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Mesoscopic architecture enhances communication across the macaque connectome revealing
structure-function correspondence in the brain
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Analyzing the brain in terms of organizational structures at intermediate scales provides an approach to unravel
the complexity arising from interactions between its large number of components. Focusing on a wiring diagram
that spans the cortex, basal ganglia, and thalamus of the macaque brain, we identify robust modules in the
network that provide a mesoscopic-level description of its topological architecture. Surprisingly, we find that
the modular architecture facilitates rapid communication across the network, instead of localizing activity as is
typically expected in networks having community organization. By considering processes of diffusive spreading
and coordination, we demonstrate that the specific pattern of inter- and intramodular connectivity in the network
allows propagation to be even faster than equivalent randomized networks with or without modular structure.
This pattern of connectivity is seen at different scales and is conserved across principal cortical divisions, as
well as subcortical structures. Furthermore, we find that the physical proximity between areas is insufficient
to explain the modular organization, as similar mesoscopic structures can be obtained even after factoring out
the effect of distance constraints on the connectivity. By supplementing the topological information about the
macaque connectome with physical locations, volumes, and functions of the constituent areas and analyzing
this augmented dataset, we reveal a counterintuitive role played by the modular architecture of the brain in
promoting global coordination of its activity. It suggests a possible explanation for the ubiquity of modularity in
brain networks.
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I. INTRODUCTION

Cortical functional localization, which refers to specific
areas of the cerebral cortex being associated with distinct
functions such as vision and language, has long been a
dominant paradigm in neuroscience [1]. As the connectome
provides a physical substrate for cognition and behavior [2,3],
it might seem intuitive that such localization could be reflected
in the structural attributes of the network [4]. However, brain
imaging studies show that a large number of areas become
active during any cognitive task, ruling out the possibility of
attributing specific functions to the activation of a particular
subset of vertices of the structural connectome [5]. This sug-
gests the necessity for a theoretic framework that investigates
the dynamics of the brain in terms of how different areas
connect and interact with each other [6]. Such an approach
should integrate complementary perspectives that focus on
(a) dynamics, where distributed activation of the entire net-
work converges to different attractors, and (b) computation, in
which localized processing of information occurs in a sequen-
tial manner, allowing us to interpret cognitive processing as
dynamical computation [7].

An integrated view of how local and global coordination of
activity across the brain can arise may be obtained by adopting
a mesoscopic approach to analyzing the connectome. Such an
approach focuses on understanding the interactions within and
between communities of densely interconnected brain areas

(modules) that have been identified in nervous systems of
different organisms [8–18]. Such structural modularity of the
brain is expected from the advantages that such an architecture
may confer during evolution and development [16,19], such as
imparting robustness in the presence of constraints on wiring
and performance [3,20,21]. Traditionally, modules have been
viewed in functional terms, associated with innate, domain-
specific mental faculties (such as language) that are believed
to be relatively independent of each other [22]. Examining
how such cognitive modules relate to the structural commu-
nities of the connectome addresses the fundamental issue of
structure-function correspondence in the brain [23,24].

In this paper, we focus on the structure-function relation
revealed by the modular structure of the macaque connec-
tome. We suggest that this mesoscopic organizational feature
balances specialized and integrated processing by allowing
rapid communication at both local and global scales. This is
striking in view of the role that modularity plays in promot-
ing information encapsulation in other network architectures
[25]. In contrast, we observe that the specific pattern of intra-
and intermodular connectivity among the macaque brain ar-
eas enables extremely rapid communication, not only locally
within each module, but surprisingly, also globally across
the entire network. Indeed, we show using general models
of diffusion as well as coordination dynamics that spreading
occurs significantly faster in the empirical network, not only
compared to modular surrogate networks but also with respect
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to homogeneous randomized networks. As one associates the
latter class of networks with maximal propagation rate, which
is expected to reduce when community organization is in-
troduced, our results may appear counterintuitive. A detailed
investigation of the structural organization suggests that these
features could be related to the preferential connections be-
tween certain classes of brain areas that serve specific roles in
connecting members of a community and/or those belonging
to different communities. This result has potential implica-
tions not only for other brain networks, but generally for
modular networks that are involved in information processing,
complementing studies showing that maximizing information
flow may cause model networks to evolve towards a modular
structure [26,27].

In performing our analysis, we have added curated spa-
tial and functional information concerning the brain areas
to the existing database of brain connectivity, which can
serve as a resource for the community. The modules revealed
by our analysis, which we have shown to be robust across
many possible partitionings of the network using different
techniques, builds upon earlier work [9,13,18] by including
subcortical regions of the connectome. We show that each
module comprises both cortical and subcortical components,
which is intriguing in view of the proposal that the thala-
mocortical loop plays a central role in the computational
architecture of the neocortex [28]. More crucially, while it has
been suggested earlier that physical space constraints cannot
exclusively account for modules [11,29,30], our determina-
tion of the space-independent modules and their relatively
high overlap with the original communities clearly indicate
that the modularity of the macaque brain has functional sig-
nificance, viz., the facilitation of communication across the
connectome.

II. MATERIALS AND METHODS

A. Data

1. Connectivity

We have used as the basis for reconstructing the macaque
connectome a directed network of brain areas (cortical and
subcortical) that was compiled in Ref. [31] using several
hundred tract tracing studies obtained from CoCoMac—a
comprehensive neuroinformatics database [32–34]. The origi-
nal network comprised 383 vertices (or nodes), representing
areas in the cortex, basal ganglia and thalamus, at differ-
ent levels of spatial resolution, and 6602 directed edges (or
links) corresponding to tracts, i.e., myelinated bundles of ax-
ons connecting different brain areas, which may span large
distances. We note that while there have been later studies
reporting additional connections between specific brain ar-
eas (e.g., Ref. [35]), these are likely to only incrementally
augment the substantial number of links already incorpo-
rated in the network. The different regions and areas of the
brain are represented in the network in a hierarchically or-
ganized arrangement, starting from the most coarse-grained
level corresponding to the entire brain. As a result, the same
subdivision may occur multiple times in the network, as a
vertex could represent an area that is part of a larger area
or region which is represented by a different vertex (see

Supplemental Material, Fig. S1 [36]). For example, the hip-
pocampus is a vertex of the network, as are its subdivisions
CA1, CA3, and Dentate Gyrus. Consequently, there is no
unique mapping between brain areas and the vertices of this
network. It also leads to ambiguity in interpreting edges con-
necting vertices that occur at any of the levels other than the
lowest one in the hierarchy. For instance, if both vertices A
and B link to C, but B is a subdivision of A, then it is unclear if
the two edges are distinct. These issues make it difficult to in-
terpret any results obtained by analyzing the original network
[36].

In the connectome we consider here, these issues are
avoided by considering only those vertices that occur at the
lowest hierarchical level, i.e., corresponding to areas with
no further subdivisions, in the original network. This yields
an unweighted network comprising 266 vertices, representing
brain areas that span a range of spatial scales ranging from the
visual cortex area V1 (which has a volume of ∼2000 mm3)
to the thalamic area PT#2 (which has a volume of less than
2 mm3). The network that we consider, consequently, con-
sists of the 2602 directed links that occur between these
vertices. Note that this procedure leads to the network hav-
ing a largest connected component of 261 vertices (as the
following five areas do not have any reported connections
to the other areas at the lowest hierarchical level: PT#2, 6b-
beta, 4a, 4b, and Sub.Th). Despite the reduction in the size
of the network upon removal of the aforementioned redun-
dancies, the resulting connectome has similar macroscopic
properties as the original network, such as the exponential
nature of the degree distribution (see Supplemental Material,
Fig. S2 [36]).

As tracts can be of varying widths, in principle, it is
possible to consider a weighted network of brain areas, the
weight associated with each link being proportional to the
thickness of the tract connecting the two regions. However, it
is not known whether any simple relation exists between tract
thickness and the interaction strength between the regions it
connects, and hence it is unclear how to interpret the results
of any mesolevel analysis that takes into account thickness
information [37]. We note that the original network of brain
areas [31] was reconstructed using data from more than 400
separate studies spanning several decades. The various con-
nections reported in these studies do not use a consistent
format, neither can standardization of, e.g., injection sites be
expected. Indeed, even the terminology used to refer to the
areas differ between the studies. Thus, these needed to be
mapped to a single framework in Ref. [31] using a particular
atlas before the network representing the connectome could
be reconstructed from the data.

