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Planted matching problems on random hypergraphs

Urte Adomaityte®,"" Anshul Toshniwal,>" Gabriele Sicuro®,"-* and Lenka Zdeborova?:$
' Department of Mathematics, King’s College London, London SE11 6NJ, United Kingdom
2SPOC Laboratory, EPFL, 1015 Lausanne, Switzerland

® (Received 9 September 2022; accepted 14 October 2022; published 7 November 2022)

We consider the problem of inferring a matching hidden in a weighted random k-hypergraph. We assume that

the hyperedges’ weights are random and distributed according to two different densities conditioning on the fact
that they belong to the hidden matching or not. We show that for k > 2 and in the large-graph-size limit, an
algorithmic first-order transition in the signal strength separates a regime in which a complete recovery of the
hidden matching is feasible from a regime in which partial recovery is possible. This is in contrast to the k = 2
case, where the transition is known to be continuous. Finally, we consider the case of graphs presenting a mixture
of edges and 3-hyperedges, interpolating between the k = 2 and the k = 3 cases, and we study how the transition
changes from continuous to first order by tuning the relative amount of edges and hyperedges.
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I. INTRODUCTION

The study of inference problems has attracted a grow-
ing interest within the statistical physics community working
on disordered systems [1-3]. Statistical physics techniques
have been successfully applied to the study of a plethora of
inference problems [3-5], inspiring powerful algorithms for
their solution [2,6,7] and unveiling sharp thresholds in the
achievable performances with respect to the signal-to-noise
ratio in the problem. Such thresholds delimit regions in which
recovery of the signal is information-theoretically impossi-
ble, or easy, or hard (i.e., information theoretically possible
but not achievable, or suboptimally achievable, by known
polynomial-time algorithms) [8].

The planted matching problem has recently been an object
of a series of works that unveiled a nontrivial phenomenology.
The interest in it stems from a practical application, namely
particle tracking [9]: In the particle tracking problem, each
particle appearing in a snapshot taken at time ¢ has to be
assigned to the corresponding image in the frame taken at pre-
vious time r — At via a maximum likelihood principle. This
setting can be reformulated as an inference problem on a com-
plete bipartite graph, in which the hidden truth corresponds to
a perfect matching, and each feasible particle displacement
is associated to an edge linking two nodes representing the
old and new positions, weighted with the likelihood corre-
sponding to the displacement itself. The maximum likelihood
assignment can be found efficiently, e.g., using belief prop-
agation [10,11]. In a simplified, but analytically treatable,
setting, a series of recent works [12-14] revisited the problem
considering a random graph of N vertices containing a hidden
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perfect matching characterized by an edge weight distribution
p different from the distribution p of all other edge weights.
By means of theoretical methods developed for the study of
the random-link matching problem [15,16], it was shown that
a phase transition takes place with respect to a certain measure
of similarity between the distributions p and p when the sys-
tem size N is large. A regime in which the hidden structure
can be recovered up to O(1) edges (complete recovery) is
separated from a regime in which only a finite fraction of the
edges can be correctly identified (partial recovery). Moreover,
the transition is found to be continuous and, for a specific
choice of p and p, proven to be of infinite order. Interestingly,
it has been shown, at the level of rigor of theoretical physics,
that the phenomenology extends to the so-called planted k-
factor problem [17,18], in which the hidden structure is a k
factor of the graph, that is, a k-regular subgraph including all
the nodes.

In this work we will investigate the planted matching prob-
lem on hypergraphs. In hypergraphs edges may have more
than two associated nodes. This natural extension of graphs is
particularly interesting as many applications involve multiple
classes to be matched at the same time (e.g., in the case in
which a customer has to be matched to multiple types of
products) [19]. The minimum matching problem on weighted
hypergraphs consists in finding a set of hyperedges such that
every node belongs to one hyperedge in the set and the total
weight of the hyperedges is minimized. The planted matching
problem on hypergraphs can be motivated by particle track-
ing in k consecutive snapshots where the probability that a
particle moved on a given path is a nonseparable function
of its k positions. This will be the case for most dynamical
processes with some kind of inertia, e.g., a particle is more
likely to keep its direction of movement rather than change
direction randomly. In this application the hypergraph is a
fully connected k-partite graph where each possible trajectory
of a single particle corresponds to a hyperedge. The actual tra-
jectory of that particle is in the planted set of hyperedges. We
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will thus study a planted matching on hypergraphs and show
that such apparently minimal generalization bears remarkable
differences with respect to the planted matching problem. In
the considered setting, the “signal” will consist of a perfect
matching within a given graph, in which nodes are grouped
in k-plets, each one bearing a weight distributed with density
p. Hyperedges not belonging to the hidden structure have
weights distributed with density p. As in the planted matching
problem, the goal is to recover the signal from the observation
of the weighted hypergraph.

The paper is organized as follows. We focus on a spe-
cific ensemble of hypergraphs, introduced in Sec. II, where
we specify the rules used to construct a random hypergraph
with a hidden (or planted) matching within this ensemble.
In Sec. III we describe the belief propagation algorithm for
the estimation of the marginals of the posterior probability:
The algorithm relies on the knowledge of the construction
rules given in Sec. II. The performance of the algorithm is
then investigated with respect to two estimators, namely the
(block) maximum a posteriori matching and the so-called
symbol maximum a posteriori estimator, i.e., the set of hyper-
edges whose marginal probability of belonging to the hidden
matching is larger than % In Sec. IV we show, by means of
a probabilistic analysis of the belief propagation equations,
that an algorithmic transition occurs between a phase with
partial recovery of the signal and a phase with full recovery
of the signal. The transition is found, for £ > 2, to be of first
order, unlike the aforementioned k = 2 case. A mixed model,
involving both edges and hyperedges, is introduced in Sec. V:
It is shown that the first-order transition becomes of second
order when a finite fraction of edges are introduced in the
hypergraph. Finally, in Sec. VI we give our conclusions.

