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With the use of simulations of a stochastic microscopic traffic model in the framework of the three-phase
traffic theory, we have revealed the statistical physics of a traffic flow instability with respect to a transition
from synchronized flow (S) to free flow (F) (Kerner’s S → F instability) at a moving bottleneck (MB) occurring
through a slow-moving vehicle in vehicular traffic. We have found that the S → F instability can occur at the MB
more frequently than at an on-ramp bottleneck. From a comparison of the occurrence of the S → F instability
at the MB and on-ramp bottleneck at the same probability of traffic breakdown and the same flow rate it has
been found that, whereas the frequency of the S → F instability at the on-ramp bottleneck barely changes, the
larger the velocity of the MB, the more frequently the S → F instability occurs at the MB. Contrarily, when
the MB velocity decreases considerably, then rather than the S → F instability, in synchronized flow at the MB
the classical traffic flow instability leading to the emergence of wide-moving jams (S → J instability) occurs.
It has been found that the physics of the intensification of the S → F instability at the MB with the increase in
the MB velocity is associated with the increase in the mean space gap (mean time headway) between vehicles
in synchronized flow. For this reason, when the MB velocity increases, there is an MB velocity at which the
S → F instability dominates the S → J instability: The MB velocity influences considerably on the competition
between the S → F and classical traffic flow instabilities in synchronized flow.
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I. INTRODUCTION

The classical traffic flow instability in vehicular traffic flow
introduced in 1958 by Herman and colleagues from the Gen-
eral Motors (GM) Company [1–4] as well as by Kometani and
Sasaki [5–8] is up to now a subject of intensive empirical and
theoretical studies in vehicular traffic science (e.g., papers,
reviews and books [9–24]). The classical traffic instability
was incorporated into a number of traffic flow models which
can be considered belonging to the same GM model class.
As found in 1994 [25,26], the classic instability leads to a
phase transition from free flow to wide-moving jam (F → J
transition).

However, the F → J transition cannot explain traffic break-
down (the onset of traffic congestion) observed in real data:
In all empirical traffic data measured at real highways traffic
breakdown is a transition from free flow to synchronized flow
(F → S transition) that occurs in metastable free flow with
respect to an F → S transition at a bottleneck [27,28]. In other
words, the F → S transition exhibits the empirical nucleation
nature. To explain the empirical nucleation nature of traffic
breakdown (F → S transition), Kerner introduced the three-
phase traffic theory [27–29] (see for a review [30–33]). The
three-phase traffic theory describes empirical traffic data in
space and time by introducing three fundamentally different
traffic phases: free flow (F), synchronized flow (S), and wide-
moving jam (J); the traffic phases S and J belong to congested
traffic. In the three-phase traffic theory, rather than traffic

breakdown, the classic traffic flow instability is an S → J in-
stability that explains the transition from synchronized flow to
a wide-moving jam (S → J transition) observed in empirical
synchronized flow.

In the three-phase traffic theory, the nucleation nature of
traffic breakdown (F → S transition) is governed by a so-
called S → F instability introduced by Kerner [34]. Contrary
to the classical traffic flow instability (S → J instability) that
is a growing wave of a local speed decrease in synchronized
flow, Kerner’s S → F instability is a growing wave of a lo-
cal speed increase in synchronized flow. The growth of this
speed wave, i.e., the development of the S → J instability
leads to an S → J transition (wide-moving jam emergence
in synchronized flow). The S → F instability exhibits a nu-
cleation nature: Only a large enough local speed increase in
an initial synchronized flow can grow whereas a low enough
local speed increase decays over time in synchronized flow. In
[34] it has been shown that this nucleation nature of the S → F
instability governs the nucleation nature of traffic breakdown
(F → S transition) in metastable free flow with respect to the
F → S transition. In an empirical example shown in Figs. 1(a)
and 1(b), both traffic breakdown (F → S transition) and the
S → J transition can be clearly seen. In the three-phase traffic
theory [30–32], both the nucleation nature of the S → F in-
stability and the nucleation nature of the F → S transition are
explained by a discontinuous character of over-acceleration
probability in vehicular traffic that is qualitative shown in
Fig. 1(c). Traffic breakdown (F → S transition) governed by
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FIG. 1. A known empirical example of phase transitions in traffic
flow illustrating two traffic flow instabilities of three-phase theory
(real measured traffic data of road detectors installed along a three-
lane highway) (a), (b) [30] and illustrations of associated hypotheses
of three-phase theory (c), (d). (a) Sketch of section of three-lane
highway in Germany with three bottlenecks. (b) Speed data measured
with road detectors installed along road section in (a); data [30] are
presented in space and time with averaging method described in
Sec. C.2 of [35]. (c) Hypothesis of three-phase theory about the dis-
continuous character of over-acceleration probability [27,28,30,31].
(d) Hypothesis of three-phase theory about F → S → J phase tran-
sitions in traffic flow: 2Z characteristic for phase transitions [28,30].
F = free flow phase, S = synchronized flow phase, J = wide-moving
jam phase. In (b), “sp” = spontaneous F → S transition, “ind” =
induced F → S transition [30].

Kerner’s S → F instability and the S → J transition deter-
mined by the classical traffic flow instability can also be
illustrated with the use of a double Z (2Z) characteristic of
phase transitions as shown in Fig. 1(d).

Recently, Kerner has found that there can be a spatiotem-
poral competition between the S → F and S → J instabilities
in synchronized flow [36]. The spatiotemporal competition
between the S → F and S → J instabilities results in the
emergence of a diverse variety of spatiotemporal traffic pat-
terns consisting of complex alternations of the three traffic
phases F, S, and J.

The first implementations of the three-phase traffic theory
in mathematical traffic flow models are a stochastic micro-
scopic model [37] and a cellular automaton three-phase model

[38]. These three-phase traffic flow models have been further
developed for different applications, in particular, for a study
of traffic breakdown and resulting traffic congestion occur-
ring at different road bottlenecks like on-ramp, off-ramp, and
merge bottlenecks (see, e.g., [39–44]). Over time, other traffic
flow models have also been developed, which incorporate
some of the hypotheses of the three-phases traffic theory, as
well as many new results in the framework of the three-phase
traffic theory have been obtained (see, e.g., [45–83]).

Besides road bottlenecks there can also be a moving bot-
tleneck (MB) caused by a slow-moving vehicle on a multilane
road. Vehicles behind the MB have to slow down or change
the lane and overtake the slow-moving vehicle. A possibility
of an MB was predicted in the works by Gazis and Herman
[84,85]. Newell [86,87] revealed that in a system coordi-
nate moving at the MB velocity traffic breakdown at the
MB should exhibit qualitatively the same features as those
at road bottlenecks. A theory of traffic breakdown and re-
sulting congested patterns at MBs in the framework of the
three-phase traffic theory has been developed in [88]. As
shown in [88], characteristics of synchronized flow at an MB
resulting from traffic breakdown depends on the traffic flow
and the velocity of the slow-moving vehicle that we denote
by vMB. Recently a study of prediction of traffic breakdown at
MBs with the use of probe vehicle data has been made [89,90].

In this paper, we reveal that the S → F instability can
occur at a highway bottleneck considerably more frequently
when the bottleneck is an MB. From a comparison of the
occurrence of the S → F instability at the MB and on-
ramp bottleneck at the same probability of traffic breakdown
and the same flow rate it has been found that, whereas
the frequency of the S → F instability at the on-ramp bot-
tleneck barely changes, the larger the velocity vMB of the
MB, the more frequently the S → F instability occurs at
the MB. Contrarily, when the MB velocity vMB decreases
considerably, then rather than the S → F instability, in
synchronized flow at the MB the classical traffic flow in-
stability leading to the emergence of wide-moving jams
(S → J instability) occurs. Through the use of the stochas-
tic microscopic simulations that are based on the model
of [88] we explain the physics of this vehicular traffic
phenomenon.

The paper is organized as follows: A method of the physi-
cal modeling of S → F instability at an MB used in the paper
is considered in Sec. II. In Sec. III we make a study of the
probability of traffic breakdown at the MB as well as compare
this probability with the probability of traffic breakdown at an
on-ramp bottleneck. The probabilistic features of the S → F
instability at the MB is revealed and an explanation of the
physics is given in Sec. IV B. Spatiotemporal competition
between S → F and S → J instabilities in synchronized flow
at the MB are analyzed in Sec. V. In Sec. VI we discuss how
a stochastic three-phase traffic flow model used in the paper
for all simulations was evaluated with empirical data, explain
a crucial difference between Kerner’s S → F instability and
the classical traffic instability, consider differences between
results of the paper with previous studies of phase transitions
at an MB, discuss the chosen methodology of a comparison
of phase transitions at the MB and on-ramp bottleneck, con-
sider the role of model fluctuations in the nucleation of phase
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FIG. 2. Model of a moving bottleneck MB (a) and an on-ramp
bottleneck (b) on a two-lane highway. At the beginning of the main
lanes is a constant flow rate qin. The MB is a slow-moving vehicle
with constant velocity vMB, which position xMB changes with time t .
Behind the MB is the moving merging region with length LM, where
the lane changing conditions differ from the rest of the main lanes.
Vehicles appear at the beginning of the on ramp according to the
constant flow rate qon. Inside the merging region Lm vehicles change
from the on ramp onto the main lanes. The end of the merging region
and the on ramp is donated with x(e)

on .

transitions at the bottlenecks as well as formulate conclusion
of this paper.

II. METHOD OF PHYSICAL MODELLING OF S → F
INSTABILITY AT MOVING BOTTLENECK

To analyze the statistical features of S → F and S → J
instabilities in synchronized flow at a moving bottleneck (MB)
and at an on-ramp bottleneck, we used the Kerner-Klenov
Stochastic Microscopic Model (Appendix A) and simulated
a two-lane highway with an MB and an on-ramp bottleneck,
respectively (Fig. 2). The three traffic phases, free flow, syn-
chronized flow, and wide-moving jam, were determined in the
simulations by using the method explained in Appendix B.
The flow rate qin at the beginning of the main lanes, the
velocity vMB of the slow-moving vehicle and the flow rate qon

at the beginning of the on ramp as well as other simulation
parameters are specified in captions to the paper’s figures.

At the same model parameters, qin and vMB for the MB
simulations and qin and qon for the on-ramp simulations, we
made a number Nr (where Nr � 1) of different realizations
and checked whether traffic breakdown (F → S transition)
occurs during the observation time Tob = 30 min, using the
method explained in Appendix C. Then the number n of
realizations with traffic breakdown were counted and the
probability P(B)

FS of traffic breakdown was determined:

P(B)
FS = n

Nr
. (1)

This was done with the MB and on-ramp bottleneck,
respectively, leading to two separate probabilities of traffic
breakdown, P(B)

FS,MB for the MB and P(B)
FS,on for the on-ramp

bottleneck, which depend on the simulation parameters qin,
vMB and qon. Features of the congested traffic at the two differ-
ent bottlenecks were compared for simulation parameters, for
which the traffic breakdowns showed the same probabilities
P(B)

FS,MB and P(B)
FS,on for a certain set of parameters qin, vMB, and

qon:

P(B)
FS,MB(qin, vMB) = P(B)

FS,on(qin, qon) = 0.5. (2)

This condition allowed us a comparison of the congested
traffic formed at the MB and on-ramp bottleneck, respectively.
Of critical importance were the S → F and S → J instabili-
ties, which can occur in synchronized flow and determine the
behavior of congested traffic patterns. These instabilities were
studied in the dependence of the velocity vMB and the flow
rate qon under the condition from (2). Through this approach
to the physical modeling we analyzed a possible competition
between the S → F and S → J instabilities in synchronized
flow occurring at the MB and at the on-ramp bottleneck.