2. Spatial positions

As the brain connectome is a spatially embedded net-
work, it is important to consider geometric information such
as physical locations and extent of the different brain ar-
eas, in addition to the connection topology. As the original
network [31] did not contain any spatial information, we
have compiled a comprehensive database of the positions
of the areas corresponding to each of the vertices, as well
as, the volumes spanned by them. We have obtained the
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stereotaxic coordinates of each brain area in our connectome
from several sources. Information about 134 of the 266 ar-
eas included in the connectome has been obtained from the
website associated with the Paxinos Rhesus Monkey Atlas
[38]. For the remaining areas, we manually curated the requi-
site data from the relevant research literature. The position of
an area is identified with the approximate location of its cen-
ter obtained from the online three-dimensional visualization
platform in the website mentioned above [38]. The volume
spanned by a particular area was estimated by approximating
its cross-section extent in each of the coronal sections of
the brain and obtaining their sum, weighted by the thickness
of the sections measured along the rostral-caudal axis. See
connectome_nodes.xls [36] for the three-dimensional co-
ordinates of, and the volumes covered by, each of the brain
areas that we obtained through the above analysis. It also lists
the references that were used to obtain the information in each
case.

3. Data Availability

The adjacency list connectome_links.xls [36] con-
tains information about the directed connections between
the brain areas, with the first column indicating the
source vertex and the second column the target vertex
(both vertices being represented by their serial num-
ber as given in connectome_nodes.xls). The table
connectome_nodes.xls [36] is a spreadsheet comprising
11 columns which contain information about each of the 266
brain areas which correspond to the vertices of the network.
The first 7 columns provide the identity of each area in terms
of the serial number by which they are identified in our study,
the abbreviation, the name, their position in the macaque brain
described in terms of the three-dimensional coordinates as
per the Paxinos atlas and the volume that they occupy. The
eighth and ninth columns contain information arising from our
analysis, viz., the module they belong to and their role in the
mesoscopic organization, respectively. The last two columns
contain, respectively, the references and the web resources
from which we have gleaned information about their positions
and volumes.

B. Modularity

A prominent mesoscopic structural property associated
with many networks that occur in nature is modular organi-
zation. Modules (or communities) are subnetworks that are
characterized by a higher density of connections between the
constituent nodes compared to that between nodes belong-
ing to different modules [39]. One of the most well-known
approaches for determining the modules of a network is to
maximize a quantitative measure, Q, defined for a given
modular partitioning of the network as, Q = L−1�i, jBi jδcic j ,

where Bi j = Ai j − (kin
i kout

j /L) are elements of the modular-
ity matrix B [40,41]. The adjacency matrix A (Ai j = 1, if a
directed link exists from j to i, and 0, otherwise) specifies
the connection topology of the network, while the number of
incoming and outgoing connections of node i are indicated
by the in-degree kin

i = � jAi j and out-degree kout
i = � jA ji, re-

spectively, with L (= � jkin
j = � jkout

j ) being the total number
of connections in the network. The Kronecker δ function δi j

yields 1 if the communities ci and c j to which nodes i and j
belong respectively, are identical, and is 0 otherwise.

1. Spectral analysis and its refinement

To achieve an optimal partitioning of the network through
the maximization of Q we have used the spectral method
[41]. Here, we first bisect the network by assigning nodes
to one of two communities according to the sign of the ele-
ments of the eigenvector corresponding to the largest positive
eigenvalue of the symmetrized modularity matrix B + BT.
Subsequently we refine the partition by swapping the nodes
between communities to achieve the highest possible value
of Q. The above procedure is carried out recursively on each
of the communities to further subdivide them until Q cannot
be increased further [41]. This approach yields a maximum
value of Q for a partitioning of the network into 5 modules
with Qspectral = 0.485.

2. Multiscale analysis of community organization

Techniques that detect communities in networks by max-
imizing Q typically have a resolution limit which places a
lower bound on the size of modules that can be identified
[42]. To circumvent this limit and detect modules that span
the entire range of possible sizes, the definition of Q has
been augmented by the inclusion of a resolution parameter
γ [29,43,44] in the definition of the modularity matrix B, viz.,
Bi j = Ai j − γ (kin

i kout
j /L). Note that the standard definition of

Q corresponds to γ = 1. By increasing γ , modules obtained
at a coarser level of resolution can, in principle, be fragmented
further, thereby yielding smaller modules. To obtain the mod-
ular partitions of the network at different levels of resolution,
we have applied the spectral method on the suitably modified
modularity matrix B.

3. Robustness of the partitioning

To ensure that the modular partitions of the network ob-
tained using the deterministic spectral technique (described
above) are not sensitively dependent on the specific method
used for maximizing Q, we have used the stochastic simulated
annealing approach to obtain an ensemble of 103 optimal
partitions. The dissimilarity between the different partitions
generated by each realization of the annealing technique
reflects the extent of degeneracy (and hence, ambiguity) inher-
ent in the modular decomposition of the network. Following
Ref. [45], for each realization of the simulated annealing ap-
proach we begin with an arbitrary partition of the network and
iteratively change the modular composition by implement-
ing one of three types of operations: (i) move a randomly
chosen node to any other module including a newly created
one, (ii) merge two randomly chosen modules, and (iii) split
a randomly chosen module into two parts to minimize the
number of connections between the two parts. Any one of the
possible operations (across all types) is chosen at each step
with equal probability. The resulting partition associated with
a change �Q in the modularity is accepted with a probability
exp(−|�Q|/T ) if �Q < 0 and p = 1 otherwise. Here, the
parameter T , which is analogous to temperature, is decreased
over time according to a specified cooling schedule. The
process terminates when the number of successive failures at
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altering the modules exceeds a threshold value. While the Q
values corresponding to the partitions obtained for different
realization span a wide range, most of them cluster around
that obtained from the spectral method, Qspectral. We focus on
the 291 partitions whose Q value deviates from Qspectral by less
than 3%. As shown later, the modular membership of 70% of
the nodes remain invariant across all of these partitions, and
are in fact identical to that obtained from the spectral method,
underlining the robustness of the modular decomposition. We
have also used alternative methods of module identification
that do not rely on maximizing Q, viz., the Infomap method
[46], and have obtained qualitatively similar results.

4. Consensus clustering and versatility

To quantify the consistency among the various modu-
lar partitionings obtained using simulated annealing method,
we define a consensus matrix P as described in Ref. [47].
The consensus matrix is defined such that Pi j indicates the
fraction of partitionings in which nodes i and j appear in
the same module out of total number of partitionings ob-
tained from the simulated annealing realizations. Note that
Pi j = 0 and 1 corresponds, respectively, to situations where
the nodes i and j always appear in the same module for
every partitioning, and where they never occur in the same
module.

A measure for the certainty with which a brain area is
assigned to a module of the network is provided by the ver-
satility metric described in [48]. Using the consensus matrix
P for the network, the versatility of node i is calculated as
Vi = ∑

j sin(πPi j )/
∑

j Pi j . Versatility of i is highest when
Pi j = 0.5 for all j �= 1, while it is lowest when Pi j is either
0 or 1 for any j. In the latter case, the other nodes belonging
to the module in which node i occurs in any given partitioning
are always the same. Thus, a low value of versatility indicates
stable modular membership of the node.

C. Classification of brain areas according to their role in the
mesoscopic structural organization of the connectome

The importance of a given area within the topological
organization of the macaque brain network is indicated by
its connectivity within its own module (as defined above), as
well as that across the entire brain, which is evident from its
connections to areas belonging to other modules. These can be
quantitatively measured by the metrics (i) the within module
degree z score (z) and (ii) the participation coefficient (�c),
respectively [49,50]. To identify areas that have significantly
more connections within their own module, we determine a
within module degree z score:

zi =
ki

ci
− 〈

k j
ci

〉
j∈ci√〈(

k j
ci

)2〉
j∈ci

− 〈
k j

ci

〉2
j∈ci

, (1)

where ki
ci

is the number of links between area i and other
areas belonging to its module (ci) and the average 〈. . . 〉 j∈c is
taken over all areas in a module c. As in Refs. [11,51], nodes
(areas) having z > 0.7 are identified as hubs, the remainder
being classified as nonhubs.

To distinguish between brain areas in terms of their inter-
modular connectivity we calculate the participation coefficient
�c

i of area i as

�c
i = 1 −

m∑
c=1

(
ki

c

ki

)2

, (2)

where ki
c is number of links that area i has with those areas

belonging to module c and ki = ∑
c ki

c is the total degree of
the ith node (area). An area whose connections are restricted
within its own module has �c

i = 0 while one whose links
are uniformly distributed among the different modules has
�c

i closer to 1. Based upon the value of �c
i , which pro-

vides a measure of how well a node (area) bridges different
modules, the nonhub areas are classified as ultraperipheral
(R1, �c � 0.05), peripheral (R2, 0.05 < �c � 0.62), satellite
connectors (R3, 0.62 < �c � 0.8), and kinless nodes (R4,
�c > 0.8), while the hubs can be demarcated into provincial
hubs (R5, �c � 0.3), connector hubs (R6, 0.3 < �c � 0.75),
and global hubs (R7, �c > 0.75).