II. THE PLANTED ENSEMBLE AND THE INFERENCE
PROBLEM

The inference problem we consider is given on an en-
semble of (weighted) random hypergraphs which generalizes
the ensemble of weighted graphs discussed in Refs [13,18].
This ensemble, which we denote ’Hiv [P, p, uses as input
the coordination k of the hyperedges, an integer N € IN, two
absolutely continuous probability densities p and p, and a real
number ¢ € R*. A hypergraph G, belonging to this ensemble
has a set of kN vertices V), with average coordination ¢ + 1,
and it is constructed as follows:

(1) A partition of the kN vertices in N sets of unordered
k-plets is chosen uniformly amongst all possible partitions
of the vertex set in subsets of k elements. Each k-plet in the
partition is then connected by a k-hyperedge, which we will
call planted. We denote M, the set of planted hyperedges.
Each planted hyperedge e € M) is associated to a weight w,,
extracted with probability density p, independently from all
the others.

(2) Each one of the (’\,’(k) — N remaining possible k-plets
of vertices not in M is joined by a hyperedge e¢ with prob-
ability c(k — 1)!(kN)'=%. We will say that these hyperedges
are nonplanted and we will denote &," their set, so that
Eo = MoUE&" S VF* is the set of all hyperedges of Go.
Each nonplanted edge e € & is associated to a weight w,

extracted with probability density p, independently from all
the others.

By construction, the number of nonplanted hyperedges will
concentrate around its average cN for N — 4-00, so that each
node has degree 1+ Z,, where Z, is a Poissonian variable
of mean ¢, Zy ~ Poiss(c). This construction straightforwardly
generalizes the usual rule for generating Erd6s-Rényi random
graphs to the case of hypergraphs. The probability of observ-
ing a certain graph Gy = Vo, &, wo), with wy = (w,)eecs, an
array of hyperedge weights, conditioned to a given set My, is
then

P[Gol Mol =T(Mo S &) [ pwe) [ plwe)

eeMy ecEll

etk — 1)1 | ctk=D) ()-1&l
X[(kmkl] [ B <kN)k1} ’
(H

where [ (o) is the indicator function, equal to 1 when its argu-
ment is true and zero otherwise. By applying Bayes’s theorem,
and using the fact that P[Mj] is independent on M being
uniform over all possible partitions,

P[My]
P[Gol

We parametrize the posterior by associating to each matching
M the matching map m : & — {0, 1} such that m, =
I(e € My). Note that a matching map satisfies the constraint
Y ecopMe =1 for each v € V, where dv is the set of hy-
peredges that are incident to v. It is clear that there is a
one-to-one correspondence between a matching M and its
map m: By an abuse of notation, we will therefore use M and
its map m interchangeably and write P[M|Gy] = P[m|Go].
We denote in particular m* the matching map corresponding
to ground truth, i.e., the planted matching. Our goal is to use
the posterior to produce an estimator iz of m*. Asinthe k = 2
case [13], the estimator can be chosen in such a way that a
certain measure of distance from the true planted matching m*
is minimized. A possible measure of distance is the function

P[MylGo]l = P[Gol Mo]

x P[GolMol. (@)

o(m) = % gjﬂ(me #m?). ?3)

The estimator minimizing the quantity above can be con-
structed by minimizing the expectation of each element of the
sum over the posterior, i.e., choosing for each edge e of the
graph

m = arg max P[m, = m|G], 4)
me{0,1}

where P[m, = m|Gy] is the marginal probability of m,, value
of the matching map on the edge e. We call this estimator sym-
bol maximal a posteriori (SMAP), following the nomenclature
adopted in the study of error correcting codes [5]. However,
by construction, the estimator m is not a matching map in
general: As we maximize the likelihood of each individual
edge independently from all the others, it is possible that the
resulting estimator set of selected edges does not satisfy the
requirement of being a perfect matching. In the low signal-
to-noise regime, for example, the estimator will propose as
planted very few edges (and not N). A different estimator,
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which instead provides a genuine matching, can be obtained
considering

m® :=arg max P[m|Gy], %)

m matching

called block maximal a posterior (b MAP) estimator. The
bMAP minimizes ¢(m) over the space of matching maps and
is therefore a matching map. In what follows, we will study
E[o] for both the SMAP and the bMAP, the average E[e] to

A

be intended over the ensemble ’H,;(V b, pl for N — +o00.

III. BELIEF PROPAGATION ALGORITHM
A. A preliminary pruning of G,

As in the k = 2 case, if the distributions p and p have
different support, then it will be possible to identify some
hyperedges as planted or nonplanted simply by direct inspec-
tion. Assuming the intersection of supports I' := supp(p) N
supp(p) to be of nonzero Lebesgue measure, it is clear that
if an edge e has w, € supp(p) \ I" (where ““\” is the set differ-
ence), then m; = 0. Similarly, if w, € supp(p) \ I', then m =
1. By consequence, a preliminary pruning of the graph is pos-
sible by removing all edges that are immediately identifiable
[20]. Let us define the portions of mass of the two distributions
overIas pu = [ p(w)dw and f := ;. p(w)dw, so that, after
such pruning, w, ~ P(w) := o~ 'p(w)l(w € ) if e € My
and w, ~ P(w) == ' p(w)l(w € T')if e & M. The pruned
hypergraph, that we will call G; = (Vy, &1, wy), has V; €V,
&1 € &, and w, €T for all edges e € £. Moreover, |V;| =
kN {1, each node having one incident planted hyperedge and
Z, incident nonplanted hyperedges, with Z; ~ Poiss(y ), with
y := cuft*=1 [21]. Finally, let us call M, = {e € My | w, €
'} the set of planted hyperedges whose weight is in I', inter-
section of the supports of p and p.

Once the graph G; has been obtained, an additional, el-
ementary observation can further reduce the size of the
problem. Due to the fact that P[Z; = 0] = ¢™ # 0 at finite
¢, for large N the graph will contain leaves with finite proba-
bility. For each of these leaves, the single incident hyperedge
e can be classified as an element of M, and removed from
the graph alongside with its endpoints and their corresponding
incident hyperedges. In this way, we can proceed recursively
in a new pruning of G, until a new hypergraph G = (V, &£, w)
is obtained that cannot be further pruned. This graph has no
leaves by construction and all the edges e € £ have w, € .