III. TRAFFIC BREAKDOWN (F → S TRANSITION) AND
RESULTING CONGESTED PATTERNS AT MOVING

BOTTLENECK AND ON-RAMP BOTTLENECKS

A. Comparison of probabilities of F → S transition at moving
bottleneck and on-ramp bottleneck

To implement condition (2) for a finite number Nr of
realization, we first determined the probabilities P(B)

FS,MB and

P(B)
FS,on of traffic breakdown in dependence of the flow rate qin

at constant values of the velocity vMB and flow rate qon for
the MB and on-ramp bottleneck, respectively. The probability
P(B)

FS,on of traffic breakdown at the on-ramp bottleneck can be

fitted by a well-known function P̃(B)
FS,on [32]:

P̃(B)
FS,on(qin ) = (1 + eαon (qp,on−qin ) )−1, (3)

where αon and qp,on are fit parameters. We found a similar
behavior for the MB, where the probability P(B)

FS,MB of traffic

breakdown can be fitted by following function P̃(B)
FS,MB:

P̃(B)
FS,MB(qin ) = (1 + eαMB(qp,MB−qin ) )−1, (4)

where αMB and qp,MB are fit parameters.
With the introduced fits P̃(B)

FS,MB and P̃(B)
FS,on we reformulated

condition (2) into following condition:

qp,MB = qp,on. (5)

This condition allowed us to find pairings (vMB | qon) of MB
and and on-ramp bottleneck simulations, which can be used
to compare the behavior of congested traffic at the MB and
on-ramp bottleneck (Fig. 3).1 The comparison of the two

1It is interesting to notice the strong dependence of αMB governing
the width of the fit on the velocity vMB, whereas αon does not change
significantly with the flow rate qon. Since this paper focuses on the
behavior of congested traffic after the breakdown, this observation is
not discussed in the paper.
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FIG. 3. Comparison of the probabilities of traffic breakdown at
the MB P(B)

FS,MB and at the on-ramp bottleneck P(B)
FS,on as functions

of the flow rate qin for four examples with different velocities vMB

of the MB and different flow rates qon of the on-ramp bottleneck.
Probabilities of traffic breakdown for MB (blue circles) and on-ramp
bottleneck (red crosses). Number of realizations is Nr = 100 and
observation time is Tob = 30 min. Based on the discrete points, the fit
P̃(B)

FS,MB for MB (blue, dashed line) and P̃(B)
FS,on for on-ramp (red, dot-

dashed line) from (4) and (3) was determined. The four parameters of
the two fits were used to determine the pairings (vMB | qon ) according
to condition (5). Model parameters used in simulations are presented
in Tables A1– A3 of [32] (Appendix A of this paper); the exception
is parameter λb of Table A.3 in [32] that is used in accordance
with (A30).

FIG. 4. In (a) we show for an MB the determined parameter
qp,MB from the fit P̃(B)

FS,MB in (4) of the probability of traffic break-
down as a function of the velocity vMB. Accordingly (b) shows the
determined parameter qp,on from the fit P̃(B)

FS,on in (3) for an on ramp
as a function of the on-ramp flow rate qon. Following the condition
in (5), pairings of MB and on ramp (vMB | qon ) were determined. The
result is shown in (c). Other model parameters are the same as those
explained in Fig. 3.

bottlenecks was done for the flow rate qin = qp,MB = qp,on at
which both probabilities P(B)

FS,MB and P(B)
FS,on of traffic break-

down satisfy the original condition (2).
Analysis of the S → F and S → J instabilities in synchro-

nized flow was done for velocities vMB of the MB between
0 km/h and 50 km/h in steps of 1 km/h. By using condition
(5) each of theses 51 values was assigned the flow rate qon

on the on-ramp bottleneck, for which the behavior of the
congested traffic at the MB and on-ramp bottleneck were
compared. The fit parameter qp,MB increases with higher ve-
locities vMB, whereas qp,on decreases with higher flow rates
qon [Figs. 4(a) and 4(b)]. This results in 51 pairings (vMB | qon)
of the MB and on-ramp bottleneck simulations, where the flow
rate qon decreases with higher velocities vMB [Fig. 4(c)].

To study the S → F and S → J instabilities in synchro-
nized flow we needed a high number of simulations with
traffic breakdown at the bottlenecks. Therefore, for each MB
and on-ramp bottleneck simulation with the parameters from
Fig. 4 we examined a number N (B)

r (where N (B)
r � 1) of

realizations in which a traffic breakdown occurred during the
observation time Tob = 30 min. After the time of the break-
down, the simulation continued for an additional observation
time of T (cong)

ob = 60 min, during which the congested traffic
pattern formed at the bottleneck was observed.
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B. Emergence of a diverse variety of congested traffic patterns
at moving bottleneck

The velocity vMB of a slow-moving vehicle representing
the MB has a great influence on congested traffic patterns
(congested patterns) formed at the bottleneck after traffic
breakdown [88]. As found in this paper, the diverse variety of
the congested patterns at the MB stems form the probabilistic
behavior of S → F and S → J instabilities.

For low velocities vMB we find general patterns (GPs) due
to the S → J instability, while for larger velocities vMB we
find moving synchronized flow patterns (MSPs) due to the
S → F instability [Figs. 5(a) and 5(d)]. In between these two
cases exists a competition between the S → F and S → J
instability, where both instabilities can occur inside the syn-
chronized flow. For two different realizations with the exact
same simulation parameters, we get at least two different con-
gested patterns [Figs. 5(b) and 5(c)]. In one of the realizations
an S → J instability leads to a so-called S → J → S → F
transition, while in the other realizations an S → F instability
interrupts a widening synchronized flow pattern (WSP).

C. Characteristics of synchronized flow at moving bottleneck
and on-ramp bottleneck

While at the MB there is a diverse variety of congested
patterns depending on the velocity vMB, the same is not true
for the congested patterns forming at the on-ramp bottleneck.
Based on the pairings (vMB | qon) from Fig. 4 we can see in the
examples in Figs. 6 and 7 that the changing on-ramp flow rate
qon has a relatively small influence on the congested patterns.

For low velocities vMB and high flow rates qon the con-
gested patterns forming at the respective bottlenecks are
similar. For the pairing (0 km/h | 1222 vehicles/(h lane)) we
observe a GP at both bottlenecks [Fig. 6(a)]. For other ex-
amples, where the flow rate qon decreases, similar GPs are
observed at the on-ramp bottleneck. In contrast, the congested
patterns at the MB exhibit a diverse variety for the presented
parameter space. As already shown with the previous ex-
amples for the MB (Fig. 5), we observe GPs, WSPs, and
MSPs, depending on the occurrences of S → F and S → J
instabilities.

The examples (Figs. 6 and 7) show that the synchronized
flow at the two different bottlenecks exhibits a very different
behavior with changing parameters vMB and qon, although the
probabilities P(B)

FS,MB and P(B)
FS,on of traffic breakdown and the

flow rate qin are equal for each pairing (vMB | qon).

IV. PHYSICS OF S → F INSTABILITY IN SYNCHRONIZED
FLOW AT MOVING BOTTLENECK

A. Probability of S → F instability a moving bottleneck

An example and explanation for the S → F instability at
the MB is shown in Figs. 8 and 9. As was revealed in [36]
for the on-ramp bottleneck, a speed peak with a large enough
amplitude is a nuclei for an S → F instability, which appear
mostly at the vicinity of bottlenecks.

The occurrences of an S → F instability inside synchro-
nized flow at an MB or an on-ramp bottleneck is a stochastic
process with a certain probability depending on the simulation
parameters qin, vMB, and qon. The empirical probability PSF of

FIG. 5. Simulated traffic phases (F = free flow, S = synchro-
nized flow, J = wide-moving jam) in time and space shown in system
coordinate moving at the velocity vMB for different velocities vMB.
The flow rate qin is chosen so that condition (2) is satisfied. The flow
rate qin is 1314 vehicles/(h lane) (a), 1379 vehicles/(h lane) (b), (c),
and 1489 vehicles/(h lane) (d). Other model parameters are the same
as those explained in Fig. 3.

an S → F instability was determined by analyzing the N (B)
r

realizations with a traffic breakdown for a set of the simulation
parameters. During a observation time of T (cong)

ob = 60 min
after the breakdown, we searched for S → F and S → J
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FIG. 6. Simulated traffic phases (F = free flow, S = synchro-
nized flow, J = wide-moving jam) in time and space shown for the
MB in the system coordinate moving at the velocity vMB for different
pairings (vMB | qon ). Panels (a) and (b) show two comparisons be-
tween MB and on ramp for the pairings (vMB | qon )in Figs. 3(a) and
3(b). The flow rate qin is chosen so that condition (2) is satisfied. The
flow rate qin is 1276 vehicles/(h lane) (a) and 1325 vehicles/(h lane)
(b). Other model parameters are the same as those explained in Fig. 3.

FIG. 7. Simulated traffic phases (F = free flow, S = synchro-
nized flow, J = wide-moving jam) in time and space shown for the
MB in the system coordinate moving at the velocity vMB for different
pairings (vMB | qon ). Panels (a) and (b) show two comparisons be-
tween MB and on-ramp for the pairings (vMB | qon )in Figs. 3(c) and
3(d). The flow rate qin is chosen so that condition (2) is satisfied. The
flow rate qin is 1379 vehicles/(h lane) (a), and 1553 vehicles/(h lane)
(b). Other model parameters are the same as those explained in Fig. 3.

054306-6



STATISTICAL PHYSICS OF THE DEVELOPMENT OF … PHYSICAL REVIEW E 106, 054306 (2022)

FIG. 8. Emergence of the S → F transition at the MB shown in
Fig. 5(c) through the occurrence of an S → F instability. (a) Single-
vehicle trajectories on the left lane around the S → F transition. The
bold dashed lines denote the development of the S → F instability.
(b) A further zoom-in on the trajectories from (a) with five marked
trajectories through bold, black curves. The speed along the trajec-
tories 1 and 2 in dependence of time is shown in (c). Vehicle 1 is
moving on the left lane and has reached the downstream boundary
of the synchronized flow. Therefore it is able to accelerate from the
speed inside synchronized flow to the higher speed inside free flow.
Vehicle 2, following vehicle 1, also starts to accelerate. However, a
vehicle on the right lane uses the gap between vehicles 1 and 2 to
change to the left lane, which forces vehicle 2 to decelerate, creating
the speed peak. The color corresponds to the determined traffic
phases (F = free flow, S = synchronized flow, J = wide-moving
jam). Other model parameters are the same as those explained in
Fig. 3.

FIG. 9. Velocity along sections of the single vehicular trajecto-
ries 2–5 marked in Fig. 8(b). The speed (a) in dependence of time
and (b) in dependence of relative location. The speed peak from
Fig. 8(c) is the beginning of a speed wave of local speed increase
within synchronized flow. While propagating further upstream, the
amplitude and spatiotemporal extent of the speed wave increases,
leading to an area of free flow inside synchronized flow. The color
corresponds to the determined traffic phases (F = free flow, S =
synchronized flow, J = wide-moving jam). Other model parameters
are the same as those explained in Fig. 3.

instabilities inside the synchronized flow, using the method
explained in Appendix D. We counted the number nSF of
realizations, where the S → F instability occurred before the
end of the observation time T (cong)

ob and before the S → J
instability. This leads to following equation for probability
PSF:

PSF = nSF

N (B)
r

. (6)

This probability PSF of the S → F instability was deter-
mined for each bottleneck and all pairings in Fig. 4. The
influence of the simulation parameters qin, vMB, and qon on
probability PSF is shown in Fig. 10. For the MB, probability
PSF increases with higher velocities vMB [Fig. 10(a)]. This
corresponds to the observations made in examples before-
hand, where a shift from GPs with no S → F instability to
MSPs with many S → F instabilities can be seen (Fig. 5). In
contrast, probability PSF does not change with the increase in
the flow rate qon and no S → F instabilities were observed at
the on-ramp bottleneck. Hence, there are no S → F transitions
in the examples of the on-ramp bottleneck (Figs. 6 and 7).
We do observe free flow inside the congested pattern at the
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FIG. 10. Determined probability PSF of an S → F instability for
MB against the velocity vMB in (a) and for on ramp against the flow
rate qon in (b). A direct comparison between MB and on ramp can
be made by plotting PSF against the flow rate qin on the main lanes,
shown in (c). The vertical lines mark the examples from Figs. 6
and 7. Line 1 corresponds to (0 km/h | 1222 vehicles/(h lane)),
2 to (16 km/h | 1183 vehicles/(h lane)), 3 to (34 km/h | 1102
vehicles/(h lane)), and 4 to (50 km/h | 844 vehicles/(h lane)). The
parameters qin, vMB and qon satisfy condition (2) (Fig. 4). The obser-
vation time after traffic breakdown is T (cong)

ob = 60 min. Other model
parameters are the same as those explained in Fig. 3.

on-ramp bottleneck [Fig. 7(b)]; however, this is due to an
S → J → S → F transition, incited by an S → J instability.