D. Degree- and modularity-preserved network randomization

We construct an ensemble of 103 networks obtained by
randomizing the empirical network preserving the in-degree
and out-degree of each node (area) as well as the modular
organization of the network [11]. Each network is obtained by
selecting directed connections, e.g., i → p and j → q, such
that the source nodes i, j belong to the same module A and
target nodes p, q belong to the same module B (which could
be same as A), and then rewire them to have i → q and j → p.
This procedure is repeated for 106 times for each realization of
a randomized network. To randomize the network preserving
the degree alone, we follow the same procedure as above
with the difference that there is no constraint on the modular
membership of the nodes.

E. Diffusive spreading model

The function of the connectome is to facilitate commu-
nication between the different brain areas. While the exact
mechanism by which such communication occurs may be
quite complex and not yet fully understood, different studies
suggest that the anatomical network is a critical (although
perhaps, not the only) determinant of this process [52–54].
We consider the simple process of diffusion across the system
to investigate the role of the empirically observed pattern
of intra- and intermodular connections on the dissemination
of information in the brain network. For this purpose, we
consider discrete random walks that, starting from a given
node on the network, proceeds at each time step from one
node to a randomly chosen node that receives an outwardly
directed link from the former. The rate at which spreading
occurs in different parts of the system can be analyzed by
obtaining the distribution of first passage times (FPTs) for a
random walk to reach a target node starting from a source
node. For this, we have measured the FPTs τ to all nodes
that are visited by a walk initiated from a given node of
the network. The process is repeated 103 times starting from
each of the 266 nodes, with a walk terminating when either
every node has been visited at least once or a node with no
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outgoing connections is reached. Separate distributions for
intramodular FPTs (τ intra) and intermodular FPTs (τ inter) can
be obtained by considering the source and target nodes to
be in the same module or in different modules, respectively.
For comparison, we also compute the distributions of FPTs
τD and τDM for randomized surrogates in which either the
degrees, or both the degrees and modular memberships, of
the nodes are preserved, respectively. The distributions are
obtained by averaging over 20 different networks, where in
each case 103 stochastic realizations are performed starting
from each of the 266 nodes of the network in turn. The devi-
ation of the empirical FPT distribution from those obtained
from the randomized surrogates by averaging over multi-
ple realizations is quantified in terms of a z score measure
defined as

z = Pemp(τ ) − 〈Prand(τ )〉
〈Prand(τ )2〉 − 〈Prand(τ )〉2

, (3)

where Pemp(τ ) and Prand(τ ) are the empirical and randomized
surrogate FPT distributions, respectively.

F. Model for collective ordering

To ensure that our results about the ability of the empirical
network to allow rapid communication is not sensitively de-
pendent on the diffusive spreading model used, we have also
investigated the onset of collective ordering in such networks
using a modeling framework inspired by statistical physics
[21,55,56]. In particular, we use the Ising model paradigm,
wherein classical binary-state spins dynamically change their
orientation based on thermal fluctuations (corresponding to
noise that represents deviations from deterministic dynamics
arising from stochastic effects, delays, external signals, etc.
[57]) and interactions with neighboring spins (that correspond
to coupling mediated by the network connecting the different
nodes). Each spin σi can be in any one of two possible orienta-
tions, viz., UP (+1) or DOWN (−1), which can be interpreted
as the mean activity of a brain region i being either high
or low, respectively [58]. In this approach, a global function
of the collective dynamical state of the system comprising
N spins is defined, usually in terms of a Hamiltonian H(σ)
where σ = {σ1, σ2, . . . , σN }), such that the dynamical evolu-
tion of the system proceeds by minimization of the function.
Thus, if switching the orientation of a spin i from σi to −σi

results in a change in this function by an amount �H(σi →
−σi ) = σi

∑
j Ai jσ j , where Ai j is an element of the directed

adjacency matrix (= 1 if there is a connection from node j
to i, and = 0, otherwise), then the move is accepted with a
probability P = min(e

�H
T , 1). The temperature T (scaled by

the Boltzmann constant kB) quantifies the noise present in the
system. We evolve the system at a given temperature T from
an initially random configuration of σ using a Monte Carlo
(MC) algorithm [59], at each step sequentially choosing N
spins at random and attempting to update their orientation
following the procedure mentioned above. For each realiza-
tion, we continue the procedure until the system reaches an
equilibrium configuration of σ characterized by the long-time
average of the order parameter m = �iσi/N attaining a steady
state value m∞. To reduce the fluctuations in the time-series
of m, it is smoothed by averaging over a moving window

of length 50 MC steps (we have verified that our results do
not alter qualitatively upon using different window sizes).
Convergence time t conv is defined as the number of MC steps
required by the system for the order parameter to reach m∞ for
the first time. The convergence behavior seen for the empirical
network (averaged over 104 random initial conditions) have
been compared with those observed in 25 different realiza-
tions each of degree-preserved (RD) and degree-preserved
module-preserved (RDM) randomized networks. For each of
the randomized networks, results are averaged over 103 ran-
dom initial conditions.

G. Role of spatial geometry in the modular
organization of the connectome

The physical distance di j between two brain areas i and j,
whose centers are indicated by the vectors x and y, respec-
tively, has been measured in terms of the Euclidean metric
d(x,y) and scaled by the geometric mean of the radii ri, r j

of the two areas (the radius of each being estimated from its
volume).

1. Space-independent partitioning of
the network into communities

For networks whose nodes are embedded in a space as-
sociated with a metric, it can be argued that the network
properties, such as modularity, could be a consequence of the
constraints imposed by the underlying geometry. We there-
fore need to modify the method for determining the modular
structure of a network outlined above, to take into account the
role of the physical space in which the network is embedded.
This is done by redefining the modularity matrix B in the
definition of the quantity Q (given above), so that the expec-
tation of a pair of nodes (i, j, say) being connected by chance
in the null model incorporates the physical distance (di j) be-
tween the nodes. Thus, following Ref. [60], we redefine Bi j =
Ai j − (kin

i kout
j f (di j )/L), where f (d ) = �di j=d Ai j/(kin

i kout
j ) is

referred to as the deterrence function. This function, which
is estimated from empirical data for the network, contains
information about how the physical distance between a pair of
nodes modulates their connection probability. Note that if the
communities in the network arise entirely because of spatial
dependence, measuring Q taking into account the physical
distance between nodes does not yield any modular structure.
Moreover, comparing the space-independent modular decom-
position of the network obtained using this technique with
the communities determined using exclusively information
about the connection topology (as described earlier), we can
infer whether the observed modularity is primarily driven
by physical distance constraints. The similarity between the
communities obtained using the two methods is quantified
using normalized mutual information.

2. Normalized mutual information

To quantify the similarity between two modular de-
compositions {cA

i }MA
i=1 and {cB

j }MB
j=1 resulting from different

partitionings A and B of a network (that yield MA and MB

modules, respectively) we have used the normalized mutual
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FIG. 1. Mesoscopic organization of the macaque brain. The network of brain areas, shown in (a) horizontal, (b) sagittal, and (c) coronal
projections, clearly indicate that the nodes (filled circles) are organized into five modules, each characterized by dense intraconnectivity. The
modular membership of each node is represented by its color (see color key to the right, containing the list of brain areas in each module), while
node sizes provide a representation of the relative volumes of the corresponding brain areas (the spatial scale being indicated by the horizontal
bar in each panel). The spatial positions of the nodes are specified by the three-dimensional stereotaxic coordinates of the corresponding areas
(see Sec. II). Links indicate the directed nerve tracts connecting pairs of brain areas, and are colored in accordance with their source nodes.
For details of each of the brain areas see connectome_nodes.xls [36], and for the macroscopic properties of the network see Supplemental
Material, Fig. S2 [36]. (d) Visual representation of the association between the network modules and cortical (in black), as well as, subcortical
(in red) divisions of the brain, viz., FL: Frontal Lobe, PL: Parietal Lobe, TL: Temporal Lobe, OL: Occipital Lobe, Cing.: Cingulate gyrus, Ins.:
Insula, BG: Basal Ganglia, Thal.: Thalamus, Hyp.: Hypothalamus, OFC: Olfactory complex, and MB: Mid-brain. For a detailed breakdown of
the major subdivisions of the brain in terms of their module membership, see see Supplemental Material, Table S1, as well as, Figs. S3 and S4
[36]. All alluvial diagrams in this paper have been created using the online visualization tool RAW [62].

information [61]

Inorm(A, B)

= 2
∑

i

∑
j P

(
cA

i , cB
j

)
ln

[
P
(
cA

i , cB
j

)
/P

(
cA

i

)
P
(
cB

j

)]
−∑

i P
(
cA

i

)
ln P

(
cA

i

) − ∑
j P

(
cB

j

)
ln P

(
cB

j

) , (4)

where P(cA
i ) is the probability that a randomly chosen node

lies in module cA
i in partition A, P(cB

j ) is the probability that a
randomly chosen node lies in module module cB

j in partition B,
and P(cA

i , cB
j ) is the joint probability that a randomly chosen

node belongs to module cA
i in partition A, as well as, to module

cB
j in partition B (i = 1, . . . , MA, and j = 1, . . . , MB). Each

of the probabilities can be estimated from the ratio of the
community sizes to the size of the entire network.