To compute the fraction of surviving hyperedges, let us
consider the graph G, and an edge ¢ € M. We denote 1 — §
the probability that one of the endpoints of e is a leaf at a
certain point of the second pruning: If this is the case, then e
will be pruned. Similarly, if e € £, \ M is nonplanted, then
we denote 1 — g the corresponding probability that one of its
endpoints will become a leaf at some point. The quantity §
satisfies the equation

o0
o e’ _ k-1
1—g=) —[0-¢""WI'=e7"",  (6)
n!
n=0
as it is sufficient, for each nonplanted edge incident to a given

vertex to be pruned, that one of the remaining k£ — 1 endpoints
requires pruning. The equation for g is simpler as an endpoint

of a nonplanted hyperedge is removed if, and only if, its
incident planted hyperedge is pruned, therefore

g=4"". (6b)

We numerically verified Eqgs. (6) in Appendix B. As a
result, a node of G has coordination 1+ Z, where Z is a
zero-truncated (ZTPoiss) Poisson distribution of parameter
¢y, Z ~ ZTPoiss(¢""'y) [22]. We will denote M the set
of unidentified planted hyperedges, and fix m, = m; = 1 for
all the identified hyperedges e € M, \ M.

B. Back to the posterior and Bayes optimality

At this point, we have exploited the information deriving
from the the weights and the topology separately. To further
proceed in the estimation of m*, the optimal approach goes
through the calculation of the posterior

o 11 [525] 11

eeM vey

(ZW=0,0)

eciv

where the requirement that m is a matching map is explicitly
enforced by the indicator function. Estimating the measure in
Eq. (7) is pivotal to obtain both the bMAP and the sSMAP. To
do so, we consider

vg(m) o< exp (—ﬂ Zmewe) 1_[ ]I(Z m, = 1), ()

veyV ecov

where we have denoted
P(w,)
n [
P(w,)

and we have introduced a new parameter 8 > 0 (hence the
change of notation). The parameter is such that, for § = 1,
Eq. (8) corresponds to Eq. (7): This means that, by sampling
from v, we sample from the correct posterior and we are in
a Bayes optimal setting that leads to the lowest possible error
p. Given areal function f(m;, m;) of two matching maps, as-
suming that m,, m,, and m are independent samples from vy,
then E[f(m, m*)] = E[f(m,, m;)], a property known in the
physics community as Nishimori condition [23]. Importantly,
the validity of the Nishimori condition implies the absence of
replica symmetry breaking: It implies, indeed, that the over-
lap between two independent samples has one self-averaging
overlap value [2], while a replica symmetry broken regime
would require a nontrivial distribution of possible overlaps.

Finally, observe that arg max,, v;(m) can be obtained as the
support of vg in the limit 8 — +-oo: In this limit, the measure
vg concentrates indeed on the maximum of v; (), correspond-
ing to the perfect matching of maximum likelihood.

we = —1 Veeé&, 9)

C. Belief-propagation equations

Due to the sparse nature of the hypergraphs under study,
a natural tool to estimate the posterior of the problem is be-
lief propagation [2]. The belief propagation equations for the
minimum-weight matching problem on hypergraphs, or multi-
index matching problem (MIMP), are derived in Refs. [24,25].
The algorithm runs on a factor graph obtained from the
original weighted hypergraph representing each hyperedge e

054302-3



URTE ADOMAITYTE et al.

PHYSICAL REVIEW E 106, 054302 (2022)

4?&

Y%

FIG. 1. Left: A pictorial representation of a random 3-
hypergraph with an example of matching (in red) on it. Right:
Pictorial representation of the corresponding factor graph, where
variable nodes (circle) correspond to hyperedges and function nodes
(squares) correspond to nodes of the original graph.

by a variable node, and each vertex v € V by a factor node.
The factor node representing v is linked to the variable node
representing e if the hyperedge e is incident to v in the original
hypergraph. Variable nodes correspond to the variables m, and
are associated to a weight e Pmewe o c €: each factor node, on
the other hand, represents the local constraint Zee gy Me = 1,
v € V, see Fig. 1. The analysis of our case follows straight-
forwardly the study of the minimum-weight MIMP [24,25],
the main (but crucial, in the statistical analysis) difference
being the fact that the weights have in our case the meaning
of log-likelihood on differently distributed weights. For each
edge (e, v) of the factor graph—joining the variable node e
corresponding to the hyperedge ¢ € £ with the factor node v
corresponding to the node v € V—we introduce two “mes-

sages,” namely
Duselm) o Jl(m +) me = 1) [Tvevme) (10)
{mz}ecove Zedv\e Zedv\e
and

Vesy(m) o e—ﬁmwe l_[ Dysse(m), (10b)

uede\v

where de is the set of endpoints of e. The message v,_.,
mimics the marginal probability of the variable m, in absence
of the endpoint v. The equations are obtained in the hypoth-
esis of a treelike structure of the factor graph, so that the
incoming contributions in a node can be considered indepen-
dent. Exploiting m being a binary variable, it is convenient to
parametrize both marginals by means of cavity fields, namely
write

eﬂmhlyaﬂ Bmne—y

Dy e(m) = Vesy(m) = , (1D

1 + elg/’lu~>¢ 1 + eﬁ”

so that the belief propagation equations in Eq. (10) become

hysse = —— ]n |: Zeﬁ(neﬁy_a)e i|’

eedv\e

Ne—sv = Z Ruse.

uede\v

(12a)

(12b)

Such equations specify a belief propagation algorithm (BPA)
to estimate the marginals of the posterior probability: We will
use this algorithm, which is exact if the factor graph is a tree,
to estimate the marginals of the true posterior. In particular,
the marginal distribution of the variable m, corresponding to
the hyperedge e € £ is obtained as

ve(m) oc e P [ Dy (m)

vede

(13)
X exp |:,3me (Z hyse — we>i|
vede

A hyperedge e can be therefore selected if v.(1) > % In
other words, we can construct i1 = m® (fin = m", respectively)
computing the fields 4,_,, for 8 = 1 (8 — +o0, respectively)
and then taking

e =9<Z Byese —we>. (14)

vede

D. Recursive distributional equations

To study the performances of the algorithm in the N —
400 limit at any B, we can write down a set of recursive
distributional equations (RDEs) involving random variables
whose statistics follow the one of the cavity fields in the BPA.
Follovying Refs. [9,13,24], let us introduce the random vari-
ables H and H distributed as the cavity fields 4,_,, on a planted
and nonplanted hyperedge, respectively. Let us also denote 2
and Q two random variables distributed as w, on planted and
nonplanted k-hyperedges, respectively. In the large-size limit,
such random variables satisfy the following RDE:s:

z k=1
Hi—%ln [ZCXP <IBZHvu_ﬂQv>:|’ (15a)

v=1 u=1

and

Zk 1 H
with probability 1-4,
—% In [exp (—BH) +exp (8 42| Ha — BQ)]
with probability g,
(15b)

with Z £ ZTPoiss(¢*~'y). Here we use £ {0 stress that the
two sides of the equations are equal in distribution. The equa-
tions above are straightforward generalizations of the k = 2
case discussed in Ref. [13]. In particular, for § — +oo the
RDESs become

k—1
H min {Q, — Z Hout,
1<vgZ

u=1
O-Y* 1A,
min (Q — Zl;;} H,, I:|)