We can do a direct comparison of probability PSF at the MB
and on-ramp bottleneck by plotting the determined probabili-
ties PSF against the flow rate qin on the main lanes, which is the
same for each respective pairing [Fig. 10(c)]. This comparison
shows the stark contrast between the MB and on-ramp bottle-
neck. While probability PSF increases with rising flow rate qin

for the MB, it is unaltered for the on-ramp bottleneck.

B. Explanation of the physics of S → F instability
at moving bottleneck

The unique behavior of the MB can be explained through
the movement of the bottleneck. Independent of the road
bottleneck type, synchronized flow is usually fixed at the bot-
tleneck [32]. Contrary to a road bottleneck, the downstream
front of the synchronized flow is moving with the MB at
the velocity vMB, while the upstream front moves further
upstream, independent of the movement of the downstream
front of synchronized flow. This leads to a dilution of the

synchronized flow at the MB, respectively, distances between
the vehicles inside the synchronized flow increase. With in-
crease of the distances a smaller amplitude of a speed peak is
necessary to be a nucleus for an S → F instability. Therefore,
the dilution of synchronized flow has an effect on the occur-
rence of the S → F instability, which is proven further below.

This dilution of the synchronized flow can be re-
vealed by examining distances g(S) between vehicles inside
synchronized flow. To minimize the influence of the upstream
front of synchronized flow at the MB, where vehicles deceler-
ate to the speed inside synchronized flow, only the distances
g(S) between vehicles, which are 500 m downstream of the up-
stream front, are considered. Furthermore only the distances
g(S) from the time of traffic breakdown at the MB until the
occurrences of either S → F or S → J instabilities or until the
end of the simulation are considered.

We already saw from the examples (Figs. 6 and 7) an
obvious disparity in the synchronized flow formed at the
MB with increasing velocity vMB in comparison with the
on-ramp bottleneck. The same observation can be made in
the distribution of the distances g(S) (Fig. 11). For the pairing
(0 km/h | 1222 vehicles/(h lane)) the difference in the distri-
butions for g(S) at the MB and on-ramp bottleneck is small.
Both distributions have a positive skew with an almost identi-
cal mean value. With decreasing flow rate qon the distribution
of the distances g(S) for the on-ramp bottleneck does not
change significantly. In contrast, the distribution of g(S) in
synchronized flow at the MB shows a strong dependency on
the velocity vMB. When the velocity vMB increases, the dis-
tribution of g(S) disperses and shifts to higher distances. This
dispersion of the distances corresponds to the aforementioned
dilution of the synchronized flow.

Although the mean values ḡ(S) of the distances g(S) are not
able to describe the complex distributions as a whole, they
still allow us an easier comparison of the pairings (vMB | qon)
(Fig. 12). The mean distance ḡ(S) is increasing with the ve-
locity vMB, indicating the shift of the distributions to higher
distances [Fig. 12(a)]. The slight decrease in the mean dis-
tance after the synchronized flow speed about 40 km/h is
likely due to the method of filtering the relevant distances
and can be ignored. In contrast to the MB, the mean distance
ḡ(S) for synchronized flow at the on-ramp bottleneck increases
only slightly as the flow rate qon decreases [Fig. 12(b)].

As beforehand, we can do a direct comparison of the pair-
ings (vMB | qon) by plotting the mean distance ḡ(S) against the
flow rate qin on the main lanes [Fig. 12(c)]. A higher flow
rate qin corresponds to a higher velocity vMB and a lower flow
rate qon on the on-ramp bottleneck, respectively. At lower flow
rates qin (e.g., pairing (0 km/h | 1222 vehicles/(h lane))) the
difference in the mean distances ḡ(S) for the MB and on-ramp
bottleneck is small, explaining the similar congested patterns
formed at the two different bottlenecks [Fig. 6(a)]. With in-
creasing flow rate qin the difference in the mean distances ḡ(S)

at the MB and on-ramp bottleneck increases, which is caused
by the dilution of the synchronized flow at the MB. This
leads to the different occurrences of the S → F and S → J
instabilities inside the synchronized flow and, therefore, to the
different congested patterns shown before (Figs. 6 and 7).
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FIG. 11. Distribution of the space gap g(S) in synchronized flow
before an instability for the pairings (vMB | qon )shown in Figs. 6
and 7. The histograms include all N (B)

r realizations of the simula-
tion, not only the ones shown in Figs. 6 and 7. The flow qin on
the main lanes is 1276 vehicles/(h lane) (a), 1325 vehicles/(h lane)
(b), 1379 vehicles/(h lane) (c), and 1553 vehicles/(h lane) (d). For a
better visualization the x axis is limited to 50 m. The blue, dashed
line is the mean ḡ(S) and the red, dotted line the median of the space
gap g(S). Other model parameters are the same as those explained in
Fig. 3.

FIG. 12. The determined mean space gap ḡ(S) in synchronized
flow before an instability as a function of the velocity vMB for
an MB in (a) and of the flow rate qon for an on ramp in (b).
A direct comparison between MB and on ramp can be made by
plotting ḡ(S) against the flow rate qin on the main lanes, shown in
(c). The vertical lines mark the examples from Figs. 6 and 7. Line
1 corresponds to (0 km/h | 1222 vehicles/(h lane)), 2 to (16 km/h |
1183 vehicles/(h lane)), 3 to (34 km/h | 1102 vehicles/(h lane)), and
4 to (50 km/h | 844 vehicles/(h lane)). Other model parameters are
the same as those explained in Fig. 3.

V. PROBABILISTIC FEATURES OF SPATIOTEMPORAL
COMPETITION BETWEEN S → F AND S → J
INSTABILITIES IN SYNCHRONIZED FLOW

AT MOVING BOTTLENECK

A. S → J instability in synchronized flow at moving bottleneck

In addition to the S → F instability, an S → J instability
in synchronized flow is possible [32]. The probability PSJ

for the appearance of the S → J instability was determined,
analogues to the probability PSF of the S → F instability in
(6):

PSJ = nSJ

N (B)
r

, (7)

with the number nSJ of realizations, where the S → J insta-
bility occurred before the end of the observation time T (cong)

ob
and before the S → F instability occurred. The influence of
the simulation parameters qin, vMB, and qon on probability PSJ

is shown in Fig. 13.
For the MB, probability PSJ has a strong dependence on the

velocity vMB [Fig. 13(a)]. In contrast to the S → F instability,
the probability PSJ of the S → J instability decreases with
higher velocities vMB. Contrary to the MB, the flow rate qon
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FIG. 13. Determined probability PSJ of an S → J instability
for MB against the velocity vMB (a) and for on-ramp bottle-
neck against the flow rate qon (b). A direct comparison be-
tween MB and on-ramp bottleneck can be made by plotting
PSJ against the flow rate qin on the main lanes (c). The ver-
tical lines mark the examples from Figs. 6 and 7. Line 1
corresponds to (0 km/h | 1222 vehicles/(h lane)), 2 to (16 km/h |
1183 vehicles/(h lane)), 3 to (34 km/h | 1102 vehicles/(h lane)), and
4 to (50 km/h | 844 vehicles/(h lane)). The parameters qin, vMB and
qon satisfy condition (2) (Fig. 4). The observation time after traffic
breakdown is T (cong)

ob = 60 min. Other model parameters are the same
as those explained in Fig. 3.

does not have a significant influence on probability PSJ at
the on-ramp bottleneck [Fig. 13(b)]. Probability PSJ for the
on-ramp bottleneck stays almost constant at the value 1, and
it does not drop below 0.96. A direct comparison between the
MB and on-ramp bottleneck is possible by plotting probabili-
ties PSJ against the flow rate qin on the main lanes [Fig. 13(c)].
For small flow rates qin, the probabilities PSJ are equal to 1 for
both the MB and on-ramp bottleneck. However, with rising
qin, probability PSJ decreases for the MB, whereas it stays
almost constant for the on-ramp bottleneck.

The influence or lack thereof of the simulation parameters
qin, vMB and qon on probabilities PSF and PSJ of the S → F
and S → J instabilities (Figs. 10 and 13) explains the dif-
ference between the MB and on-ramp bottleneck (Figs. 6
and 7). For the pairings (0 km/h | 1222 vehicles/(h lane))
and (16 km/h | 1183 vehicles/(h lane)) we determined almost
identical values of the probabilities PSF and PSJ for the MB
and on-ramp bottleneck. Therefore, both pairings show GPs,
at the two different bottlenecks. However, there is a difference
in the GPs for pairing (16 km/h | 1183 vehicles/(h lane)). At
the MB we have multiple S → J → S → F transitions, not
observed at the on-ramp bottleneck. The larger distances g(S)

between the vehicles inside synchronized flow at the MB
[Fig. 11(b)] can explain why S → J instabilities lead more
often to S → J → S → F transitions at the MB than at the
on-ramp bottleneck.

Pairing (34 km/h | 1102 vehicles/(h lane)) is the first ex-
ample where the probabilities PSF and PSJ are different for the
MB and on-ramp bottleneck. At the MB we first observe an
WSP, which is interrupted by an S → F instability and then
followed by an GP. This corresponds to the determined prob-
abilities PSF and PSJ, which are both larger than 0 at the MB.
The probabilities PSF and PSJ do not change for the on-ramp
bottleneck, therefore, we once again observe an GP. For the
pairing (50 km/h | 844 vehicles/(h lane)) the difference of the
observed congested patterns at both bottlenecks is explained
by the difference in the probabilities PSF and PSJ, which is
largest for this pair. Although we have an GP at the on-
ramp bottleneck, we observe an S → J → S → F transition.
For the flow rate qon = 844 vehicles/(h lane) at the on-ramp
bottleneck, the distances g(S) inside synchronized flow are
larger than for the other examples [Figs. 11 and 12(b)]. This
supports the hypothesis made beforehand that larger distances
inside synchronized flow encourage the development of an
S → J → S → F transition from the S → J instability. This
will not be examined further in this paper, but could be a topic
of interest for future research.