3. Surrogate networks

To explicitly show that the modular organization is not
primarily driven by the constraints imposed by the physical
distance d between brain areas, we have demonstrated how
spatial embedding affects the modular decomposition of a
network, using three classes of surrogate random network
ensembles (of size 100 each) having different underlying spa-
tial dependencies. The three ensembles, in increasing order
of importance of d in governing the connection probabil-

ity P between nodes, comprise networks with (a) P ∼ d0,
(b) P ∼ d−1, which is the case in the empirical network, and
(c) P ∼ exp(−d ), with nodes in each network occupying the
same spatial position as in the empirical network. Each net-
work (comprising an identical number of nodes and links as
in the empirical network) was subject to community detection
using information about the connection topology alone, as
well as, space-independent modular decomposition, following
the two approaches described above. The difference between
these two sets of partitions provides a measure of the role that
spatial embeddedness of the networks plays in determining
the modular nature of their connectivity.

III. RESULTS

A. Mesoscopic organization of brain areas in the macaque

Figures 1(a)–1(c) show the modular organization of the
macaque brain network spanning areas from the cortex, basal
ganglia and thalamus, revealed by our analysis (for details
see methods). The network is seen to comprise five modules,
each module i being composed of mi densely intercon-
nected brain areas (their numbers ranging between 39 and 71,
see the color key to the right of Figs. 1(a)–1(c), containing
the list of brain areas in each module). The membership of
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the individual areas in these modules is seen to be robust
(as discussed in detail in the next subsection). Given that the
network is embedded in a specific geometry, namely that of
the macaque brain, it is noteworthy that each of the modules
are spatially clustered as is clearly seen from the projections
shown in Figs. 1(a)–1(c). To understand the implications of
the spatial location of these modules, we visually represent
the mapping between the modules and the major anatomical
divisions of the brain in Fig. 1(d). For a detailed breakdown
of the major divisions of the brain in terms of their module
membership, see Supplemental Material, Table S1, as well as,
Figs. S3 and S4 [36].

We observe that every module comprises sizable number
of both cortical and subcortical areas. With the exception of
module 3, the modules have their subcortical components
located almost exclusively in the Thalamus. We note that
each of these modules are associated with different sensory
modalities (discussed in detail later), consistent with one of
the primary functions of the Thalamus, namely, relaying in-
formation from the sensory organs to cortical areas for further
processing. As the Thalamus is also involved in sleep-wake
regulation coordinated via extensive reciprocal connections
with the cortex [63–65], it is reasonable to expect that the each
of the network modules will have thalamic components along
with cortical ones, with dense intramodular connectivity rep-
resenting thalamo-cortico-thalamic circuits [66,67]. However,
none of the subcortical components of module 3 (displayed in
green in Fig. 1) belong to the Thalamus and instead constitutes
almost the entirety of the Basal Ganglia.

The locations of the cortical components of the different
modules across the principal lobes of the cortex, viz., frontal,
temporal, parietal, and occipital, are indicated in Fig. 1(d).
We observe that there is no simple correspondence between
the modules, which are topological partitions of the con-
nectome, and the gross anatomical divisions of the cortex.
While the regions comprising the frontal and temporal lobes
are split between several modules, those in the parietal and
occipital are dominated by single modules (modules 2 and
5, respectively), indicating the relative homogeneity of the
latter lobes in the mesoscopic organization of the network.
This is particularly important in light of a possible connection
between the modular divisions and functional specialization
in the brain—a point that we discuss below.

As mentioned in the Introduction, the term module has
been primarily used in the neuroscience literature to refer to a
functionally integrated set of areas [68–70] that allows for “in-
formation encapsulation” [22], whereas we employ the term
in the sense of a specific mesolevel structural feature in the
connectome [8–16]. In analogy with other biological networks
where a structure-function correlation has been established for
modules [49,71], we now ask whether the network modules
that appear as separate structural units of the brain can be con-
sidered as distinct functional units as well. Using information
about the known functions of different cortical and subcorti-
cal areas obtained from decades of experimental studies, we
have created a mapping between the areas belonging to each
module and the specific functionalities attributed to them. In
Supplemental Material, Table S2 [36] we list these known
functions either of the brain areas belonging to each of the
modules, or of the broader subdivisions to which they belong.

A perusal of this information reveals that the different areas
belonging to a module complement each other in carrying
out various cognitive functions. For example, several cortical
areas in module 5, viz., 45a and 8Ac of the prefrontal cortex,
and V1 and V2 of the occipital lobe, are related through their
involvement in vision, even though they may be part of dis-
tinct lobes and have disparate functions (controlling saccadic
eye movements in the case of 45a and 8Ac, and processing of
visual information in the case of V1 and V2). This suggests a
general scheme of organization in which the areas associated
with each of the principal sensory modalities are localized in
specific modules, viz., visual in module 5, auditory in module
4, somatosensory (along with the principal motor area M1) in
module 2, and olfactory (as well as, gustatory) in module 1.
We show below that the known behavior of the areas compris-
ing each of the modules is consistent with the broad functions
attributed to that module.

First, we observe that module 5 (displayed in purple in
Fig. 1) consists of the primary visual area in the occipital lobe
and association areas in the parietal (e.g., LIP, VIP, etc.) and
temporal lobe (e.g., CIT, PIT, etc.). In addition, its thalamic
component includes lateral geniculate nucleus (LGN), which
relays visual information to the cortex from the retina. We
note that these areas are all involved in various aspects of vi-
sual cognition, which is consistent with the sensory modality
associated with this module, viz., vision. Second, module 4
(displayed in yellow in Fig. 1), consistent with its attributed
sensory modality, is seen to comprise the auditory cortex lying
in the superior temporal gyrus of the temporal lobe (as well as,
the corresponding association areas), and the medial genicu-
late nucleus in the thalamus, which is the relay for all auditory
information destined for the cortex from the brainstem [72].
Third, module 2 (displayed in red in Fig. 1) contains the
primary and secondary somatosensory areas (S1, S2) in the
parietal lobe, while its thalamic component contains all the
areas which together comprise the ventral posterior nucleus
that relays somatosensory information to the cortex. Apart
from its sensory function, as noted earlier it also consists of
primary and supplementary motor areas which are associated
with planning, control and execution of voluntary movements
[73]. Finally, we note that module 1 (displayed in blue in
Fig. 1), has the olfactory complex and the gustatory cortex,
both located in the frontal lobe, as well as, a few other areas
(e.g., the olfactory field of the entorhinal cortex, EO, in the
temporal lobe) involved in the sensory processing of smell.
However, the module is dominated by association areas lo-
cated in the prefrontal cortex which are involved in high-level
multimodal sensory integration and decision-making [74–78].

In contrast to the other modules, module 3 neither contains
motor areas nor does it include any primary or secondary
sensory areas. This is possibly related to our earlier observa-
tion that this module has a distinct structural arrangement, in
that its subcortical components do not have any contribution
from the thalamus, but instead comprise areas belonging to
the basal ganglia. In particular, the module contains the entire
amygdala which is known to regulate emotional responses
and fear-conditioning in mammals [79–82]. This gains sig-
nificance in light of the fact that both the Hippocampus
and the Parahippocampus, which are primarily involved in
the formation of memory, feature prominently among this
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module’s cortical components. It resonates with the known
relation between emotional state and formation of memories
in individuals that have been established by several studies
[83–86].

As the brain is characterized by structures occurring at
several hierarchical levels [87], it is pertinent to ask whether
a further degree of organization can be identified in the con-
nectivity pattern within each of the modules described above.
Indeed, when we consider module 5, the most robust under
different realizations of network partitioning (see next sub-
section), and subject it to further modular decomposition, we
observe that it comprises three communities which we refer to
as submodules. The largest of these (5A) contains the visual
cortex and almost the entirety of the subcortical components,
while the other two (5B and 5C, which are comparable to
each other in terms of the number of constituent areas) are
dominated by areas belonging to the superior temporal sulcus
and the intraparietal sulcus, respectively (Fig. 2). Intriguingly,
we note that the latter two communities appear to correspond
to areas identified with distinct visual processing pathways,
viz., the dorsal and ventral streams [88,89]. This suggests that
even at the submodular scale, network communities can be
associated with specialized functions.