Due to Eq. (3) and Eq. (14), the average of the reconstruction
error for both the bMAP and the sMAP estimator is then

I~

(16a)

with prob. 1 — §

I~

" (16b)
with prob. §.
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obtained as
~ k k
1 P |:Z H, > Q:|,
v=1

A Ak k
= (17)

the difference between the two cases being the chosen value
of B in the RDEs. For 8 — 400 Eq. (17) can be further
simplified (see Appendix A) as

k
Elo] = pg*P [ZH } (18)

Note that, for any value of B, k, and ¢ and for any pair of
distributions p and p, the RDEs above admit the solution
H = —H = +00, which corresponds to a full recovery of the
hidden signal, i.e., E[o] = 0.

The RDEs also allow to estimate the Bethe free energy at
any B [2] in the large-N limit, which is defined, on a given
instance Gy of Hy [p, pl, as

NACIES }V Z @q
aeM
A |
- — In exp| B hy—sq — Bw,
N'B veV |:a€zdu ( ueaza\u ):|

19)

This quantity estimates the log-likelihood _NL/S In)",, vg(m)

within the treelike assumption. In the N — +o0 limit, fgo B)
is expected to concentrate on

A A

£8) = (1 = g IS = FTEE In (1 4 2 A00)

M Eln (1 + eP S Hu—ﬂﬂ)

k— Dpgk T
+ ME In (1 +ef Y Hu*ﬂﬂ)_ (20)

For B — 400, f2(B) converges to (minus) the log-likelihood
of the bMAP estimator,

lim f2(B) = (1 — ag")E[S]
p—>+o0

oo{gs)
+[Wq"IE[Q@ (; H, > Q>:| Q1)

where the random variables H and H satisfy the set of RDEs
(16). Note that the Bethe free energy associated to the infinite-
fields fixed point is simply f* = E[Q] and corresponds to
(minus) the log-likelihood of m*.

IV. THE PARTIAL-FULL RECOVERY TRANSITION IN
THE PLANTED MIMP

The RDEs in Eq. (15) can be solved numerically by
means of a population dynamics algorithm (PDA) [2]. In
the numerical results presented below, the planted weights
are independently generated from an exponential distribu-
tion of mean A, p = Exp(A), while the nonplanted edges
have weights uniformly distributed on the interval [0, c],
p = Unif ([0, c]). We will focus on the ¢ — 400 limit (the
finite-c case exhibits a qualitatively similar phenomenology).
In Fig. 2(b) we present the reconstruction error achievable
via a BPA predicted by the PDA for different values of 8
and A for k = 3. The value 8 = 1 corresponds to the error
associated to the SMAP estimated via a BPA, whereas the
bMAP is obtained for 8 — +o0o. The figure makes evident
that, at given A, the performances at 8 = 1 are optimal. We
see that there is a sharp transition between a region with
E[e] > 0 and a region with E[p] = 0. For k = 2 a similar
phase diagram can be drawn, see Fig. 2(a): The nature of the
transition, however, is different. The transition toward the full
recovery phase is continuous and it has been proven that it
is of infinite order as B — +oo [13,14]. In Fig. 2(b) we also
present by a dashed line the value of A above which the partial
recovery solution is thermodynamically unstable, or in other
words metastable. This line is computed by comparing the
Bethe free energy of the partial recovery fixed point to the
fixed point corresponding to the planted solution.

Let us focus now on the 8§ = 1 line and on the 8 — +o00
line, corresponding to the estimation via a BPA of the sSMAP
and the bMAP, respectively.

A. The sMAP estimator

In Fig. 3 we present the results obtained by solving the
RDEs in Eq. (15) with 8 = 1 by means of a PDA, and by
estimating [E[o] for different values of A. As anticipated,
the phenomenology is different from the kK = 2 case, where a
continuous transition at Ay, 2 4 is observed [13]: For k = 3,
a sharp jump in E[g] takes place at A4, = 0.578(1), so that
Elo] =0 for A > Ayq, i.e., perfect recovery of the planted

configuration is achieved, and the solution H=_-H= +00
is found with belief propagation. For A < A,j¢, the PDA fixed

point distributions of the fields H and H are supported on finite
values, predicting a partial recovery of the hidden matching
with belief propagation, i.e., 0 < E[o] < 1, see Fig. 4.

The presence of a first-order transition for k > 2 can
be further corroborated by computing the Bethe free en-
ergy, shown in Fig. 3: The nontrivial fixed point obtained
by the PDA for A < Ay has Bethe free energy larger than
f*, free energy corresponding to the planted solution, for
A > Ay = 0.43(1), meaning that such fixed point is ther-
modynamically unstable in the range Ay < A < Ayg, Where
therefore m* = m* yet the solution is inaccessible to BPA,
which outputs the partial recovery fixed point. The region
Ait < A < Agg thus marks a hard phase where perfect recovery
is information-theoretically possible, but belief propagation
algorithm does not achieve it. It is conjectured that a much
broader class of polynomial algorithms will fail in this region,
as escaping the partial recovery fixed point would require an

054302-5



URTE ADOMAITYTE et al. PHYSICAL REVIEW E 106, 054302 (2022)

0.01 0.1

(a) ()