B. S → F and S → J instabilities at moving bottleneck

There can be a competition between the S → F and S → J
instabilities in synchronized flow [36]. We have found the
following three possible outcomes of this competition in syn-
chronized flow at the MB: The appearance of an S → F
instability, the appearance of an S → J instability or the per-
sisting of synchronized flow without an instability. For the last
possibility, that the synchronized flow is uninterrupted and
persists at the bottleneck, exists the probability PS:

PS = nS

N (B)
r

, (8)

with the number nS of realizations, where there are no instabil-
ities during the observation time T (cong)

ob = 60 min after traffic
breakdown. Naturally, the three probabilities PSF, PSJ, and PS

are connected by following relation:

PSF + PSJ + PS = 1. (9)

The competition between the S → F and S → J
instabilities is represented by a nonzero probability PS of
uninterrupted synchronized flow in which no S → F and no
S → J instability occurs during the observation time T (cong)

ob .
By combining the previous result for the probability PSF at the
MB [Fig. 10(a)] with the result for the probability PSJ at the
MB [Fig. 13(a)] using (9), we reveal the competition between
the S → F and S → J instabilities at the MB (Fig. 14).
The probability PS for the MB is not zero, changes with
the velocity vMB and has a global maximum. For the MB,
the determined probabilities PSF and PSJ in dependence of the
velocity vMB can be fitted by the following functions P̃SF and
P̃SJ:

P̃SF(vMB) = (1 + e−βSF (vMB−vp,SF ) )−1,

P̃SJ(vMB) = (1 + eβSJ (vMB−vp,SJ ) )−1, (10)

054306-10



STATISTICAL PHYSICS OF THE DEVELOPMENT OF … PHYSICAL REVIEW E 106, 054306 (2022)

FIG. 14. Determined probability of an S → F instability PSF, of
an S → J instability PSJ, and of uninterrupted synchronized flow
PS for the MB against the velocity vMB. Characteristic parameters
are v

(min)
MB = 25 km/h, v(S)

MB = 33 km/h, v(J)
MB = 37 km/h, and v

(max)
MB =

39 km/h. The parameters qin, vMB, and qon satisfy condition 2
(Fig. 4). The observation time after traffic breakdown is T (cong)

ob =
60 min. Other model parameters are the same as those explained in
Fig. 3.

where βSF, vp,SF, βSJ, and vp,SJ are fit parameters. From (9)
and (10) follows also a fit for probability PS of uninterrupted
synchronized flow. All three fits are shown together with the
corresponding simulation results in Fig. 14.

We have shown, that the mean distance ḡ(S) inside syn-
chronized flow at the MB has a strong dependence on the
velocity vMB (Fig. 12). The same is true for the probabilities
PSF and PSJ of the S → F and S → J instabilities (Fig. 14).
An opportunity arises to combine these two observations and
show the dependency of the probabilities PSF, PSJ, and PS on
the mean distance ḡ(S) inside synchronized flow (Fig. 15).

For the MB, probability PSF of the S → F instability in-
creases with higher mean distances ḡ(S), while probability
PSJ of the S → J instability decreases. This proves that the
aforementioned dilution of the synchronized flow at the MB
is responsible for the difference in the probabilities PSF and
PSJ and, therefore, responsible for the difference in congested
patterns at the MB and on-ramp bottleneck (Figs. 6 and 7).

The determined probabilities PSF and PSJ in dependence of
the mean space gap ḡ(S) can be fitted by following functions

FIG. 15. Determined probability of an S → F instability PSF, of
an S → J instability PSJ and of uninterrupted, synchronized flow
PS for the MB and on-ramp bottleneck against the mean space gap
ḡ(S). Characteristic parameters are gmin = 15.7 m, gS = 20.3 m, gJ =
25.1 m, and gmax = 26.5 m. The parameters qin, vMB, and qon satisfy
condition 2 (Fig. 4). The observation time after traffic breakdown
is T (cong)

ob = 60 min. Other model parameters are the same as those
explained in Fig. 3.

P̃SF and P̃SJ:

P̃SF(ḡ(S)) = (1 + e−γSF (ḡ(S)−gp,SF ) )−1,

P̃SJ(ḡ
(S)) = (1 + eγSJ (ḡ(S)−gp,SJ ) )−1, (11)

where γSF, gp,SF, γSJ, and gp,SJ are fit parameters. From (9)
and (11) follows also a fit for probability PS of uninterrupted,
synchronized flow. All three fits are shown together with the
corresponding simulation results in Fig. 15.

There are four characteristic values of the velocity vMB:
v

(min)
MB , v

(S)
MB, v

(J)
MB, and v

(max)
MB , or, respectively, for the mean

space gap ḡ(S): gmin, gS, gJ, and gmax (Figs. 14 and 15). These
values define intervals of the velocity vMB or the mean space
gap ḡ(S), respectively, where the probabilities PSF, PSJ, and PS

show a certain behavior:

PS ∈ (0, 1) for vMB ∈ (
v

(S)
MB, v

(max)
MB

) ∨
ḡ(S) ∈ (gS, gmax),

PS = 0 for vMB /∈ (
v

(S)
MB, v

(max)
MB

) ∨
ḡ(S) /∈ (gS, gmax),
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PSF ∈ (0, 1) for vMB ∈ (
v

(min)
MB , v

(J)
MB

) ∨
ḡ(S) ∈ (gmin, gJ ),

PSJ ∈ (0, 1) for vMB ∈ (
v

(min)
MB , v

(J)
MB

) ∨
ḡ(S) ∈ (gmin, gJ ). (12)

The results show that there is an interval (v(S)
MB, v

(J)
MB) or

(gS, gJ ), respectively, where all three probabilities PSF, PSJ,
and PS are larger than 0 (Figs. 14 and 15). This means that
for identical simulation parameters qin and vMB but different
realizations, it is possible to either observe an S → F instabil-
ity, an S → J instability or no instability case. An example of
this phenomenon is shown for the velocity of the MB vMB =
36 km/h, where probability PS of uninterrupted synchronized
flow has its maximum (Fig. 16). The first realization is inter-
rupted by an S → F instability, whereas the second one has an
S → J instability leading to an S → J → S → F transition.
Uninterrupted synchronized flow without any instability is
observed in the third realization.

VI. DISCUSSION

A. Evaluations of stochastic traffic flow model based
on empirical data

The Kerner-Klenov stochastic microscopic model
(Appendix A) has been used in all simulations made in
this paper. However, a question can arise whether reliable
validations and parameter calibration of this model with the
use of real field data have been made. It should be noted
that microscopic empirical traffic data for a study of traffic
breakdown at MBs and, therefore, for some empirical study of
the S → F instability at the MBs are currently not available.
We know only one empirical example of a complex congested
pattern observed at an MB in paper [91], in which traffic
breakdown features have not been studied. However, there are
a number of empirical microscopic data for a study of traffic
breakdown and other phase transitions at on- and off-ramp
bottlenecks (see references in [33]).

In 2003 the Kerner-Klenov model was validated and cali-
brated based on a huge number of spatiotemporal traffic data
measured at different highways during 1996–2001. Later, spe-
cial empirical validations of the model have been made based
on real field data measured on multilane highways during
2002–2006 [92,93].

In 2013 the stochastic microscopic model was calibrated
based on TomTom empirical probe vehicle data [35]. In par-
ticular, it has been found that lane changing rules and models
for vehicle merging at bottlenecks used in the Kerner-Klenov
model that has been expanded for a three-lane road scenario
can simulate traffic breakdown (F → S transition) at bottle-
necks and resulting congested patterns relate very closely with
those found in empirical data measured on three-lane highway
sections with bottlenecks [32,35].

Simulations of city traffic with the model used in the paper
[94] have predicted a possible dissolution of vehicle queues
at traffic signal (so-called jam absorption effect) with the
subsequent formation of synchronized flow. These simula-
tion results have been confirmed in empirical studies of city
traffic [95].

FIG. 16. Simulated traffic phases (F = free flow, S = synchro-
nized flow, J = wide-moving jam) in time and space shown in
system coordinate moving at the velocity vMB for different real-
izations of identical simulation parameters. In (a) the synchronized
flow is interrupted by an S → F instability, in (b) by an S → J
instability, and in (c) there is no instability. The velocity of the MB is
vMB = 36 km/h, which corresponds to mean space gap ḡ(S) = 24.0 m
and the maximum of probability PS (Figs. 14 and 15). Probabili-
ties are PSF = 0.69, PSJ = 0.07, and PS = 0.24. The flow rate qin

is 1398 vehicles/(h lane). Other model parameters are the same as
those explained in Fig. 3.

With the use of this model it was predicted [96] that mov-
ing synchronized flow patterns (MSPs) can occur at traffic
signal in city traffic. Empirical MSPs have been indeed ob-
served through the use of aerial traffic observations (with the
use of a drone) by Kaufmann et al. [97].

With the use of the model, Kerner [34] predicted sequences
of F → S → F transitions before traffic breakdown at bottle-
necks. The sequences have been indeed observed in recent
empirical studies of probe vehicle data [98].

Empirical moving jams often observed in empirical data
of congested traffic are also called “speed oscillations” or
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“traffic oscillations” in congested traffic (see, e.g., reviews
[13,14] and references in [99,100]). In some empirical studies,
the growth of traffic oscillations leads to the emergence of
a wide-moving jam(s) (S → J transition). However, in some
other empirical studies, the growth of traffic oscillations is
interrupted over time. Therefore, it also exists empirical data
in which traffic oscillations do not necessarily grow into
wide-moving jams (see examples of such empirical results
in [30]). In car-following experiments and empirical studies,
Jiang et al. [99] have found that the growth of traffic os-
cillations occurs in a concave way. The concave growth of
traffic oscillations can also be simulated by the Kerner-Klenov
model (Fig. 17).

B. Explanations of crucial difference between Kerner’s S → F
instability and classical traffic instability

In the microscopic stochastic model [37,39–41,88] used
in all simulations, there can be two qualitatively different
instabilities in synchronized flow of the three-phase traffic
theory [33]: an S → F instability or an S → J instability.

The S → F instability results from a discontinuous char-
acter of over-acceleration together with a spatiotemporal
competition between over-acceleration and speed adaptation
(see explanations in Chap. 8 of [33]). In turn, the discontinu-
ous character of over-acceleration is caused by a finite value
of the mean time in over-acceleration. The S → F instability
is caused by the time delay in over-acceleration. The discon-
tinuous character of the mean time delay in over-acceleration
is responsible for the nucleation nature of traffic breakdown
(F → S transition) at a bottleneck. In other words, the com-
petition between the S → F instability and speed adaptation
governs the nucleation nature of the F → S transition at the
bottleneck. The S → F instability is a growth of a local speed
increase in synchronized flow.

The local speed increase in synchronized flow, that can
initiate Kerner’s S → F instability at a bottleneck, has been
called in [34] a “speed peak” in synchronized flow. An ex-
ample of the speed peak in synchronized flow at the MB is
shown in Fig. 8(c). In Sec. 5.12 of [32], a detailed explanation
of the mechanism of the occurrence of the speed peak in
synchronized flow at a bottleneck has been made.2 It should
be emphasized that there can also be other mechanisms of the

2In Fig. 5.25 of [32] as well as in Fig. 8(c) of the paper, it can be
seen that the speed peak occurs at the downstream front of synchro-
nized flow at the bottleneck: The acceleration of a vehicle [vehicle
2 in Fig. 5.25 of [32] and vehicle 2 in Fig. 8(c)] from synchronized
flow to free flow at the downstream front of synchronized flow is
interrupted through a slow-moving vehicle that merges ahead of the
vehicle. As a result, the vehicle [vehicle 2 in Fig. 5.25 of [32] and
vehicle 2 in Fig. 8(c)] must decelerate. Thus, the merging of the slow
vehicle ahead of the initial accelerating vehicle causes the occurrence
of the speed peak (local speed increase) at the downstream front
of synchronized flow. There is a difference between the occurrence
of the speed peak at the downstream front of synchronized flow at
the on-ramp bottleneck considered in [32,34] and at the MB studied
in this paper that is as follows. At the on-ramp bottleneck, a slow-
moving vehicle that causes the occurrence of the speed peak merges
from the on-ramp lane of the bottleneck onto the main road. At the

FIG. 17. Simulations of the concave growth of traffic oscilla-
tions of Jiang et al. with the Kerner-Klenov model. Panels (a) and
(b) show a continuation from Fig. 6 of the simulated traffic phases
(F = free flow, S = synchronized flow, J = wide-moving jam) in
time and space for the MB in system coordinates moving at the
velocity vMB on the left main lane. The parallelogram-shaped region
with a width of 60 min marks the data used for the analyses in
(c). By dividing this region in cells of length 10 m and averaging
inside these cells and over the time, we calculated in (c) the mean
speed v̄ and the corresponding standard deviation σv that exhibits the
concave growth. This method was used in [100] to show concave
growth in speed of Jiang et al. in experimental data. The standard
deviation σv is shown only upstream of the merging region LM =
300 m [Fig. 2(a)] to focus on the concave growth. In (a) and (b),
the moving jams (traffic oscillations) emerge through the classical
traffic instability (S → J instability) that occur in synchronized flow
at the MB with probability PSJ = 1, whereas the Kerner’s S → F in-
stability does not occur (probability PSF = 0) for vMB = 0 km/h and
vMB = 16 km/h (Fig. 14). The flow rate qin is 1276 vehicles/(h lane)
in (a), 1325 vehicles/(h lane) in (b). Other model parameters are the
same as those explained in Fig. 3.