B. Establishing the robustness of the modular decomposition

While network communities can be defined using one of
several possible approaches [90], a large number of tech-
niques for partitioning networks are based on the principle
of maximizing the metric Q [91], which quantifies the extent
to which a network is modular. As mentioned in Sec. II, we
have ensured that the partitioning of the connectome is not
sensitively dependent on the specific method used for the
decomposition. Figure 3(a) shows the communities obtained
using the Infomap method [46], which is based upon opti-
mally compressing information about dynamic processes on
the network. Note that, these have a high degree of overlap
with the modules shown in Fig. 1 obtained using a spectral
method [41] that maximizes the modularity Q (for details, see
Sec. II). While the Infomap method generates a larger number
of modules (viz., 17), not only are many of these extremely
small (in some cases comprising only a single node), but
several of them are in fact further subdivisions of the relatively
fewer modules (viz., 5) obtained using the spectral method.
The relatively high degree of correspondence between the par-
titions generated by using techniques that employ completely
different principles suggests that the modular decomposition
reported here is an intrinsic property of the network and is not
strongly affected by the partitioning method used.

To verify that the method used for maximizing Q does
not alter our results significantly, we have performed 103

realizations of a stochastic simulated annealing algorithm for
detecting communities [45]. As mentioned in Sec. II, by com-
paring between these large number of optimal partitionings of
the network, we can determine the extent to which the modu-
lar groupings among the different nodes is robust. Figure 3(b)
shows the Modularity Q values corresponding to these real-
izations, using a representation such that similar partitionings
(corresponding to the circles) occur close to each other in the
two-dimensional plane orthogonal to the axis representing Q.

5A 5B 5C
LGN, PIl-s, PIp, PIm 8Ac, VIP 45A, LIPe
PIl, PIc, PLa#1, PLvl FST, MSTp LIPi, CITv
PLvm, PIP#1, TEm MSTd, V3A PITd, PITv
MT, V3d, DLr, DLc V4t, DP IPa, V3v
VPP, DI#1, V6, V1 LD#1 V4v, VOT

V2, MB#2, Cd g, GPe

FIG. 2. Submodular organization of module 5 of the con-
nectome. The network of brain areas, shown in (a) horizontal,
(b) sagittal, and (c) coronal projections, indicate that the nodes in
module 5 (highlighted), which is broadly associated with visual
processing, are further organized into three submodules that are char-
acterized by dense intraconnectivity. The submodule membership of
each node in module 5 is represented by its color (see color key at
the bottom) with the list of brain areas belonging to each of the three
submodules shown in the table at the bottom. Submodule 5A is seen
to comprise primary visual and subcoritcal areas, while submodules
5B and 5C contain areas that belong to the ventral and dorsal visual
pathways, respectively. The node sizes provide a representation of
the relative volumes of the corresponding brain areas (the spatial
scale being indicated by the horizontal bar in each panel). The
spatial positions of the nodes are specified by the three-dimensional
stereotaxic coordinates of the corresponding areas. Links indicate the
directed nerve tracts connecting pairs of brain areas, and are colored
in accordance with their source nodes.

The two-dimensional coordinates of each circle in this plane
is obtained by Curvilinear Component Analysis (CCA, see
Ref. [92]) as described in Ref. [45]. As can be seen from
Fig. 3(b), there are a large number of partitionings having high
values of Q that occur close to each other in the plateau and
where the partition obtained from the spectral method (dia-
mond, Qspectral = 0.485) that has been used for our analysis
is also seen. This suggests that the modular decomposition
of the nodes in these high Q partitionings are similar to that
determined by the spectral method. The highlighted nodes in
Figs. 3(c)–3(e) indicate those brain areas (∼70% of the total)
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FIG. 3. Robustness of the modular decomposition of the connectome. (a) Visual representation of the comparison between the modular
decomposition of the macaque connectome obtained using spectral partitioning [left] with that obtained using the Infomap method [right]. The
modules are represented as vertical bars, connected by bands which are colored according to the module obtained using the spectral method
from which they originate [using the same color scheme as in Fig. 1(d)]. (b) Modularity of the macaque connectome, shown as a function
reconstructed from 103 partitionings (circles) obtained through a simulated annealing method for determining communities [45]. The axes
on the horizontal plane orthogonal to the vertical axis that corresponds to modularity Q represent embedding dimensions that are themselves
complex functions of the partition space, such that the scale of these axes are irrelevant. The distance between the partitionings (whose
positions on the horizontal plane are obtained by Curvilinear Component Analysis) are indicative of the degree of dissimilarity between the
corresponding modular partitions of the network. The partition obtained by the deterministic spectral method yielding a Q value of Qspectral =
0.485 (diamond), and which has been used for our analysis, is seen to occur in the high-modularity plateau comprising a large number of
similar partitions, all having a high value of Q. The 291 partitionings that occur above the translucent plane corresponding to Q = 0.47,
and whose Q values differ by less than 3% from Qspectral = 0.485, have been used to determine the robustness of the modular identities of
the different nodes in the connectome. (c–e) The network of brain areas shown in (c) horizontal, (d) sagittal, and (e) coronal projections,
indicating the areas (highlighted) whose modular memberships are invariant across the partitionings obtained by the spectral method (used in
our analysis) as well as those obtained by simulated annealing, whose Q differs by less than 3% from Qspectral = 0.485. As in Figs. 1(a)–1(c),
the modular membership of each node is represented by its color (see color key at the bottom of each panel), the spatial positions of the
nodes are specified by the three-dimensional stereotaxic coordinates of the corresponding areas, and node sizes provide a representation of
the relative volumes of the corresponding brain areas (the spatial scale being indicated by the horizontal bar shown next to each projection).
Within the 291 partitionings that have Q > 0.47, around 70% of the 266 brain areas always occur in the same module as that in the spectral
modular decomposition, underlining the robustness of their modular identities (see Supplemental Material, Table S3 [36]). This is quantitatively
established by the consensus matrix shown in panel (f), which indicates for each pair i, j of brain areas the fraction of partitionings Pi j in which
they occur in the same module. The modules obtained using spectral partitioning, displayed in the order in which they are described in the
text, are indicated using broken lines. Within each module, the areas are arranged in increasing order of versatility (see text). Module 5, in
particular, is seen to be almost completely consistent across all 291 partitionings.

whose modular identities remain invariant across all the par-
titionings whose Q differs by less than 3% from Qspectral (i.e.,
Q > 0.47). In conjunction with the consensus matrix shown
in Fig. 3(f) which indicates the frequency with which brain
areas co-occur in the same module, this result emphasizes that
the modular mesoscopic organization we have described here
does not depend sensitively on the method used to partition
the network. Quantifying the robustness of the modular as-
signment of each brain area by measuring their versatility V ,
i.e., the extent to which their affiliation to a module varies
from one partitioning to another (see Sec. II), we observe
that a large fraction (∼70%) of them show high degree of
consistency in their module membership as indicated by the
corresponding low values of V (see Supplemental Material,
Figs. S5 and S6 [36]). In addition, we have used multiscale
techniques [29], that probes the community structure at differ-
ent levels of resolution (see Sec. II), to ensure that the modules

we identify are not agglomerations of smaller modules (see
Supplemental Material, Fig. S7 [36]). These observations
strongly suggest that the modular organization we report here
is an intrinsic property of the macaque connectome.

C. Distribution profile of nodes in terms of their intra- and
intermodular connectivity is conserved across cortical and

subcortical divisions

Having described the overall organizational structure of
the network at the mesoscopic level, we now focus on un-
derstanding the role played by the individual brain areas in
connecting other areas within their own module, as well as,
across modules. The importance of each area is quantified
in this framework by measuring the within-module degree z
score and the intermodular participation coefficient �c (see
Sec. II for details). As seen in Fig. 4(a), the z score allows
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FIG. 4. Classification of brain areas according to their intra- and intermodular connectivity. (a) Nodes of the macaque brain network
[colored and scaled as per Figs. 1(a)–1(c)] are displayed in accordance with their within-module degree z score (z) and participation coefficient
(�c), which provide a measure of their intra- and intermodular connectivity respectively. This allows the brain areas to be categorized into one
of seven possible categories (see Sec. II), viz., R1: ultraperipheral, R2: peripheral, R3: satellite connector, R4: kinless, R5: provincial hub, R6:
connector hub, and R7: global hub. Note that there are no areas in the macaque brain belonging to the categories R4 and R7. (b) The distribution
of the areas of the entire macaque brain across the different categories R1–R7 is similar to the corresponding distributions observed in several
anatomical divisions, viz., Thal: Thalamus, FL: Frontal Lobe, PL: Parietal Lobe, Cing: Cingulate Gyrus, Ins: Insula, TL: Temporal Lobe, OL:
Occipital Lobe, Amyg: Amygdala and Str: Striatum. (c) The connectivity pattern between areas belonging to the different categories R1-R7
indicated by the z scores for abundance of links between each pair of categories (the first symbol in Ri-Rj refers to the category of the source
area and the second to that of the target), measured with respect to degree- and modularity-preserved randomized ensemble of networks (see
Sec. II). Large positive (or negative) z scores, i.e., z > 1 (or z < −1), imply that the corresponding connection types occur more (or less) often
than expected from random networks that have degree sequence and community structure identical to the empirical network (for reference,
dotted lines are used to indicate |z| = 1). (d) Sagittal projection of the network of brain areas [see Fig. 1(b)] showing that connections between
provincial hubs (highlighted nodes) are localized within each module (see Supplemental Material, Fig. S11 for an enlarged view [36]).