FIG. 2. Average error E[p] for the planted MIMP obtained using a PDA with 10*-10° fields. For our numerical simulation, we used here
¢ = 50 as we observed no sensible dependence on ¢ for larger values of the average degree and A 2, % Note that for A — 0, the effect of the
finite-c approximation becomes evident as a full recovery region appears near the origin (see Appendix B). (a) Average error In E[p] for k = 2.
The transition from partial to full recovery is continuous. For 8 — +ooc the transition takes place at A = 4 [12] and it is proven to be of infinite
order [13,14]. By consequence, a full recovery phase exists for A > 4 at the Bayes optimal value 8 = 1. Note, however, that this does not
hold for all values of 8. The RS ansatz is proven to be the correct one for § — +oo [11] and must be correct for 8 = 1 due to the Nishimori
conditions. The BP algorithm is indeed found to converge correctly for all values of . (b) Average error In E[p] achievable by a BPA for
k = 3 as predicted by the PDA. The sharp color change when approaching the full recovery region (in white) is due to the discontinuous
nature of the transition taking place on the continuous line representing A,. In the region above the dashed line the partial recovery solution
is thermodynamically unstable at that value of 8. Perfect recovery is information theoretically possible above the dashed line at g = 1, i.e.,
above Ay = 0.43(1) and impossible below. Note that the results are obtained in the RS assumption which is correct at 8 = 1 but needs to be
verified for 8 # 1. (c) Average error In E[o] achieved by a BPA in the Bayes-optimal setting (8 = 1) for the planted (2 + 3)-MIMP. Here r = 0
corresponds to the pure k = 2 case, while r = 1 corresponds to the pure k = 3 case. The first-order algorithmic transition A4, (continuous line)

becomes of second order at r = 0.244(4) (full dot). The dashed line corresponds to the value A as a function of r.

exponentially long time in the size of the problem. Note that
similar computational gaps appear, e.g., in the planted XOR-
SAT problem [3], the planted g-coloring problem [26], and,
more generally, inference problems involving the interaction
of more than two variables [27]. In these problems, however,
the transition typically occurs between a partial recovery (fer-
romagnetic) phase and a no recovery (paramagnetic) phase.
Finally, the numerical computation of E[d; H] shows a sharp
increase (compatible with a power-law divergence) as A,
is approached, see Fig 5, quantitatively expressing the fact
that the partial-recovery fixed point becomes unstable at the
transition Ayg.

All PDA predictions have been confirmed by nu-
merical simulations performed running a BPA at 8 =
1 on several instances extracted from the ensemble
7-[’3V JExp(A), Unif ([0, c])] for various values of N and ¢ =
50. The BPA exhibits a fast convergence, requiring usually
less than 10kN updates of the fields set, except, as expected,
for a slowing down for values of X close to the transition point
Aalg, see Fig. 3.

B. The bMAP estimator

The study of the bMAP can be carried on in a similar
manner, relying on the simpler RDEs in Egs. (16). Just like for
the SMAP, it is known that the bMAP exhibits two regimes for
k = 2, namely a partial recovery phase, in which E[p] > 0,
and a full recovery phase, in which E[g¢] = 0. Remarkably,
the relative simplicity of the equations for k = 2 allowed, in
Ref. [13], to show that the boundary between the two phases

is determined by the condition

Blp, p] iZ/VP(w)ﬁ(w)dw =

1
7 (22)
where B[p, p] is the so-called Bhattacharyya coefficient be-
tween the distributions p and p [28]. The criterion has been
first derived by means of heuristic arguments, and later proved
rigorously [14]. Assuming p = Exp(}) and p = Unif ([0, c]),
it can be proven in particular that for ¢ — 400 an infinite-
order transition takes place at A, = 4, i.e., E[0] approaches
zero as A — 4~ with all its derivatives [13,14]. Numerical
evidences suggest that the transition is continuous for finite
values of ¢ as well [13].

Let us now consider the problem of estimating the bMAP
on a graph obtained from the ensemble HY [p, p], assuming
as before p = Exp(X) and p = Unif ([0, c]’), and taking the
¢ — +oo limit for simplicity. In Fig. 6 it is shown that a
nontrivial distributional fixed point is obtained for A < Aj, =
0.66(1), corresponding to a partial recovery regime, while for
A > A3, optimal performances are achieved and E[g] = 0.
Unlike the k = 2 case, but as observed for the SMAP, the
transition is found to be of first order, with a sharp jump
in E[p] to zero, corroborated by an overshoot of the Bethe
free energy with respect to the planted value f* in an interval

i < A < Aag, with AF® = 0.56(1). As expected, the perfor-
mances in terms of the error p obtained running the algorithm
at B — +oo are worse than the corresponding at 8 = 1. In
Fig. 7, we plot the transition points A7, and A, estimated by
a PDA for values of the coordination of hyperedges k from
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FIG. 3. Numerical results for the planted MIMP at g = 1.
Smooth curves are obtained from a PDA solving the RDEs in
Eq. (15) at B =1 with k = 3. We assume that p = Exp(}) and
p = Unif([0, c]). The PDA used a population of 10° fields updated
200 times for each value A. For our population dynamics numerics,
we assumed here ¢ = 300, to reduce as much as possible the finite-c
effects near the origin (see Appendix B). Dots are obtained by run-
ning a BPA on 5 x 10* instances of the ensemble 7} 5[p, p]. Top:
Average error [E[p] obtained via a BPA at § = 1: The PDA prediction
is compared with the results of numerical simulations. Center: Differ-
ence between the Bethe free energy obtained via the PDA and the free
energy of the planted solution. The fixed point obtained by the PDA
is thermodynamically unstable for Ay < A < Aye. Bottom: Proba-
bility P[t < 10kN] that the algorithm requires a number of sweep
smaller than 10kN to reach convergence: particularly hard instances
appear for Ajy < A < Ayg, where we estimate P[r < 10kN] < 1.

3 to 10. The results suggest that the difference in AJ, — A
reduces as k increases.