MB, a slow-moving vehicle that causes the occurrence of the speed
peak at the downstream front of synchronized flow changes from the
right lane [in which the MB moves, Fig. 2(a)] to the left lane [see
explanations in caption to Fig. 8(c)].

054306-13



VINCENT WIERING et al. PHYSICAL REVIEW E 106, 054306 (2022)

occurrence of a local speed increase in synchronized flow that
can initiate the development of Kerner’s S → F instability.3

Contrary to the S → F instability, the S → J instability
is caused by the well-known driver reaction time (driver
over-reaction). The S → J instability is responsible for the
emergence and growth of the moving jams (growth of traffic
oscillations). The S → J instability is a growth of a local
speed decrease in synchronized flow. In other words, the S →
J instability is the well-known classical traffic flow instability.
The term “S → J instability” for the classical traffic instability
has been introduced in the three-phase traffic theory to distin-
guish the classical traffic instability incorporated in standard
traffic models from the S → F instability incorporated in the
microscopic model used in this paper.

As postulated in the three-phase traffic theory, the time
delay in over-acceleration should not necessarily depend on
the existence of the driver reaction time. Even if the driver
reaction time were negligibly short, the mean time delay in
over-acceleration is a finite value. The driver reaction time is
responsible for the classical traffic instability (S → J instabil-
ity) in synchronized flow, not for traffic breakdown (F → S
transition) in free flow at the bottleneck. Traffic breakdown
(F → S transition) in free flow at the bottleneck is associated
with the time delay in over-acceleration, not with the driver
reaction time.

It should be mentioned that in the models, in which traffic
breakdown is explained by the classical traffic instability (e.g.,
[12–14,16–26,99–102]), the growth of traffic oscillations can
lead to the emergence of free flow between the growing mov-
ing jams. In these models, the occurrence of free flow between
traffic oscillations has no relation to the S → F instability of
the three-phase traffic theory. Indeed, in this case free flow
results from the growth of traffic oscillations. Contrary to the
models, in which traffic breakdown is explained by the clas-
sical traffic instability (e.g., [12–14,16–26,99–102]), in the
Kerner-Klenov model the occurrence of the S → F transition
can be realized without the occurrence of the growing traf-
fic oscillations. This is because the model incorporates both
the S → J instability leading to growth of traffic oscillations
(wave of local speed decrease) and the S → F instability lead-
ing to the growth of waves of local speed increase. Therefore,
these two instabilities can occur independent of each other.

This conclusion is illustrated in Fig. 14: Contrary to the
classical traffic instability (S → J instability) leading to the
growth of traffic oscillations, in our paper at a large enough

3In particular, through the over-acceleration effect, a local speed
increase can spontaneously occur in a car-following platoon moving
at the synchronized flow speed; if the local speed increase is large
enough, Kerner’s S → F instability is realized. Simulations of the
occurrence of the local speed increase and the S → F instability in
a car-following platoon in synchronized flow, in which all vehicles
move initially at the same mean speed, have been presented in
Sec. 5.11 of [32]. Simulations show that the local speed increase
should not necessarily be accompanied by a local speed decrease
[see Fig. 5.22(b) of [32]]. Different physical mechanisms of the
over-acceleration effect that can cause a local speed increase in
synchronized flow with the subsequent development of the S → F
instability have been considered in Sec. 5.10 of [32].

velocity of the MB (vMB � 37 km/h; Fig. 14) the probability
PSJ of the S → J instability is equal to zero: No growth of
traffic oscillations can occur. Rather than the growth of traffic
oscillations (i.e., the growth of waves of local speed decrease
in synchronized flow), the growth of speed waves of local
speed increase is realized in synchronized flow, i.e., the S →
F instability does occur. Indeed, at large enough velocities of
the MB (vMB � 39 km/h; Fig. 14), the probability PSF of the
S → F instability is equal to 1.

Thus, the S → F instability is a growth of a local speed
increase in synchronized flow. Contrary to the S → F in-
stability, the S → J instability is a growth of a local speed
decrease in synchronized flow. However, traffic flow models
that do not incorporate the discontinuous character of over-
acceleration of the three-phase traffic theory like all traffic
models in which traffic breakdown at a bottleneck is explained
by the development of the classical traffic flow instability(see,
e.g., references to such models in reviews [12–14,16–24] and
papers [99–102]) have not shown the nucleation nature of the
S → F instability and the associated competition between the
S → F and S → J instability studied in our paper (Fig. 14).

C. Differences with previous studies of moving bottleneck
in the framework of three-phase traffic theory

In [88], in which a study of traffic phenomena at an MB
in the framework of three-phase traffic theory has been made,
the traffic phenomena including phase transitions as those in
this paper under consideration have been studied.

However, in [88] it was still not known that an S → F
transition is caused by an S → F instability that exhibits the
nucleation nature; in its turn, the nucleation nature of the
S → F instability governs the nucleation nature of the F → S
transition at a bottleneck [34]. A possibility of a competition
between the S → F and S → J instabilities has also still not
been known [36]. In this paper, we revealed that there is a
basic physical difference between statistical features of syn-
chronized flow at the on-ramp bottleneck studied in [34,36]
and at the MB studied here:

(1) The motion of the downstream front of synchronized
flow at the MB causes a dilution of synchronized flow at the
MB [Fig. 12(a)].

(2) The dilution of synchronized flow at the MB results in
the considerable increase in probability of the occurrence of
the S → F instability at the MB (Figs. 14 and 15).

(3) In contrast to the MB, such a dilution of synchronized
flow does not occur at the on-ramp bottleneck [Fig. 12(b)].

(4) At the same probability of traffic breakdown (F → S
transition) at the MB and the on-ramp bottleneck, contrary to
the MB, no S → F instability is realized in synchronized flow
at the on-ramp bottleneck [Fig. 10(b)].

(5) The dilution of the synchronized flow at the MB causes
different statistical behavior of synchronized flow at the MB
in comparison with the on-ramp bottleneck (Fig. 15).

This crucial qualitative difference in the behavior of the
statistical features of synchronized flow at the MB with the
on-ramp bottleneck revealed in this paper can be explained
by the fact that for all road bottlenecks (on- and off-ramp
bottlenecks as well as merge bottleneck, etc.) the downstream
front of synchronized flow is fixed at the stationary location
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of the road bottleneck. Contrarily, the downstream front of
synchronized flow at the MB is moving with the velocity vMB.
The motion of the downstream front of synchronized flow
causes the dilution of synchronized flow at the MB. The mean
space gap ḡ(S) between the vehicles inside synchronized flow
is linked to the velocity vMB of the MB (Fig. 12). An increase
in the velocity vMB leads to a stronger dilution of synchronized
flow, hence to an increase in the mean space gap ḡ(S). In
contrast, the on-ramp bottleneck is a road bottleneck. Contrary
to the MB, at a given probability P(B)

FS of traffic breakdown
(F → S transition) at the on-ramp bottleneck the flow rate
qon does not have a significant influence on the mean space
gap ḡ(S) in synchronized flow. Therefore, while we observe the
dilution of synchronized flow at the MB, we do not observe
the same effect at the on-ramp bottleneck.

D. Traffic characteristics for comparison of MB and on-ramp
bottleneck: Bottlenecks strengths

In all empirical observations (e.g., [13–15,17–
19,21,22,30–33]), the onset of traffic congestion occurs at a
bottleneck. This is because the bottleneck introduces a speed
decrease localized at the bottleneck (local speed decrease,
for short). Traffic breakdown is the F → S transition that
exhibits the empirical nucleation nature [30–33]. In most
empirical observations (see Chaps. 4 and 9 of [33]), the local
speed decrease at a bottleneck plays the role of a nucleus
for the occurrence of traffic breakdown at the bottleneck
(F → S transition). This explains both why traffic breakdown
occurs mostly at the bottleneck and why the value of the local
speed decrease plays the decisive role in the nucleation of the
F → S transition at the bottleneck.

A local speed decrease at the on-ramp bottleneck is caused
by the deceleration of vehicles moving on the main lane due to
slower vehicles merging from the on-ramp lane onto the main
lane. A local speed decrease at the MB is caused by the lane
changing of vehicles in the merging region of the MB moving
in the right lane (Sec. A 5 of Appendix A): Vehicles that move
in the right lane change to the left lane to pass the MB; this
lane changing causes the deceleration of vehicles in the left
lane provoking the occurring of the local speed disturbance
(a more detailed explanation of the physics of the local speed
decrease at the MB and on-ramp bottleneck can be found in
Chap. 4 of [33]).

Thus, at a given flow rate on the main lane qin, the larger
the on-ramp flow rate qon is, the larger is on average the
local speed decrease. At the same given flow rate on the main
lane qin, the lower the MB velocity vMB is, the larger is on
average the local speed decrease. For this reason, the on-ramp
flow rate qon is a characteristic of the on-ramp bottleneck that
determines the so-called strength of the on-ramp bottleneck.
Respectively, the MB velocity vMB is a characteristic of the
MB that determines the strength of the MB. In other words,
for the same road infrastructure upstream of a bottleneck and
the same flow rate qin, the mean amplitude of the local speed
decrease at a bottleneck is mostly determined by the bottle-
neck strength: The on-ramp flow rate qon for the on-ramp
bottleneck and the MB velocity vMB for the MB.

This conclusion has been confirmed by many studies of
vehicular traffic. In particular, from the diagrams of congested

TABLE I. Model parameters of vehicle motion in road lane often
used in simulations.

τ = 1 s, d = 7.5 m/δx,
δx = 0.01 m, δv = 0.01 m s−1, δa = 0.01 m s−2,
vfree = 30 m s−1/δv, b = 1 m s−2/δa, a = 0.5 m s−2/δa,
k = 3, p1 = 0.3, pb = 0.1, pa = 0.17, p(0) = 0.005,
p0(vn) = 0.575 + 0.125 min (1, vn/v01),
p2(vn) = 0.48 + 0.32	(vn − v21),
v01 = 10 m s−1/δv, v21 = 15 m s−1/δv,
a(0) = 0.2a, a(a) = a(b) = a

patterns at the on-ramp bottleneck and the MB [compare
Fig. 11(c) of [39] for the pattern diagram at the on-ramp
bottleneck with Fig. 8 of [39] for the pattern diagram at the
MB] one can see the same sequence of physical effects, when
at a given qin the strength of the on-ramp bottleneck and the
strength of the MB increases (respectively, qon increases and
vMB decreases) beginning from lower bottleneck strengths at
which free flow occurs to larger strengths at which traffic
breakdown can occur with some probability P(B)

FS .
This explains why in the methodology of this physical

study of phase transitions at two different bottlenecks (the
on-ramp bottleneck and the MB), as characteristics of the bot-
tlenecks, the bottleneck strengths have been chosen and why
a comparison of features of the phase transitions at the same
flow rate qin and the same probability of traffic breakdown
P(B)

FS has been made (Sec. II).

E. Role of model fluctuations in nucleation of phase transitions
in vehicular traffic

The main objective of model fluctuations in the stochastic
model (Secs. A 2 and A 3 of Appendix A) is the simula-
tion of driver time delays. For example, the time delay in
over-acceleration that explains the nucleation nature of the
S → J instability is simulated through the use of formula
(A10), i.e., it is made through random fluctuations in vehicle
acceleration (the physics of the simulation of the time delay
in over-acceleration as well as of other driver time delays
through the use of model fluctuations in the Kerner-Klenov
model has been explained in the books [31,32]).