areas to be distinguished between hubs, i.e., those having sig-
nificantly higher number of connections to other areas in their
module, and nonhubs, while P further classifies the hubs into
provincial (R5), connector (R6), and global (R7) categories
and the nonhubs into ultraperipheral (R1), peripheral (R2),
satellite connector (R3), and kinless (R4) classes. We note that
areas in each module have a similar distribution across R1–R3
and R5–R6 (with the sole exception of module 4 which has
no area playing the role of a provincial hub, see Supplemental
Material, Fig. S8 [36]). Uniformity of this nature can also be
observed in Fig. 4(b) where we compare the distributions of
constituent areas across the different categories for the entire
brain with that of the various areas of the cortex, such as
the frontal (FL), parietal (PL), temporal (TL), and occipital
(OL) lobes, the insula (Ins) and the cingulate gyrus (Cing),
as well as a subcortical region, namely the amygdala (Amyg)
which belongs to the basal ganglia. However, the striatum
(Str) which is also in the basal ganglia, and the thalamus
(Thal) have the distinctive characteristic of being essentially
devoid of areas that act as hubs, indicating relative homo-
geneity in the intramodular connectivity (see Supplemental
Material, Fig. S9 [36]).

We have also analyzed the relative frequency with which
areas belonging to the different categories connect to each
other in the macaque brain, compared to the corresponding
connectivity pattern observed in surrogate networks obtained
by degree- and modularity-preserving randomization (see
Sec. II) [50]. The profile of connection preferences between
the various categories shown in Fig. 4(c), with underrep-
resentation of connections between R1–R1, R5–R6, and
R6–R6 which has been related to the occurrence of multistar
structures, resembles other networks involved in information
propagation [50]. As can also be seen from the figure, non-
hubs prefer in general to connect to hubs and vice versa
(see also Supplemental Material, Fig. S10 [36]). This is in-
dicative of degree disassortativity, i.e., connections between
nodes having dissimilar characteristics (in this case, the num-
ber of connections) are favored. However, on investigating
the connectivity between pairs of these categories, we notice
that source areas belonging to peripheral (R2) and provincial
hub (R5) categories show a distinct bias in their connections
in terms of the participation coefficient of the target areas.
Specifically, R2 areas prefer to link to connectors, both hubs
(R6) and nonhubs (R3), while avoiding areas that are localized
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FIG. 5. The pattern of intra- and intermodular connections enhances the spread of information at local as well as global scales. (a) Temporal
evolution of spreading processes, quantified in terms of distributions of first passage times (τ ) of random walkers starting from one node
to reach another, contrasted between the empirical brain network (solid line, τemp) and randomized ensembles of networks, generated by
preserving either the degrees alone (red, τD), or both the degree and the modular membership of each node (green, τDM ). (b) The distribution
of τ differs significantly, depending on whether the target and source nodes belong to the same module (blue, τ intra) or different modules (red,
τ inter). As in panel (a), spreading occurs significantly more rapidly in the empirical network (solid lines) compared to the networks belonging to
the randomized ensemble (obtained by preserving degree and modular membership). (c) The empirical network also shows a reduction in the
time (τ ord

emp) required for global coordination, viz., the maximal ordering achieved in a system of binary Ising spins for varying fluctuation levels
(indicated by the parameter T ), when compared with randomized network ensembles (degree-preserved: τ ord

D , degree- and module-preserved:
τ ord

DM ). In panels (a)–(c), the dotted lines and the shaded regions around them represent the means and standard deviations calculated over the
randomized ensembles. (d)–(i) To see how the different categories R1–R7 of brain areas allow spreading to occur faster in the empirical brain
network than in equivalent randomized networks, we compare the case where the source node can belong to any category (d) with those where
the source is either ultraperipheral R1 (e), peripheral R2 (f), satellite connector R3 (g), provincial hub R5 (h), or global hub R6 (i). The z score
indicates that there is a statistically significant shift in the empirical distribution towards lower values of τ in all cases. However, while for R3
the increase in the rate of spreading is similar irrespective of whether the target is in the same module or in a different one, we observe that
there is a relatively larger shift at lower values for τ intra as compared to τ inter for most of the other categories (in particular, R1 and R5). Indeed,
the latter behavior dominates when we consider sources across all categories [see panel (c)].

in their modules (R1, R2, and R5). The trend is reversed
for R5 areas. In particular, they show a slight preference for
connecting to each other, which is in contrast to the other
categories which exhibit a marked tendency to avoid others
of their own kind.

This homophily between provincial hubs could arise from
two different patterns of connectivity between them, viz.,
one in which connections between the R5 areas are con-
fined within the same module and another in which the
corresponding areas across different modules are connected.
Figure 4(d) shows that the empirical evidence supports the
former arrangement where, within each module, provincial
hubs connect to each other preferentially. We note that the
three R5 areas indicated in module 5 occur, respectively, in the
three different submodules that were identified in the previous
subsection. This intramodular connectivity within provincial
hubs, taken together with the observation that they preferen-
tially connect to peripheral areas while avoiding connectors,

suggest that they help coordinate activity locally within each
module.

D. Information spreading within the brain is enhanced by the
specific pattern of intra- and intermodular connections

The roles played by areas belonging to different categories
in facilitating the transmission of information within and be-
tween modules can be investigated by considering a process
of diffusive propagation across the network (see Sec. II). The
distribution of first passage times τ , i.e., the time elapsed be-
tween initiating a random walk from any source node and the
earliest arrival to any given target node, is shown in Fig. 5(a).
While, in general, presence of modules in networks leads
to slower global diffusion [25], surprisingly we observe that
the distribution for the empirical network is markedly shifted
towards lower values of τ compared to randomized networks
with an identical degree sequence that may or may not have
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modular organization. This indicates that, instead of leading
to information encapsulation, the specific pattern of intra- and
intermodular connections between brain areas belonging to
different categories actually promotes faster communication
across the network. Moreover, as seen from Fig. 5(b), the
enhancement of the rate of diffusion in the connectome (in
comparison to the randomized surrogates) can be seen both
for transmission within a module, as well as, between differ-
ent modules. To show that these results are not sensitive to
the specific mechanism used to study spread of information,
we perform a similar investigation using a model of collec-
tive coordination. In particular, we use the well-known Ising
model wherein binary-state spins, each placed at a node of
the network, attempt to align their orientations with those at
neighboring nodes from which they receive connections. This
tendency to order is countered by the presence of fluctuations,
directly related to the “temperature” T . The extent of coor-
dination achieved through such interactions mediated by the
network is measured by an order parameter m (see Sec. II).
The time required for the system to attain the steady-state
value of m for a given T indicates how rapidly the influence
of a node disseminates across a given network, providing
an alternative means of quantifying the rate of information
spreading. Figure 5(c) shows that for a range of values of
T , the empirical network attains the steady state faster than
the ensembles of randomized networks, reinforcing the con-
clusion that the specific pattern of intra- and intermodular
connections occurring in the former enhances global coordi-
nation.

We also investigate how nodes belonging to each of the
categories characterized by distinct intra- and intermodular
connectivity roles contribute to enhancing communication in
the network [Figs. 5(d)–5(i)]. This is achieved in each case by
having the source node belong to the respective category and
comparing the corresponding distribution of τ with that ob-
tained from randomized surrogates (quantified using z score,
see Sec. II). Figure 5(g) shows that starting from a satellite
connector R3, diffusion to other nodes belonging both within
its module or to other modules is significantly faster compared
to randomized networks with identical modular organization
and degree distribution. In contrast, as seen from Fig. 5(h),
when starting from a provincial hub R5, the increase in the
rate of diffusion within a module, compared to that in the sur-
rogate networks, is even higher than the increase in the rate of
diffusion across modules. This resonates with the observation
of homophily between provincial hubs in a module reported
earlier [Fig. 4(d)]. When the source node belongs to any of
the other categories, the difference between the intra- and
intermodular diffusion timescales is seen to lie between the
range seen for these two cases. This suggests that the modular
character of the mesoscopic organization of the connectome
is further shaped by the distribution of roles played by the
different nodes in allowing information to spread within a
module, as well as, across different modules.