We have numerically tested the PDA predictions running
the BPA on several instances of ’Hé\f JExp(d), Unif ([0, c])] for
various values of N and assuming ¢ = 50. Interestingly, the
BPA typically did not converge within our simulation times
for & < A3, In Fig. 6 we plot P[r < 10kN], probability that
the BPA requires a number ¢ of updates of all cavity fields
smaller than 10kN, observing that such probability is esti-
mated to be zero in the partial recovery phase, and decreases
to zero in the full-recovery phase. For 4 < A7, we stopped
the algorithm anyway after 10Nk iterations, and computed
the error o using the edge set 71, = Q(Zveae hyose 2 w,),
e € £: Remarkably, this estimator exhibits an overlap with the
ground truth which is fully compatible with the value E[o]
predicted by the PDA, although iz = (#1,).c¢ is not a match-

102 T
— A = 0.55 “ A = 0.56
0.4 /7y — X=0.56 | A =0.57
!y \\\ — A = 0.57 “ — XA = 0.58
0.35 |/ N | — A =0.59
U |
|
0.3 10t J
i
0.25 J
Q <i ‘J‘
0.2 = |
0.15 100 J
0.1 /
0.05
= R

-1
—-5—-4-3-2-10 1 2 3 4 510 0 10 20 30 40 50 60 70 80 90 100

h Iteration

FIG. 4. Left: Distribution of the cavity fields on the planted (con-
tinuous line) and nonplanted (dotted line) hyperedges for k = 3 and
different values of A near the transition point. Right: Value of E[H]
as function of the iteration step 7 in the PDA at 8 = 1 with k =3
and ¢ = 100, a value large enough to see no dependence on ¢ in our
results in the considered range of A: A sharp change of behavior is
observed at Ay, = 0.578(1).

ing map as the bMAP should be. The lack of convergence
of the algorithm suggests the possibility that the 8 — 400
regime within the partial recovery interval lays in a RSB
phase. If this is the case, then our approach (that assumes the
existence of at most one distributional fixed point with finite
support) is incorrect. Possibly the simplest consistency test in
this direction goes through the computation of the entropy
s(B) = ,BZBﬁfB(,B) as function of B [25], a quantity which
can be estimated once again using the PDA. Our results are
given in Fig. 8, where both the Bethe free energy f?(8) and
the entropy s(B) are plotted as a function of § for a value
A in the partial recovery regime: we found that there exists

—0.4

— EMH] !

— vl 3

\
2
Ait 057015 0.7 050 052 0.54 0.56 0.58

A A

0 01 02 0.3

FIG. 5. Left: Value of ]E[H] as function of A. The dotted verti-
cal line delimits the thermodynamically stable region of the partial
recovery phase, whereas the continuous line corresponds to the
algorithmic recovery transition point. Right: Numerical derivative
E[HAH] as function of A. The smooth line is a fit via a func-
tions (1) = a(b — )\)’%, with best fit values ¢ = 0.882(1) and b =
0.582(1), slightly larger than the larger value of Ay, = 0.578(1)
estimated via a PDA.
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FIG. 6. Numerical results for the planted MIMP at 8 — 4o0.
Smooth curves are obtained from a PDA solving the RDEs
in Eq. (16) with £k =3. We assume that p = Exp(A) and p =
Unif ([0, c]). The PDA used a population of 10° fields updated 200
times for each value A with ¢ = 50, a value large enough to see no
dependence on c of the obtained curves (except for small values of
A, where we used ¢ = 200 to avoid finite-c effects near the origin).
Dots are obtained by running a BPA on 10? instances of the ensemble
H{{ sol P pl. Top: Average error E[g] for the bMAP: The cavity
prediction is compared with the results of numerical simulations.
Center: Difference between the Bethe free energy provided by the
cavity method and the free energy of the planted solution. The fixed
point obtained by the PDA is thermodynamically unstable in an
interval )\Zﬁffg < A < Ay Bottom: Probability P[r < 10kN] that the
algorithm requires a number of sweep smaller than 10kN to reach
convergence: it is observed that convergence is never achieved within

this number of sweeps for A < Ag..

a value Bgar(A) > 1 where the entropy becomes negative,
and therefore the replica-symmetric scenario breaks down. By
consequence, a proper study of the BP algorithm at 8 — +o00
would require a replica-symmetry-broken formalism within
the partial recovery phase.

V. THE MIXED CASE: THE PLANTED MIXED MIMP

The different nature of the transition in the k =2 case
and in the k > 2 case motivated us to consider an ensemble
of graphs presenting a mixture of edges and hyperedges,
see, e.g., Fig. 9. We introduce therefore a new ensemble
of hypergraphs ﬁfc[ﬁ, p] interpolating between the ensem-
ble 7—[]2\{ P, p] and ’Hév LD, pl, depending on two absolutely
continuous distributions p and p, an integer N € IN, a real
number ¢ € R" and on aparameter r € [0, 1], 7N € IN. In this
ensemble, a graph with 6V vertices is constructed as follows:

0.7
0.65 °

0.6 ° Adlg

® >\alg

0.55 @ Arr
0.5
0.45
0.4
~0.35
0.3
0.25
0.2
0.15 . ¢
0.1
0.05 .

HH 1

4 101
H8O1
[ o]

FIG. 7. Algorithmic transition point from partial to full recovery
phase in the planted MIMP by estimating the sSMAP and the bMAP.
Results are obtained via a PDA, updating 300 times a population
of 10° fields for each coordination k of hyperedges from k = 3 to
k = 10. For our numerical simulations, we assumed ¢ = 10%, p =
Exp(A) and p = Unif ([0, c]). It is observed that larger values of k
corresponds to an easier recovery and in particular the partial recov-
ery phase shrinks as k — +o0. For comparison, we also plot A;r for
k < 7. We observe the region in which it is information-theoretically
impossible to fully reconstruct the signal rapidly shrinks to zero as k
increases, and we estimate A;r < 0.05 for k > 8.

1.5

-3 5 ~05 1
05 1 15 2 05 1 15 2

B B

FIG. 8. Replica-symmetric estimation of the free energy and of
the entropy of the problem as a function of 8 for A = 0.3 (e.g.,
inside the partial-recovery region) via a PDA, obtained using ¢ = 50.
Observe that for 8 > Byar > 1 the entropy takes negative values, a
fact that suggests the presence of replica symmetry breaking.

FIG. 9. Left: Pictorial representation of a (2 + 3)-hypergraph
with a matching (in red) on it. Right (corresponding factor graph):
We used the same graphical convention as in Fig. 1.
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(1) The vertex set V is divided into two subsets, namely
V,, containing 6(1 — r)N vertices, and Vs, containing 6rN
vertices. Vertices within ), are linked in pairs, uniformly
choosing a matching amongst all possible perfect pairing in
the set. Vertices within V5 are grouped in 3-plets, each joined
by a hyperedge, uniformly choosing a partition in triplets
amongst all possible ones. The resulting edge set M, will
play the role of planted matching and is therefore a mixture
of 3(1 — r)N edges and 2rN hyperedges. Each planted edge
or hyperedge e € M is associated to a weight w,, extracted
with probability density p independently from all the others.