As can be seen from Secs. A 2 and A 3 of Appendix A, the
maximal local speed decrease caused by model fluctuations
is equal to aτ = 0.5 m/s (see Table I). This is considerably
lower than amplitudes of the usual local speed decrease at bot-
tlenecks measured in empirical traffic data that is on average
within the range of 2 − 8 m/s.4 For this reason, the nucleation
of traffic breakdown (and other phase transitions) in empirical
traffic data is observed due to the local speed decrease at
bottlenecks (see Chap. 9 of [33]), rather than due to speed
disturbance away from bottlenecks.

These empirical results of real traffic are incorporated in
the Kerner-Klenov model: In the model, the nucleation of traf-

4Explanations of the occurrence of the local speed decrease at the
bottlenecks have been given in Sec. VI D. An empirical example of a
large local speed decrease at a bottleneck can be seen in Fig. 4.3(c),
(f) of [33].
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fic breakdown (and other phase transitions) is realized through
lane changing and vehicle merging at bottlenecks (see Secs. A
45 and A 5 of Appendix A), not through model fluctuations
that are too small to be nuclei for the phase transitions. Indeed,
the deterministic three-phase traffic model, in which no model
fluctuations have been incorporated, show qualitatively the
same diagram for traffic breakdown and congested patterns at
the on-ramp bottleneck as those in the stochastic microscopic
model used in the paper (compare Fig. 3(a) of [83] for the
deterministic model with Fig. 5(a) of [39] for the stochastic
model used in the paper). However, simulations with stochas-
tic models are much quicker than with the deterministic one
and, therefore, the stochastic model is more convenient for
calculations of many vehicles moving on a long highway
section during a long time interval.6

F. Conclusion

By using the probability P(B)
FS of traffic breakdown (F → S

transition) at the MB and on-ramp bottleneck as a baseline, we
were able to compare the congested patterns formed at the two
bottlenecks after traffic breakdown. Although the probability
P(B)

FS is identical at the MB and on-ramp bottleneck for a set of
simulation parameters qin, vMB and qon, we observe a different
behavior of the congested patterns at the two bottlenecks at a
constant probability P(B)

FS but for increasing velocity vMB and
decreasing traffic flow qon, respectively (Figs. 6 and 7).

5To disclose the statistical physics of the development of Kerner’s
S → F instability at the MB as well as to make the explanation of
the physics as simple as possible, we have limited our paper by the
consideration of a two-lane road. A generalization of paper results
for a three-lane road system (and other multilane road systems) is
out of the scope of this paper. This can be interesting task for further
investigations of the S → F instability.

6It would be interesting to derive a mesoscopic model that can
capture the statistical features of traffic dynamics without a study of
the dynamics behavior of vehicle trajectories made in the paper with
the use of the analysis a relatively complex stochastic microscopic
three-phase traffic model (Appendix A). The classical traffic flow
instability that describes S → J instability was introduced in the
physics of traffic in the 1950s–1960s [1–7]. However, only about
35 years later first mesoscopic models for studies of the statistical
features of traffic dynamics associated with the classical traffic flow
instability have been developed. A well-known example is Bando
et al. optimal velocity model [101,102] and studies of the statistical
physics of moving jam emergence with this model(e.g., [12–14,16]
and references therein). The first stochastic microscopic three-phase
traffic model that can show the nucleation nature of traffic breakdown
(F → S transition at a bottleneck) was introduced in 2002 [37].
Unfortunately, in the world literature there are still no mesoscopic
models that can capture the statistical features of traffic dynamics
associated with the nucleation nature of the F → S transition (traffic
breakdown) at the bottleneck. In other words, there are no meso-
scopic models for the S → F instability whose competition with the
speed adaptation governs the nucleation nature of traffic breakdown.
The development of such a mesoscopic model legitimates a separate
scientific study that is out of the scope of this paper. We believe that
such a model development can be very interesting task for further
investigations.

We revealed that this is linked to the movement of the MB.
As is generally the case for synchronized flow, the down-
stream front is fixed at the bottleneck, which in case of the
MB leads to a moving downstream front and to a dilution
of synchronized flow. The mean space gap ḡ(S) between the
vehicles inside synchronized flow is linked to the velocity vMB

of the MB (Fig. 12). An increase in the velocity vMB leads to a
stronger dilution of synchronized flow, hence to an increase in
the mean space gap ḡ(S). While we observe the dilution of syn-
chronized flow at the MB, we do not observe the same effect
at the on-ramp bottleneck. This is because, in contrast with the
MB, at a given probability P(B)

FS of traffic breakdown (F → S
transition) at the on-ramp bottleneck the flow rate qon does not
have a significant influence on the mean space gap ḡ(S).

The dilution of synchronized flow at the MB has a signifi-
cant influence on the stochastic physical features of the S → F
instability (Fig. 15). With an increase in the mean space gap
ḡ(S), a smaller amplitude of a speed peak (i.e., a local speed
increase in synchronized flow) is necessary for it to become a
nuclei for an S → F instability and the probability for a speed
peak to induce a growing speed wave increases. This leads to
a dependence of the probability PSF of an S → F instability on
the velocity vMB of the MB: The probability PSF increases with
the velocity vMB (Fig. 10). In turn, the probability PSJ of an
S → J instability, which dominates the synchronized flow for
low velocities vMB, decreases with the velocity vMB (Fig. 13).
Furthermore, we identified an interval of the velocity vMB or
the mean space gap ḡ(S), respectively (Figs. 14 and 15), where
there are three possible outcomes for the synchronized flow at
the MB: interruption by an S → F instability, interruption by
an S → J instability, or no interruption (Fig. 16).

In contrast, the S → J instability at the on-ramp bottleneck
dominates the synchronized flow for the observed parameter
space as there is no dilution of synchronized flow. This ex-
plains the observed difference between the congested patterns
at the MB and on-ramp bottleneck.
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APPENDIX A: KERNER-KLENOV STOCHASTIC
MICROSCOPIC TRAFFIC FLOW MODEL USED

FOR SIMULATIONS

1. Update rules of vehicle motion in road lane

For simulations made in this paper, we used the Kerner-
Klenov stochastic microscopic model [37,39–41,88] in the
framework of the three-phase traffic theory. The cause of the
use of a microscopic model of human driving vehicles in the
framework of the three-phase traffic theory has been explained
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in [30–32]. Update rules of motion of human driving vehicles
are7

vn+1 = max(0, min(vfree, ṽn+1 + ξn, vn + aτ, vs,n)), (A1)

xn+1 = xn + vn+1τ, (A2)

where the index n corresponds to discrete time τn, n =
0, 1, . . ., τ = 1 s, vn is the vehicle speed at time step n, a is the
maximum acceleration and ṽn+1 is the vehicle speed without
speed fluctuations ξn:

ṽn+1 = min(vfree, vs,n, vc,n), (A3)

vc,n =
{
vn + �n at gn � Gn,

vn + anτ at gn > Gn,
(A4)

�n = max(−bnτ, min(anτ, v�,n − vn)), (A5)

where gn = x�,n − xn − d is a space gap between two vehicles
following each other, the subscript � marks variables related
to the preceding vehicle, vs,n is a safe speed at time step
n, vfree is the free flow speed in free flow, ξn describes the
speed fluctuations, gn is a space gap between two vehicles
following each other, and Gn is the synchronization space gap;
all vehicles have the same length d . While explanations of the
physics of the safe speed vs,n that can be found in Appendix A
of [32] seems to be not important for the paper understanding,
explanations of model fluctuations are important and, there-
fore, we discuss them below.

2. Model speed fluctuations

In the model [39,41], random vehicle deceleration and
acceleration are applied depending on whether the vehicle
decelerates or accelerates, or else maintains its speed:

ξn =
⎧⎨
⎩

ξa if Sn+1 = 1
−ξb if Sn+1 = −1
ξ (0) if Sn+1 = 0.

(A6)

State-of-vehicle motion Sn+1 in (A6) is determined by for-
mula:

Sn+1 =
⎧⎨
⎩

−1 if ṽ n+1 < v n

1 if ṽ n+1 > v n

0 if ṽ n+1 = v n.

(A7)

7In a discrete model version of the Kerner-Klenov stochastic mi-
croscopic three-phase model used for all simulations, a discretized
space coordinate with a small enough value of the discretization
space interval δx is used [41]. Consequently, the vehicle speed and
acceleration (deceleration) discretization intervals are δv = δx/τ and
δa = δv/τ , respectively, where τ is the time step. Because in the
discrete model version discrete (and dimensionless) values of space
coordinate, speed, and acceleration are used, which are measured
respectively in values δx, δv, and δa, and time is measured in values
of τ , value τ in all formulas is assumed to be the dimensionless value
τ = 1.

In (A6), ξb, ξ (0), and ξa are random sources for deceleration
and acceleration that are as follows:

ξb = a(b)τ	(pb − r), (A8)

ξ (0) = a(0)τ

⎧⎨
⎩

−1 if r < p(0)

1 if p(0) � r < 2p(0) ∧ vn > 0
0 otherwise,

(A9)

ξa = a(a)τ	(pa − r), (A10)

pb is probability of random vehicle deceleration, pa is prob-
ability of random vehicle acceleration, p(0) and a(0) � a are
constants, r = rand(0, 1), 	(z) = 0 at z < 0 and 	(z) = 1 at
z � 0, and a(a) and a(b) are model parameters (see Table I).

3. Stochastic time delays of acceleration and deceleration

To simulate time delays either in vehicle acceleration or in
vehicle deceleration, an and bn in (A4) and (A5) are taken as
the following stochastic functions [39,41]:

an = a	(P0 − r1), (A11)

bn = a	(P1 − r1), (A12)

P0 =
{

p0 if S n �= 1
1 if S n = 1,

(A13)

P1 =
{

p1 if S n �= − 1
p2 if S n = − 1,

(A14)

r1 = rand(0, 1), p1 is constant, and p0 = p0(vn) and p2 =
p2(vn) are speed functions (see Table I).

4. Lane changing rules for two-lane road

As in other models of lane changing on a two-lane road
(e.g., [103]), in the model a vehicle changes lane with prob-
ability pc if some incentive lane changing rules together with
some safety conditions for lane changing are satisfied.

Incentive lane changing rules from the right lane to the left
lane (R → L) and from the left lane to the right lane (L → R)
for lane changing are chosen similar to those of [103]:

R → L: v+
n � v�,n + δ1 ∧ vn � v�,n, (A15)

L → R: v+
n > v�,n + δ1 ∨ v+

n > vn + δ1, (A16)

where δ1 is constant.
Under these conditions, a vehicle changes the lane when

the following safety conditions for lane changing are satisfied
[39]:

g+
n > min(vnτ, G+

n ), (A17)

g−
n > min(v−

n τ, G−
n ), (A18)

where

g+
n = x+

n − xn − d, g−
n = xn − x−

n − d, (A19)

G+
n = G(vn, v

+
n ), G−

n = G(v−
n , vn), (A20)

G(u,w) is a synchronization space gap that is given by

G(u,w) = max(0, �kτu + a−1u(u − w)	), (A21)
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TABLE II. Parameters of lane changing often used in simulations.

δ1 = 1m s−1/δv, La = 80 m/δx, pc = 0.2

where k > 1 is constant and �z	 denotes the integer part of z.
In all formulas here and below, the superscripts + and −

in variables, parameters, and functions denote the preceding
vehicle and the trailing vehicle in the “target” (neighboring)
lane, respectively (the target lane is the lane into which the
vehicle wants to change). In conditions R → L (A15) and
L → R (A16), the value v+

n at g+
n > La and the value v�,n

at gn > La are replaced by ∞, where La is a constant (see
Table II).

5. Models of bottlenecks

Models of the on-ramp bottleneck [39] and the MB [88]
are considered in Fig. 2. Within the merging region of the on-
ramp bottleneck of length Lm [Fig. 2(b)] vehicles can merge
onto the main lane from the on-ramp lane. Upstream of the
merging region vehicles move in accordance with the model
of Sec. A 1. The maximal speed of vehicles is vfree = vfree on.