E. Spatial layout constrains the connectivity but does not
determine the modular organization of the brain

So far we have investigated the modular structure of the
network of brain areas exclusively in terms of the connection

topology. However, the brain is also a physical system that is
embedded in three-dimensional space associated with a dis-
tance metric which restricts the possible connections between
its constituent areas. Such constraints arise from resource
costs related to the spatial volume and transmission time
associated with the connections, and the rapid energy con-
sumption during synaptic transmission [93–100]. Thus, given
that the pattern of connections between the areas is a function
of the physical distance between them, we can ask to what
extent are the modules a consequence of the brain being
a spatially embedded network [101,102]. Indeed there have
been multiple attempts to relate the community organization
of connectomes to the cost of wiring between brain areas
that are located far apart [29,103]. To investigate the role of
spatial constraints on the structure of the brain network, we
supplement the network topological information with that of
the physical locations and volumes of each of the areas (shown
in Figs. 1(a)–1(c); for details see Sec. II). By comparing the
distributions of the physical distances d between all possi-
ble pairs of areas (connected or not) with that of only the
connected pairs [top panel of Fig. 6(a)], we can obtain the de-
pendence of the connection probability between two areas on
the distance d between them. As seen from the bottom panel
of Fig. 6(a), this probability decays linearly with the reciprocal
of the distance, i.e., P(C|d ) ∼ 1/d , explicitly demonstrating
the constraint imposed by the spatial layout of the brain areas
on their connectivity.

To see if the restriction on long-range connections implied
by the above constraint is responsible for the mesoscopic orga-
nization of the network we have reported here, we investigate
whether the network can be partitioned into modules even
after explicitly taking into account the distance dependence of
the connection probability (see Sec. II for details). Thus, if the
modules are exclusively a product of the distance constraint,
then the deviation of the empirically obtained connection
probabilities from those of the null model will be minimal,
yielding a single partition comprising the entire network (the
results for different surrogate networks are discussed later).
In contrast to the above scenario, we find that applying the
method on the brain network yields an optimal partitioning
comprising seven space-independent modules indicated by the
diagonal blocks demarcated by white lines in the adjacency
matrix shown in Fig. 6(b) [left surface]. The probability of
connections within these modules deviate strongly from the
values expected from the null model as shown by the mod-
ularity matrix [Fig. 6(b), right surface]. The distance matrix
[Fig. 6(b), top surface] also appears to suggest that areas
belonging to the same module are, in general, physically
closer to each other than those belonging to different modules.
Indeed, this is also true for the spatial clustering of nodes
in each network module seen in Figs. 1(a)–1(c). However,
this physical proximity cannot provide a causal explanation
for the modular structure as, even after filtering for spatial
effects, the resulting space-independent modules are substan-
tially similar to those reported in the previous subsections
[see Fig. 6(c)]. The similarity between the results of these
two different modular partitionings is quantitatively indicated
by the corresponding normalized mutual information Inorm(=
0.6) (see Sec. II). Thus, the spatial layout of the brain areas
cannot by themselves explain the mesoscopic organization of
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FIG. 6. Physical distance between brain areas is seen to constrain their connectivity, but the modular organization of the network is
independent of their three-dimensional spatial arrangement. (a, top) Probability distribution of the physical distances d between all pairs
of nodes (red) contrasted with that of connected pairs (blue). (a, bottom) The variation with physical distance d of the connection probability
P(C|d ) between a pair of nodes separated by d (red) showing the best fit relation P ∼ 1/d (solid line). (b) Joint representation of the
space-independent modular organization of the network of brain areas showing the matrices indicating adjacency {Ai j} (left surface), modularity
{Bi j} (normalized by total number of links L, right surface), and physical distance {di j} (top surface) between areas. Note that for matrix A
the background intensity of each block is proportional to the density of connections within that block, and for matrix B only the values
corresponding to linked pairs of nodes are shown. The nodes are grouped into partitions corresponding to the space-independent modules
of the network with the boundaries indicated by solid lines. The relatively large positive values clustered along the diagonal blocks of B
indicate the occurrence of significantly higher density of connections within each module, compared to that expected from the degrees
of, and the distance between, every pair of nodes. This characteristic signature of modularity is also visible in the adjacency matrix A
representing the connection topology, suggesting that the mesoscopic structure of the brain network is a consequence of factors beyond
the constraints associated with physical distance. This is also apparent from the distance matrix which shows that the modules comprise many
spatially proximal nodes even after discounting the effect of distance in identifying the modules. (c) Representation of the correspondence
between the network modules determined using exclusively information about the connection topology (“Original”) and those obtained
from space-independent partitioning of the network into communities. (d)–(f) The distributions of the degree of similarity between the
original topological (orig.) and the space-independent (SI) modular partitionings of a network, as measured by normalized mutual information
Inorm for three types of random surrogate network ensembles. The corresponding values for the modularity Q obtained using the two methods
is shown in panels (g)–(i). The ensembles differ in the nature of dependence of connection probability P between a pair of brain areas on the
distance d between them, viz., P ∼ d0 (d), (g), P ∼ 1/d (e, h), and P ∼ exp(−d ) (f), (i). As the macaque connectome exhibits a power-law
dependence similar to that in (e) and (h), we have indicated in these panels the corresponding values for the empirical network (arrows).

the network, and the existence of the structural modules is a
fundamental attribute of the brain.

To further establish that modular organization of the
connectome is not primarily driven by constraints imposed
by the physical distance between the brain areas, we use
three classes of surrogate random network ensembles to
investigate how spatial embedding affects the modular decom-
position of a network, with all the nodes occupying the same

positions in physical space as in the macaque connec-
tome. The three ensembles we have chosen for our
investigation are specified by the dependence of the
connection probability P between areas on the physical dis-
tance d between them, viz., (i) P ∼ d0, i.e., independent of the
distance, (ii) P ∼ 1/d , i.e., power-law dependence as in the
empirical network, and (iii) P ∼ exp(−d ), i.e., exponential
dependence, for which the constraint of distance most strongly
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affects the probability of connection. For each category, we
have generated 100 different networks that have identical
numbers of nodes and links as the empirical connectome. Sub-
sequently, we subject these networks to community detection
techniques using information about the connection topology
alone, as well as space-independent modular decomposition
which explicitly accounts for the dependence of P on d (see
above).

Figures 6(d)–6(f) shows how the modular nature of the
networks belonging to each of the three ensembles mentioned
above vary upon using two approaches for identifying the
modules, viz., (i) using the topological information about the
connections alone and (ii) employing a space-independent
partitioning that takes into account the dependence of the
probability of connections between areas on the physical
distance between them. The similarity between the modules
obtained using these two methods is measured using nor-
malized mutual information Inorm (see Sec. II). Note that,
if the two types of partitionings yield identical modules,
then Inorm = 1, while Inorm = 0 implies maximal dissimilarity.
Without any spatial dependence, the identified modules arise
through fluctuations alone, and hence the similarity between
the partitions obtained by the two methods will be entirely
stochastic in nature, resulting in the broad distribution for Inorm

seen in Fig. 6(d). In contrast, the ensemble underlying the
distribution shown in Fig. 6(e) has an inverse relation between
connection probability and physical distance, as in the em-
pirical network. The value of Inorm obtained for the empirical
network (indicated by the arrow) is seen to be significantly
larger than those for the random ensemble. This suggests
that had the modules arisen exclusively from a distance-
dependent constraint on connections, the topological and
space-independent approaches would have yielded highly dis-
similar partitionings. Qualitatively similar results are obtained
when the dependence of connection probability on physical
distance is even stronger, viz., P decaying exponentially with
d as in the case of the ensemble whose Inorm distribution is
shown in Fig. 6(f). The fact that partitioning the empirical
network using either the topological or the space-independent
approach results in relatively similar modular decompositions
suggests that constraints other than those related to physical
distance plays a significant role in shaping the mesoscopic or-
ganization of the macaque connectome. The results described
above are supported by the corresponding distributions of the
modularity Q measured for the different partitionings obtained
using each of the two approaches [broken and solid curves in
Figs. 6(g)–6(i)]. Thus, in the absence of any spatial depen-
dence, the distributions of Q obtained using the topological
and the space-independent approaches completely overlap [as
seen in Fig. 6(g)]. When P ∼ d−1, the relatively weak spatial
dependence gives rise to marginally lower values of Q for the
partitionings obtained using the space-independent method,
as compared to those obtained using the topological infor-
mation alone. This is seen to be true for both the empirical
network (broken and solid arrows) and the random ensembles
[Fig. 6(h)]. With the stronger spatial dependence inherent in
an exponentially decaying functional relation, we expect to
see much larger differences in the Q values for the two types of
partitionings, and this is indeed observed in the distributions
shown in Fig. 6(i). Therefore, the more dominant the role of

the constraint on physical distance in determining the connec-
tions, the more dissimilar the partitionings obtained by the two
methods and the larger the difference in the corresponding Q
values (see also Supplemental Material, Fig. S12 [36]).