(2) Given all possible (6?/ ) — 2rN 3-hyperedges not in
My, we add each of them with probability 2¢r(6N)~2. Simi-
larly, we add each of the (691 ) — 3(1 — r)N possible edges not
in My with probability c¢(1 — r)(6N)~'. We denote &;" the
set of newly added edges or hyperedges, we call them non-
planted. For large N, each vertex in the constructed graph has
an outgoing planted edge (planted hyperedge, respectively)
with probability 1 — r (with probability r, respectively); in ad-
dition, it has, on average, cr outgoing nonplanted hyperedges
and (1 — r)c outgoing nonplanted edges, so that the obtained
graph has overall on average 3c(1 — r)N nonplanted edges
and 2crN nonplanted 3-hyperedges. Each nonplanted edge or
hyperedge e € &," is associated to a weight w,, extracted with
probability density p, independently from all the others.

The rules given above are such that, for r = 0 we sample an
element of the ensemble Hgl\é [P, p], while r = 1 corresponds
to a graph of H$Y[p, p]. The analysis in Sec. II and Sec. III
can be repeated for the newly introduced ensemble and, in
particular, we can implement a BPA in the same form as in
Egs. (12) on a factor graph in which variable nodes have
coordination 2 if corresponding to edges, and coordination 3
if corresponding to hyperedges, see Fig. 9. For the sake of
brevity, we do not repeat the derivation here. We denote as K
and K’ two random variables with distribution

PK=k] = (1 — )bk + i 3, (23a)
. kPK=K]
PIK =k =~ (23b)

Defining yk = cui¥~!, the effect of the pruning can be
condensed in the quantities

G=1-— e—E[VKqK’I]’

q =E[¢],

where g and § have the same meaning as corresponding
quantities in Sec. III. The average reconstruction achieved by
the BP algorithm on a graph of this ensemble can be written
then in terms of random variables H and H satisfying RDEs
formally identical to the ones in Egs. (15) once k is replaced
by the random variable K’ and Z ~ ZTPoiss(E[ykg"~']). In
particular, the average error is

~ K
_ Kl Kkolo _ .
w-feop-£4)]
fL K
+5E [quKe (Z H, — Q)i| (25)

v=1

(24a)
(24b)

0.5 1
0.45 — r=0 0.95
— r=0.1 0.9
0.4 —r=02 0.85
0.35 —r=203 0.8
0.3 — =04 0.75
Y —r =0.5
5 0.25 R, 0.7
0.2 —r=0.7 0.65
0.15 — r=0.8 06
— =09 055
0.1 . = 0.5
0.05 0.45
0 0.4
0.35
0.4 0.3
¥ 0.2 0.25
S
| 0 /}rlm 0.2
m 0.15
 —0.2 0.1
—0.4 0.05

05 1 1.5 2 25 3 35 4 00 01 02 03 04
A VAf

FIG. 10. Numerical results for the mixed planted MIMP at § =
1. The curves are obtained via a PDA at 8 = 1. We assume that
p = Exp(}) and p = Unif ([0, c]). The PDA used a population of 10°
fields updated 300 times for each value A with ¢ = 100. Left top:
Average error E[p] for various values of r at 8 = 1. Left bottom:
Difference between the Bethe free energy obtained via the PDA and
the free energy of the planted solution. Right: Relative amount » of
edges and hyperedges as function of the square root of the maximal
overshoot of the Bethe free energy. A null overshoot is estimated via
linear fit on values of /A f (continuous line) at ry = 0.244(4). For
r < 0.3 the numerical value of max, f? was indistinguishable from
numerical fluctuations around f* = 1 and we omitted therefore the
corresponding data points.

As in the pure case, we numerically solved the RDEs
for the mixed case and we considered p = Exp(A) and p =
Unif ([0, c]) in the limit ¢ — +o00. The value of the average
error E[p] for B = 1 is given in Fig. 2(c), that visually renders
the crossover between a first-order transition at » = 1 and a
continuous transition at r = 0. This is more clearly visible
in Fig. 10, where the value of E[p] is plotted as function of
A for different values of . In Fig. 10 we plot the overshoot
Af :=max, f% — f* as a function of r: We numerically find
Af =a(r —ro)*0(r — ry), with ry = 0.244(4). We therefore
conjecture that the transition becomes of second order at
r=ro = 0.244(4).

VI. CONCLUSIONS

We have studied the problem of inferring a (weighted)
planted MIMP hidden in a random k-hypergraph, relying on
the information provided by the topology and the weights on
the edges. In particular, the weights of the hidden structure
were assumed to be randomly distributed according to an
absolutely continuous density p, whereas all the remaining
weights follow a different absolutely continuous density p.
Under the assumption of locally treelike structure of the graph
and fast-decaying correlations, we wrote down a message-
passing algorithm to estimate the marginal probabilities of
each edge of belonging to the hidden matching. The perfor-
mance of the algorithm was studied by numerically solving
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a set of recursive distributional equations via a population
dynamics algorithm. We have focused in particular on two
different estimators for the hidden matching constructed from
the obtained marginals, namely the SMAP (which is Bayes
optimal with respect to the Hamming distance with the hid-
den matching) and the bMAP (corresponding to the perfect
matching with highest overall likelihood). For both estima-
tors, and in the large-graph-size limit, a phase transition takes
place with respect to the signal intensity between a phase in
which full recovery of the hidden structure is feasible and
a phase in which instead only partial recovery is accessible.
Remarkably, the transition is found to be of first order for
k > 2, in contrast with the k = 2 case where the transition
is continuous, implying that there is a regime of the signal-
to-noise ratio where the full recovery of the signal is hard
and a computational gap appears. Moreover, in the case of
belief propagation for the bMAP, the partial-recovery phase
is characterized by lack of convergence of the algorithm,
which is typically unable to output a perfect matching, al-
though an early stopping provides a set of edges correlated
with the hidden signal whose size is correctly predicted by
the RDEs: We have shown that this algorithmic hardness is
likely due to the presence of an RSB phase in the phase
diagram.

Although the main properties of the problem can be in-
vestigated via a PDA, an explicit instability criterion for
determining the transition point A, at k > 2 is still missing
and left for future investigations.

