indicated the starting point x. The average in this
expression is only over realizations of the dynamics, but not
over the starting point.

We next note that the mean consensus time, conditional on
arrival at consensus on α, is given by

〈Tα (x)〉 =
∫ ∞

0 dt ′ t ′ d
dt ′ fα (x, t ′)

qα (x)
(B6)

(we suppress the dependence on L and N). Hence,

〈TN (L, x)〉 =
∑

α

qα (x)〈Tα (x)〉. (B7)

Consensus occurs at α with probability qα (x), and given α the
mean time for this consensus is 〈Tα (x)〉.

The key observation is now that, similar to the argument
in Sec. III A 3, fα (x, t ) [and hence also qα (x)] can be obtained
from looking at a two-state version of the model, in which one
opinion is α and where all other opinions are amalgamated
into one second opinion state. This idea was used in the
context of the voter model in Ref. [5] and later in Ref. [14].
Similar principles had previously been proposed for multial-
lele models in the field of genetics [33,34].

We note that the above argument applies for all-to-all in-
teraction and for networks. We did not make any assumptions
on the interaction network in deriving any of the relations
up to and including Eq. (B7). What does change in going
from all-to-all interaction to networks is the functional form
of object such as pC (x, t ) and fα (x, t ), but not the relations
between these quantities.

All-to-all interaction. As an illustration we now show how
the reduction to a two-state model can be used to calculate the
mean conditional consensus times 〈Tα (x)〉, and from these, to
derive Eq. (B1) (valid for all-to-all interactions).

If the two-state model is started with a proportion x of
agents in opinion 1 (and 1 − x in opinion 2), then the mean
consensus time conditioned on consensus in opinion 1 is

〈T1(x)〉 = −N
1 − x

x
ln(1 − x). (B8)

This is a well-known result; see, for example, [9].

Using this, and the reduction of the multistate model to the
two-state model we then have

〈Tα (x)〉 = −N
1 − xα

xα

ln(1 − xα ). (B9)

We also note that qα (x) = xα (this follows from the fact
that the dynamics of the model preserves the time average
〈xα (t )〉).

Hence, inserting into Eq. (B7),

〈TN (L, x)〉 = −N
L∑

α=1

(1 − xα ) ln(1 − xα ). (B10)

We next use this to derive Eq. (B1). To do this we need to
average over x, with a flat measure in the simplex defined by
xα � 0 and

∑
α xα = 1. Exploiting the symmetry of the model

we find from Eq. (B10),

〈TN (L)〉 = −NL
∫ 1

0
dx PL(x)(1 − x) ln(1 − x), (B11)

with the marginal PL(x) = (L − 1)(1 − x)L−2 in Eq. (25). Car-
rying out the integral we have

〈TN (L)〉 = N
L(L − 1)

L2
= N

L − 1

L
, (B12)

i.e., we recover Eq. (B1).

2. Extension to uncorrelated networks

We now discuss the extension of Eq. (B1) to uncorrelated
networks, i.e., we derive Eq. (B2). All results apply in the pair
approximation.

Based on the reduction argument in the previous section of
this Appendix it is sufficient to show that the mean conditional
consensus time of the two-state model in Eq. (B9) generalizes
to

〈Tα (x)〉 = −N
(k − 1)k

2

(k − 2)k2

1 − xα

xα

ln(1 − xα ). (B13)

This time, 〈Tα (x)〉, in turn is derived from the backward
Fokker-Planck equation describing the model in the limit of
large, but finite N . This is standard in the case of all-to-all
interaction (see, e.g., [9]).

The crucial observation is now that the (forward) Fokker-
Planck equation of the two-state model on uncorrelated graphs
is obtained from that for the two-state model with all-to-all
interactions by a simple rescaling of time by a factor [(k −
1)k

2
]/[(k − 2)k2]. This is discussed in [11]; see, for example,

Eq. (12) in this reference (see also [8,9]).
The same rescaling then also applies to the backward

equation, and it then follows immediately that all timescales
derived from the backward equation also undergo the same
rescaling. This then leads to Eq. (B13).
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