A model of an MB is shown in Fig. 2(a). It is assumed
[88] that there is a slow vehicle which maximum speed vMB

is smaller than the maximum speed of other vehicles: vMB <

vfree. The slow vehicle that moves in the right lane [Fig. 2(a)]
causes an MB. If a vehicle moves at the speed v > vMB in the
right lane upstream of the slow vehicle, then the vehicle tries
to changes from the right lane to the left lane within a merging
region of the MB of length LM. This merging region of the MB
moves at the speed vMB [Fig. 2(a)].

For all bottlenecks, when a vehicle is within the merging
region of a bottleneck, the vehicle takes into account the
space gaps to the preceding vehicles and their speeds in both
the current and target lanes. Respectively, instead of formula
(A4), in (A1) for the speed vc,n the following formula is used
[39,88]:

vc,n =
{
vn + �+

n at g+
n � G(vn, ˆv+

n )
vn + anτ at g+

n > G( vn, ˆv+
n ), (A22)

�+
n = max(−bnτ, min(anτ, v̂+

n − vn)), (A23)

v̂+
n = max

(
0, min

(
vfree, v+

n + �v(2)
r

))
, (A24)

�v(2)
r is constant (see Table III).
As in lane changing rules (Sec. A 4), the superscripts + and

− in variables, parameters and functions denote the preceding
vehicle and the trailing vehicle in the target lane, respectively.
The safe speed vs,n in (A1), (A3) for the vehicle that is the

TABLE III. Parameters of models of bottlenecks used in
simulations.

LM = Lm = 0.3 km/δx,
vfree on = 22.2 m s−1/δv,
�v(2)

r = 5 m s−1/δv,
�v(1)

r = 10 m s−1/δv

TABLE IV. Conditions for the detection of phase transition
points along a single-vehicle trajectory.

Phase transition Condition for Condition for
point velocity time interval

FS v < vFS T > TFS

SF v > vSF T > TSF

SJ v < vSJ T > TSJ

JS v > vJS T > TJS

closest one to the end of on ramp is chosen in the form

vs,n = ⌊
v(safe)

(
x(e)

on − xn, 0
)⌋

. (A25)

Vehicle merging at bottlenecks occurs, when safety condi-
tions (∗) or safety conditions (∗∗) are satisfied [39,88]. Safety
conditions (∗) are as follows:

g+
n > min(v̂nτ, G(v̂n, v

+
n )),

g−
n > min(v−

n τ, G(v−
n , v̂n)), (A26)

v̂n = min
(
v+

n , vn + �v(1)
r

)
, (A27)

�v(1)
r > 0 is constant (see Table III). Safety conditions (∗∗)

are as follows:

x+
n − x−

n − d > g(min)
target, (A28)

where

g(min)
target = �λbv

+
n + d	. (A29)

Contrary to [32], rather than a constant value λb in (A29), in
this paper we have used

λb =
{

0.75 at vn � v pinch,

0.4 at vn < v pinch,
(A30)

where vpinch is a threshold velocity for the pinch region inside
synchronized flow chosen as 10 m/s. This leads to more lane
changes inside synchronized flow and a stronger synchroniza-
tion of the velocities between the multiple lanes.

In addition to conditions (A28), the safety condition (∗∗)
includes the condition that the vehicle should pass the mid-
point:

x(m)
n = �(x+

n + x−
n )/2	 (A31)

TABLE V. Threshold parameters for the detection of the three
traffic phases.

Threshold Value

vFS 75 km/h
TFS 5 s
vSF 75 km/h
TSF 3 s
vSJ 10 km/h
TSJ 5 s
vJS 10 km/h
TJS 3 s
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TABLE VI. Conditions for the detection of S → F and S → J
instabilities.

Instability Condition for velocity Condition for time interval

S → F v � v
(inst.)
SF T � T (inst.)

SF

S → J v � v
(inst.)
SJ T � T (inst.)

SJ

between two neighboring vehicles in the target lane, i.e., con-
ditions:

xn−1 < x(m)
n−1 and xn � x(m)

n

or

xn−1 � x(m)
n−1 and xn < x(m)

n (A32)

should also be satisfied. The vehicle speed after vehicle merg-
ing is equal to

vn = v̂n. (A33)

Under conditions (∗), the vehicle coordinates xn remains the
same. Under conditions (∗∗), the vehicle coordinates xn are
equal to

xn = x(m)
n . (A34)

APPENDIX B: METHOD FOR DETECTION
OF TRAFFIC PHASES

For the detection of the traffic phases F, S, and J we used
the method developed in [35] for real-life traffic data and
adapted it to simulation data.

The method determines phase transition points along the
trajectories of single vehicles, by examining the vehicle speed
in dependence of time. Since there are no direct phases transi-
tions between free flow and wide-moving jams, we have four
possible phase transition points: FS for an F → S transition,
SF for an S → F transition, SJ for an S → J transition, and JS

for an J → S transition. If the speed v along a single vehicle
trajectory satisfies a certain condition for a consecutive time
interval T , which has to be larger than a certain threshold, the
corresponding phase transition point is detected (Table IV).
For example, if the speed v of a vehicle starting in free flow is
lower than the threshold vFS for at least a consecutive time
interval T longer than TFS, a phase transition point FS is
detected at the beginning of the time interval T and at the
corresponding position of the vehicle. This is done for all ve-
hicles inside the simulation. The multitude of detected phase
transition points allows the depiction of the traffic phases.
Thresholds vFS, TFS, vSF, TSF, vSJ, TSJ, vJS, and TJS, are listed
in Table V.

APPENDIX C: METHOD FOR DETECTION OF TRAFFIC
BREAKDOWN (F → S TRANSITION)

For the detection of traffic breakdown we used virtual
detectors, placed along the left main lane, and measured the
speeds of vehicles passing them. If the detected vehicle speeds
are less than 75 km/h for a consecutive time interval T , which
has to be larger than a certain threshold, a traffic breakdown is
detected.

TABLE VII. Threshold parameters for the detection of S → F
and S → J instabilities.

Threshold Value

v
(inst.)
SF 78 km/h

T (inst.)
SF 20 s

v
(inst.)
SJ 10 km/h

T (inst.)
SJ 20 s

For the on-ramp bottleneck, we used one stationary virtual
detector placed 150 m upstream of the merging region Lm

[Fig. 2(b)]. The threshold value for the time interval T is 300 s.
For the MB, we used two types of virtual detectors: A moving
one and multiple stationary ones. The moving one is placed at
a constant distance of 150 m upstream of the MB and therefore
moves with the MB at the same speed vMB [Fig. 2(a)]. The
threshold value for the time interval T is 300 s, the same as
for the on-ramp bottleneck detector. The stationary detectors
for the MB are placed equidistant (distance of 1 km) along
the left main lane and start the measurement as soon as the
MB has moved passed them and is 1 km downstream from the
detectors. The threshold value for the time interval T is 90 s.

For the on-ramp bottleneck, where we only observed GPs
for the used simulation parameters in this paper (Figs. 6
and 7), one stationary detector is sufficient to detect traffic
breakdowns. As was shown in this paper, at the MB we have
a diverse variety of congested traffic patterns (Figs. 5–7).
Therefore it is necessary to use the two types of detectors,
described above. The moving detector is able to detect WSPs
and GPs forming at the MB, while the multiple stationary
detectors are able to detect MSPs.

APPENDIX D: METHOD FOR DETECTION OF S → F
AND S → J INSTABILITIES

The method for detecting S → F and S → J instabilities
in this paper is similar to the method deployed in [36]. For
each time step after traffic breakdown (F → S transition) has
occurred the speeds v of each vehicle inside the synchronized
flow are checked for an S → F or an S → J instability. To
mitigate the effect of the upstream front of synchronized flow
and of the merging regions at the MB and on-ramp bottleneck,
only the speeds v of vehicles are considered, which satisfy
following conditions:

(1) The vehicle is upstream of the merging region (Fig. 2).
(2) The vehicle is 500 m downstream of the upstream front

of synchronized flow.
(3) The vehicle was at least for 30 s inside synchronized

flow.
An S → F instability is detected, when for a consecutive

time interval T longer or equal than threshold T (inst.)
SF the speed

v of at least one vehicle is larger or equal than threshold
v

(inst.)
SF . Similarly, an S → J instability is detected, when for

a consecutive time interval T longer or equal than threshold
T (inst.)

SJ the speed v of at least one vehicle is less or equal than
threshold v

(inst.)
SJ (Table VI). Thresholds T (inst.)

SF , v
(inst.)
SF , T (inst.)

SJ ,
and v

(inst.)
SJ are listed in Table VII.
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[46] H. K. Lee, R. Barlović, M. Schreckenberg, and D. Kim, Phys.

Rev. Lett. 92, 238702 (2004).
[47] R. Jiang and Q.-S. Wu, J. Phys. A: Math. Gen. 37, 8197

(2004).
[48] K. Gao, R. Jiang, S.-X. Hu, B.-H. Wang, and Q.-S. Wu, Phys.

Rev. E 76, 026105 (2007).
[49] L. C. Davis, Physica A 368, 541 (2006).
[50] L. C. Davis, Physica A 361, 606 (2006).
[51] L. C. Davis, Physica A 387, 6395 (2008).
[52] L. C. Davis, Physica A 388, 4459 (2009).
[53] L. C. Davis, Physica A 389, 3588 (2010).
[54] L. C. Davis, Physica A 391, 1679 (2012).
[55] A. Pottmeier, C. Thiemann, A. Schadschneider, M.

Schreckenberg, in A. Schadschneider, T. Pöschel, R.
Kühne, M. Schreckenberg, and D. E. Wolf, editors, Traffic and
Granular Flow ’05 (Springer, Berlin, 2007), pp. 503–508.

[56] X. G. Li, Z. Y. Gao, K. P. Li, and X. M. Zhao, Phys. Rev. E 76,
016110 (2007).

[57] H.-K. Lee and B.-J. Kim, Physica A 390, 4555 (2011).
[58] K. Hausken and H. Rehborn, Game Theoretic Analysis of

Congestion, Safety and Security, Springer Series in Reliability
Engineering (Springer, Berlin, 2015), pp. 113–141.

[59] J.-f. Tian, C. Zhu, and R. Jiang, in Complex Dynamics of Traffic
Management, 2nd ed., edited by B. S. Kerner, Encyclopedia of
Complexity and Systems Science (Springer, New York, 2019),
pp. 313–342.

[60] J.-W. Zeng, Y.-S. Qian, Z. Lv, F. Yin, L. Zhu, Y. Zhang, and
D. Xu, Physica A 574, 125918 (2021).

[61] J.-W. Zeng, Y.-S. Qian, S.-B. Yu, and X.-T. Wei, Physica A
530, 121567 (2019).