Finally, we have analyzed a mixed model in which both
edges and 3-hyperedges coexist. We have shown that the
aforementioned phase transition persists in the mixed set-
tings, and interpolates between the continuous transition
for the pure k = 2 case and the first-order transition (with
computational gap) of the k = 3 case. We have presented
numerical evidences, in particular, that the presence of a
finite fraction of edges in the hypergraph makes the tran-
sition of second order. This phenomenology is reminiscent
of what is observed in other planted problems, in particu-
lar the spiked mixed matrix-tensor model [29], in which a
mixture of two-body and p-body interaction terms allows to
interpolate between a second-order transition and a first-order
transition: Note, however, that in such problems the transition
occurs between a no recovery phase and a partial recovery
phase.
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APPENDIX A: EXPRESSION FOR THE ERROR IN THE
BMAP FOR THE PLANTED k-MIMP

In this Appendix we prove Eq. (18) by showing that at
B — +oo,

k
§'P [Q >y Hu] =q'yP [Q <Y Hu} (AD)

u=1 u=1

10°

TR I TN
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>
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FIG. 11. In color, analytic prediction of the probability 1 — § for
a planted edge to be pruned for A = 0.1. The probability 4 is calcu-
lated recursively using Eq. (6a) for different values of k. The values
for the probability 1 — ¢ for a nonplanted edge to be pruned are in
gray. The values 1 — § (respectively, 1 — g), obtained by pruning 10?
instances of the ensemble H2°[p, p] for k = 3,5,7 and various
values of ¢, are shown as black squares (respectively, gray dots).
The k = 2 reduction of the formula has been verified with a BPA
in Ref. [13].

by straightforwardly generalizing the arguments in Ref. [13]
for the k = 2 case. Equation (16b) implies

k=1

A A 2
P Q—E H,>2x|= PIH )f]
1 —g+4P[H>x]

u=1

(A2)

and therefore, in the partial recovery phase,

u=1

+oo k—1
—/ P |:Q - Y H, > xi| 3,P[H > x]dx
P[H > x19, In(1 — § + gP[H > x])dx

1 +00 .
= 7/ 3P[H > x]1In(1 — § + gP[H > x])dx. (A3)
q.J—

o0 k—1 n
N 1—4§ 1
PH > x] = a Z;(qk_lyP[Q—ZH” Zx:|>

Il
~
—_
|
>
~

3

(A4)

so that In(1 — g + gP[A > x]) = —¢*"'yP[Q — Yi_ [ H, <
x]. Using the fact that ¢*~' = g, then £~ = % and Eq. (A1)
follows.
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FIG. 12. Numerical results on the bMAP for the planted MIMP.
Smooth curves are obtained from a PDA solving the RDEs in
Eq. (15) at B =1 with k =3. We assume that p = Exp(A) and
p = Unif ([0, c]). The PDA used a population of 10° fields updated
200 times for each value A with ¢ = 10. Dots are obtained by running
a BPA on 50 instances of the ensemble Hg‘{ 10lP, pl. Top: Average
error E[p] for the SMAP; the PDA prediction is compared with the
results of numerical simulations. Note that complete pruning allows
for full recovery for A < A, = 0.08975(5) (gray interval). Center:
Difference between the Bethe free energy obtained via the PDA and
the free energy of the planted solution. The fixed point obtained by
the PDA is thermodynamically stable in the interval A; < A < A}
(green region), properly contained in the partial recovery region
Aag < A < Aj,- Bottom: Probability P[r < 10kN] that the algorithm
requires a number of sweep smaller than 10kN to reach convergence:
Particularly hard instances appear for A ~ Aailg

APPENDIX B: RECOVERY IN THE FINITE-c CASE

In this Appendix, we present some results on ran-
dom weighted hypergraphs from the ensemble Hkl\f b, pl,

described in Sec. II, with finite values of the average connec-
tivity parameter c. As anticipated, the overall picture is similar
to the one described for ¢ — +o00, with the additional remark
that the sparse nature of the graph can guarantee a partial or
full recovery of the signal by simple pruning, as discussed in
the main text. Figure 11 shows the analytic prediction of the
probability that a planted (respectively, nonplanted) edge or
hyperedge is removed during the pruning procedure, 1 — §
(respectively, 1 — g), introduced in Sec. III, as a function of
the average connectivity parameter c. Recall that the relation
between the two probabilities is ¢ = ¢!, so that for k = 2
we have g = ¢.

Assuming, as in the numerical experiment of the main text,
p = Exp(}) and p = Unif ([0, c]), in Fig. 11 we observe that
there exists a distinct critical value ¢} ; such that for ¢ < ¢} ;
topological recovery of the perfect matching occurs. The value
c;, grows as k increases; when a leaf is identified, the hy-
péredge it belongs to is removed along with the hyperedges
incident to its remaining k — 1 endpoints (the higher c is, the
more incident hyperedges are removed for each leaf that is
identified). Moreover, for k > 2 there is a sharp jump at ¢; ,
between topological recovery ¢ = § = 0 and values of ¢ and
g close to 1; this jump is not present for k = 2 where instead
the transition is continuous.

In Fig. 12 we present the results of solving the RDEs
for B =1, k =3, and ¢ = 10. Unlike the large-c case, we
observe not one but two sharp transitions in E[g] that are
between the partial and full recovery phases which correspond
to E[o] = 0and 0 < E[p] < 1, respectively. As expected, we
can fully recover the planted matching for any 0 < A < A,
interval where the complete pruning of the graph is possi-
ble. Both transitions are analogous to the one observed in
the large-c case where we see a sharp jump in E[o] from
partial to full recovery of the planted matching. For ¢ =
10 the jumps are observed at some values Aalg, so that for
Agg <A < k;g the cavity fields are supported on finite values
and we have 0 < E[p], i.e., a partial recovery of the hidden
matching. Outside the interval, on the other hand, full re-
covery is achieved. The PDA predictions are confirmed by
numerical simulations running a BPA at § = 1 for various
graph sizes N, averaging over multiple instances from the
ensemble ’Hév 10[Exp(A), Unif ([0, 10])]. Moreover, the Bethe
free energy exhibits the same phenomenology as for large c:
The nontrivial fixed point is stable in an interval (i A A C
(Aalg, alg,) As for the large-c simulations in the main text,
BPA converges fast except for values of A close to the transi-
tion points k;ﬁg
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