IV. DISCUSSION

A. The utility of modularity in complex networks

We note that the modular nature of the brain has been
long recognized, both in terms of function and, more recently,
in the topological organization of its structural connections
[16]. Considerable attention has been focused on the ques-
tion of structure-function convergence in the context of brain
modules [23]. The hypothesis of “information encapsulation,”
whereby it is assumed that the information processing re-
lated to specific functions are relatively unaffected by those
corresponding to other functions, has been suggested as an
explanation of how functional modules can arise from the
structural organization of the connectome into several com-
munities [104]. Although this may appear intuitive because
spreading processes are generally fast within a module and
slow down during their passage to a different module [25], we
find on the contrary that the specific modular organization of
the macaque connectome allows signals to spread very fast. In
fact, the communication of information across the empirical
network appears to be even faster than that seen in equivalent
networks whose connections are distributed homogeneously.
This is surprising as global propagation is fastest for homoge-
neous networks, and usually tends to reduce once mesoscopic
structural features such as modularity are introduced [25].

We connect this counterintuitive result to the detailed
mesolevel attributes of the topological organization, specif-
ically the roles played by different brain areas in terms of
their intra- and intermodular connections. By analyzing these
connections we reveal distinctive features of the connectome,
namely, the tendency of provincial hubs within a module to
connect to each other (R5 homophily), and the preference
shown by connector hubs to link to peripheral nodes across
different modules. We also note that the different regions
of the brain exhibit similar distributions of intra- and in-
termodular connectivity roles among their constituent areas,
suggesting an uniformity in the design of the network ar-
chitecture across this complex system that could potentially
embody a general computational logic [105,106].

The surprising role of the specific pattern of intra- and in-
termodular links in the macaque connectome in enabling rapid
dissemination globally through the system, which we have
verified using general models of diffusion, as well as, of co-
ordination, has implications beyond the immediate context of
brain networks. To illustrate this, we can compare the profile
of connection preferences between nodes in the different cate-
gories R1, ..., R6 [Fig. 4(c)] with those reported for other types
of networks, e.g., with networks involves in transportation and
those concerned with communication [50]. In networks of the
former type, links between ultraperipheral nodes (R1–R1),
between connector hubs (R6–R6), and between connector
and provincial hubs (R5–R6) are overrepresented, while the
opposite is true for networks of the latter type. These link
classes are underrepresented in the macaque connectome,
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which places it among the networks concerned primarily with
efficient signal transmission across the nodes, such as protein
interactomes and the Internet [50]. However, the overrepre-
sentation of connections between provincial hubs that is seen
in the macaque connectome is not present in these networks.
It is however a signature it has in common with another con-
nectome, albeit at a different scale, viz., the neuronal network
of Caenorhabditis elegans [11]. Thus, potentially it could be a
characteristic feature of networks whose function involves not
only conveying signals rapidly from one node to another, but
to also process the information so that the system can mount
a global response to stimuli with a high degree of reliability.
Another striking feature is the preference of satellite connec-
tors (R3) to be linked to hubs. Taken in conjunction with the
R5 homophily which promotes intramodular communication,
it suggests that the satellite connectors connect the provin-
cial hubs of different modules with each other—effectively
implementing an architecture that can support rapid global
communication. It would be intriguing if this pattern is seen
to occur in other modular networks whose principal function
involves fast dissemination of information.

B. Structure-function relation in the macaque brain

Despite differences in the details of their organization, the
modules that we have identified in the macaque connectome
have common structural features. Most notably, each of them
have cortical and thalamic components with the sole excep-
tion of module 3, suggesting a distinct functionality of this
module. As mentioned in Sec. III A, each sensory modality
is exclusively associated with a particular module. Thus, the
sizable thalamic contribution to modules 2, 4, and 5 can be
understood in terms of the roles that their cortical compo-
nents play in processing specific types of sensory stimuli.
In particular, the information from the corresponding sensory
organs arrive at the cortical areas belonging to these modules
via relay centers located in the thalamic component of the
respective modules. This, however, cannot explain the sizable
contribution from thalamic areas to module 1, as the sensory
modalities it is associated with, namely, olfaction and gusta-
tion, do not involve any thalamic relay. As one of the primary
functions of this module is the integration of information
processed in different cortical areas (as mentioned earlier), it
suggests that areas in the thalamic component of this module
serve as relay centers coordinating intercortical communica-
tion [63].

The module with which a particular brain area is associated
may also alert us to possible functions of this area that have
not yet been identified. As an example we consider multi-
modal association areas, which integrate and process inputs
from different sensory modalities (such as the areas LIP, MIP
and area 46). Using information about their modular member-
ship, we can identify which modality or function each of these
areas are most strongly associated with. This is illustrated by
considering the LIP, VIP, AIP and MIP areas of the Intra-
parietal Sulcus. Although they are all multimodal association
areas, LIP and VIP are part of module 5, whereas areas AIP
and MIP are part of module 2. It is known that LIP and VIP
are involved in visual attention and saccadic eye movements
[107–109], which are predominantly visual processing tasks

(consistent with the broad function of module 5). In contrast,
AIP and MIP coordinate the visual control of reaching and
pointing [110–112], which, although guided by visual infor-
mation, is primarily a motor function (consonant with the
broad function of module 2). Thus, the specific functionalities
of these association areas seem to tie in with the modules
that they belong to. We would also like to note that by par-
titioning the modules further using decomposition techniques
similar to those applied on the entire connectome, one can in
principle obtain submodules of brain areas that may also be
functionally specialized. As described in Sec. III A, this has
been done explicitly for the module 5 whose composition is
the most robust under different realizations of the decompo-
sition. The three communities thus identified can indeed be
broadly associated with distinct aspects of visual processing
(Fig. 2). It suggests the possibility of using information about
community membership at finer scales of resolution in the
mesoscopic organization to potentially identify the functional
roles of specific brain areas.

We note that our work parallels the viewpoint proposed
in several earlier studies that cognitive processes in the brain
necessarily involve integration of information across modal-
ities and functionalities [113–115]. For instance, behavioral
studies in humans show that processes such as attention and
perception could be linked to both spatial cognition and the
semantic processing of language [116]. Indeed, cross-modal
integration has been investigated extensively in the context of
semantic comprehension [117]. The simultaneous processing
of multiple inputs is believed to operate under mutual con-
straint satisfaction [118], with the probability estimate of each
input constraining those of other inputs. Neurocomputational
frameworks such as the “hub and spoke model” [119–121]
have been used to suggest that modality specific sources of
information (spokes) are integrated in a transmodal hub to
generate conceptual knowledge. There is also substantial ev-
idence in support of integration across different modalities
occurring in primates [122–125]. Our results show that the
mesoscopic organization of the modules, which individually
are reminiscent of the information encapsulation perspective,
can nevertheless enhance communication across the connec-
tome, thereby promoting integration globally [115].

While the potential of rapid communication between
different areas, made possible by the underlying modular ar-
chitecture of the network, suggests a plausible explanation
for the evolution of the observed mesoscopic organization of
the macaque brain, it could also potentially be a consequence
of optimizing for wiring lengths [126]. However, we have
explicitly shown that the constraint imposed by the physical
distance between the brain areas is insufficient to explain the
modular partitions observed by us. Indeed, although the five
modules of the connectome that we have identified comprise
brain areas that are, for the most part, spatially proximal, mod-
ule 4 is a prominent exception. It spans two widely separated
locations in the brain, one comprising the primary and sec-
ondary auditory areas which are in the temporal lobe and the
other consisting of association areas located in the prefrontal
lobe. While it is well-established that the temporal lobe areas
belonging to this module contribute to its associated sensory
modality, viz., auditory processing, it is not entirely clear what
role the prefrontal areas of this module plays in this context.
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We note, however, that there are intriguing parallels between
these areas and those occupying corresponding locations in
the human brain. Specifically, the prefrontal and temporal
parts of module 4 that are known to have a role in social
cognition in primates [127,128] correspond to the Broca’s and
Wernicke’s areas in the human brain, respectively. As is well
known, the former is responsible for speech production in hu-
mans, while the latter is critical for language comprehension
[73]. Although there is no direct counterpart of language in
macaques, nonhuman primates are known to be capable of
communicating through signals such as facial expressions and
vocalizations [129]. This correspondence therefore warrants
consideration of whether some of the areas in module 4 of
the macaque brain developed from a common evolutionary
precursor of the apparatus responsible for facilitating lan-
guage in humans. Indeed, this view is supported by recent

research [130–132] that have used language-like behavior in
nonhuman primates as models for understanding how speech
and language might have evolved in humans [133].
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