054306-20

https://doi.org/10.1287/opre.6.2.165
https://doi.org/10.1287/opre.7.1.86
https://doi.org/10.1287/opre.7.4.499
https://doi.org/10.1287/opre.9.4.545
https://doi.org/10.1287/opre.7.6.704
https://doi.org/10.1287/opre.9.2.209
https://doi.org/10.1051/jp1:1992277
https://doi.org/10.1016/S0370-1573(99)00117-9
https://doi.org/10.1103/RevModPhys.73.1067
https://doi.org/10.1088/0034-4885/65/9/203
https://doi.org/10.1287/opre.51.5.681.16755
https://doi.org/10.1103/PhysRevE.48.R2335
https://doi.org/10.1103/PhysRevE.50.54
https://doi.org/10.3141/1678-20
https://doi.org/10.1088/2058-7058/12/8/30
https://doi.org/10.3141/1710-16
https://doi.org/10.1023/A:1011577010852
https://doi.org/10.1103/PhysRevE.65.046138
https://doi.org/10.3141/1802-17
https://doi.org/10.1016/S0895-7177(02)80017-6
https://doi.org/10.1088/0305-4470/33/26/101
https://doi.org/10.1103/PhysRevLett.81.3797
https://doi.org/10.1103/PhysRevE.92.062827
https://doi.org/10.1016/j.physa.2012.07.070
https://doi.org/10.1103/PhysRevE.100.012303
https://doi.org/10.1088/0305-4470/35/3/102
https://doi.org/10.1088/0305-4470/35/47/303
https://doi.org/10.1103/PhysRevE.68.036130
https://doi.org/10.1088/0305-4470/37/37/001
https://doi.org/10.1103/PhysRevE.80.056101
https://doi.org/10.1088/1751-8113/41/21/215101
https://doi.org/10.1103/PhysRevE.85.036110
https://doi.org/10.1103/PhysRevE.69.016108
https://doi.org/10.1103/PhysRevLett.92.238702
https://doi.org/10.1088/0305-4470/37/34/001
https://doi.org/10.1103/PhysRevE.76.026105
https://doi.org/10.1016/j.physa.2005.12.026
https://doi.org/10.1016/j.physa.2005.06.046
https://doi.org/10.1016/j.physa.2008.07.029
https://doi.org/10.1016/j.physa.2009.07.040
https://doi.org/10.1016/j.physa.2010.04.016
https://doi.org/10.1016/j.physa.2011.10.036
https://doi.org/10.1103/PhysRevE.76.016110
https://doi.org/10.1016/j.physa.2011.07.033
https://doi.org/10.1016/j.physa.2021.125918
https://doi.org/10.1016/j.physa.2019.121567


STATISTICAL PHYSICS OF THE DEVELOPMENT OF … PHYSICAL REVIEW E 106, 054306 (2022)

[62] H.-T. Zhao, L. Lin, C.-P. Xu, Z.-X. Li, and X. Zhao, Physica
A 553, 124213 (2020).

[63] J. J. Wu, H. J. Sun, and Z. Y. Gao, Phys. Rev. E 78, 036103
(2008).

[64] H. Yang, J. Lu, X.-J. Hu, and J. Jiang, Physica A 392, 4009
(2013).

[65] H. Yang, X. Zhai, and C. Zheng, Physica A 509, 567
(2018).

[66] F. Siebel and W. Mauser, Phys. Rev. E 73, 066108 (2006).
[67] F. Rempe and P. Franeck, U. Fastenrath, and K. Bogenberger,

Transp. Res. C 85, 644 (2017).
[68] H. Rehborn and S. L. Klenov, in Encyclopedia of Complexity

and System Science, edited by R. A. Meyers (Springer, Berlin,
2009), pp. 9500–9536.

[69] H. Rehborn, S. L. Klenov, and M. Koller, in Complex Dy-
namics of Traffic Management, edited by B. S. Kerner,
Encyclopedia of Complexity and Systems Science Series
(Springer, New York, 2019), pp. 501–557.

[70] H. Rehborn, S. L. Klenov, and J. Palmer, Physica A 390, 4466
(2011).

[71] H. Rehborn, S. L. Klenov, and J. Palmer, in IEEE Intell. Veh.
Sym. (IV) (IEEE, New York, 2011), pp. 19–24.

[72] H. Rehborn and M. Koller, J. Adv. Transp. 48, 1107
(2014).

[73] H. Rehborn, M. Koller, and S. Kaufmann, Data-Driven Traffic
Engineering: Understanding of Traffic and Applications Based
on Three-Phase Traffic Theory (Elsevier, Amsterdam, 2021).

[74] H. Rehborn and J. Palmer, in 2008 Intelligent Vehicles Sympo-
sium (IEEE, New York, 2008), pp. 186–191.

[75] Y.-S. Qian, X. Feng, and J.-W. Zeng, Physica A 479, 509
(2017).

[76] J. P. L. Neto, M. L. Lyra, and C. R. da Silva, Physica A 390,
3558 (2011).

[77] X.-j. Hu, H. Liu, X. Hao, Z. Su, and Z. Yang, Physica A 563,
125495 (2021).

[78] X.-j. Hu, F. Zhang, J. Lu, M.-y. Liu, Y.-f. Ma, and Q. Wan,
Physica A 527, 121176 (2019).

[79] X.-j. Hu, X.-t. Hao, H. Wang, Z. Su, and F. Zhang, Physica A
545, 123725 (2020).

[80] X.-j. Hu, L.-q. Qiao, X.-t. Hao, C.-x. Lin, and T.-h. Liu,
Physica A 605, 127962 (2022).

[81] D.-J. Fu, Q.-L. Li, R. Jiang, and B.-H. Wang, Physica A 559,
125075 (2020).

[82] R. Borsche, M. Kimathi, and A. Klar, Comput. Math. Appl.
64, 2939 (2012).

[83] B. S. Kerner and S. L. Klenov, J. Phys. A: Math. Gen. 39, 1775
(2006).

[84] D. C. Gazis and R. Herman, The Moving and ‘Phantom’ Bottle-
necks (IBM Thomas J. Watson Research Division, Yorktown
Heights, NY, 1990).

[85] D. C. Gazis and R. Herman, Transp. Sci. 26, 223 (1992).
[86] G. F. Newell, A moving bottleneck, Technical Report UCB-

ITS-RR-93-3, Institute of Transportation Studies, University
of California, Berkeley (1993).

[87] G. F. Newell, Transp. Res. B 32, 531 (1998).
[88] B. S. Kerner and S. L. Klenov, J. Phys. A: Math. Theor. 43,

425101 (2010).
[89] D. Wegerle, B. S. Kerner, M. Schreckenberg, and S. L. Klenov,

J. Int. Transp. Sys. 24, 598 (2020).
[90] S. L. Klenov, D. Wegerle, B. S. Kerner, and M. Schreckenberg,

Comput. Res. Model. 13, 319 (2021).
[91] W. Huang, Y. Dülgar, H. Rehborn, B. A. Bernhardt, and J.

Xu, in Proc. TRB 100th Annual Meeting, TRB Paper TRBAM-
21-01-261 (Transportation Research Board, Washington, DC,
2021).

[92] B. S. Kerner, S. L. Klenov, and A. Hiller, J. Phys. A: Math.
Gen. 39, 2001 (2006).

[93] B. S. Kerner, S. L. Klenov, and A. Hiller, Nonlinear Dyn. 49,
525 (2007).

[94] B. S. Kerner, S. L. Klenov, G. Hermanns, P. Hemmerle, H.
Rehborn, and M. Schreckenberg, Phys. Rev. E 88, 054801
(2013).

[95] B. S. Kerner, P. Hemmerle, M. Koller, G. Hermanns, S. L.
Klenov, H. Rehborn, and M. Schreckenberg, Phys. Rev. E
90, 032810 (2014); P. Hemmerle, M. Koller, H. Rehborn,
B. S. Kerner, and M. Schreckenberg, IET Intell. Transp. Syst.
10, 122 (2016); G. Hermanns, P. Hemmerle, H. Rehborn,
M. Koller, B. S. Kerner, and M. Schreckenberg, Transp.
Res. Record 2490, 47 (2015); P. Hemmerle, M. Koller, G.
Hermanns, H. Rehborn, B. S. Kerner, and M. Schreckenberg,
Coll. Dyn. 1, A7 (2016).

[96] B. S. Kerner, Europhys. Lett. 102, 28010 (2013); Physica
A 397, 76 (2014); B. S. Kerner, S. L. Klenov, and M.
Schreckenberg, J. Stat. Mech. (2014) P03001.

[97] S. Kaufmann, B. S. Kerner, H. Rehborn, M. Koller, and S. L.
Klenov, Transp. Res. C 86, 393 (2018).

[98] S.-E. Molzahn, B. S. Kerner, H. Rehborn, S. L. Klenov, and M.
Koller, IET Intel. Transp. Sys. 11, 604 (2017); Y. Dülgar, S.-E.
Molzahn, H. Rehborn, M. Koller, B. S. Kerner, D. Wegerle, M.
Schreckenberg, M. Menth, and S. L. Klenov, J. Intel. Transp.
Sys. 24, 539 (2020).

[99] R. Jiang, M. B. Hu, H. M. Zhang, Z. Y. Gao, B. Jia, Q. S.
Wu, B. Wang, and M. Yang, Plos ONE 9, e94351 (2014); R.
Jiang, M. B. Hu, H. M. Zhang, Z. Y. Gao, B. Jia, and Q. S. Wu,
Transp. Res. B 80, 338 (2015); R. Jiang, C. J. Jin, H. M. Zhang,
Y. X. Huang, J. F. Tian, W. Wang, M. B. Hu, H. Wang, and B.
Jia, Transp. Res. C 94, 83 (2018); Y. X. Huang, R. Jiang, H. M.
Zhang, M. B. Hu, J. F. Tian, B. Jia, and Z. Y. Gao, ibid. 97, 194
(2018).

[100] S.-T. Zheng, R. Jiang, J.-f. Tian, X.-p. Li, M. Treiber, Z.-H. Li,
L.-D. Gao, and B. Jia, Transp. Res. C 140, 103729 (2022).

[101] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y.
Sugiyama, Jpn. J. Appl. Math. 11, 203 (1994); Phys. Rev. E
51, 1035 (1995).

[102] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y.
Sugiyama, J. Phys. I France 5, 1389 (1995).

[103] K. Nagel, D. E. Wolf, P. Wagner, and P. Simon, Phys. Rev. E
58, 1425 (1998).

054306-21

https://doi.org/10.1016/j.physa.2020.124213
https://doi.org/10.1103/PhysRevE.78.036103
https://doi.org/10.1016/j.physa.2013.05.004
https://doi.org/10.1016/j.physa.2018.05.032
https://doi.org/10.1103/PhysRevE.73.066108
https://doi.org/10.1016/j.trc.2017.10.015
https://doi.org/10.1016/j.physa.2011.07.004
https://doi.org/10.1002/atr.1254
https://doi.org/10.1016/j.physa.2017.02.057
https://doi.org/10.1016/j.physa.2011.04.030
https://doi.org/10.1016/j.physa.2020.125495
https://doi.org/10.1016/j.physa.2019.121176
https://doi.org/10.1016/j.physa.2019.123725
https://doi.org/10.1016/j.physa.2022.127962
https://doi.org/10.1016/j.physa.2020.125075
https://doi.org/10.1016/j.camwa.2012.08.013
https://doi.org/10.1088/0305-4470/39/8/002
https://doi.org/10.1287/trsc.26.3.223
https://doi.org/10.1016/S0191-2615(98)00007-1
https://doi.org/10.1088/1751-8113/43/42/425101
https://doi.org/10.1080/15472450.2019.1652825
https://doi.org/10.20537/2076-7633-2021-13-2-319-363
https://doi.org/10.1088/0305-4470/39/9/002
https://doi.org/10.1007/s11071-006-9113-1
https://doi.org/10.1103/PhysRevE.88.054801
https://doi.org/10.17815/CD.2016.7
https://doi.org/10.17815/CD.2016.7
https://doi.org/10.17815/CD.2016.7
https://doi.org/10.17815/CD.2016.7
https://doi.org/10.1088/1742-5468/2014/03/P03001
https://doi.org/10.1088/1742-5468/2014/03/P03001
https://doi.org/10.1088/1742-5468/2014/03/P03001
https://doi.org/10.1016/j.trc.2017.11.024
https://doi.org/10.1080/15472450.2019.1615488
https://doi.org/10.1080/15472450.2019.1615488
https://doi.org/10.1016/j.trc.2017.08.024
https://doi.org/10.1016/j.trc.2017.08.024
https://doi.org/10.1016/j.trc.2017.08.024
https://doi.org/10.1016/j.trc.2017.08.024
https://doi.org/10.1016/j.trc.2022.103729
https://doi.org/10.1103/PhysRevE.51.1035
https://doi.org/10.1103/PhysRevE.51.1035
https://doi.org/10.1051/jp1:1995206
https://doi.org/10.1103/PhysRevE.58.1425

