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Vortex chaoticons in thermal nonlocal nonlinear media
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This paper numerically investigates the propagation of Laguerre-Gaussian vortex beams launched in nonlocal
nonlinear media, such as lead glass. Our results show that the propagation properties depend on the selection of
beam parameters m and p, which represent the azimuthal and radial mode numbers. When p = 0, these profiles
can be stable solitons for m � 2, or break up and then form a set of single-hump profiles for m � 3, which are
unbounded states with scattered remnants of the energy. However, for p � 1, the broken beams can evolve into
vortex chaoticons, which exhibit both chaotic and solitonlike properties. The chaotic properties are determined
by the positive Lyapunov exponents and spatial decoherence, while the solitonlike properties are demonstrated
by the invariance of beam width and the interaction of beams in the form of quasielastic collisions. In addition,
the power and orbital angular momentum of unbounded beam states both decay in propagation, while those of
the chaoticons maintain their values well.

DOI: 10.1103/PhysRevE.106.054214

I. INTRODUCTION

Vortex beams display some unique characteristics, such as
a helical wavefront, vanishing intensity at the center, and car-
rying orbital angular momentum (OAM), which make them
of great applicative value in different fields of physics [1,2].
For example, the helical wavefront and spatial propagation
invariance result in the vortex beams being used for free-space
information transfer and communications [3,4]. Due to zero-
central intensity, the vortex beam can form a potential well, to
capture and manipulate particles [5,6]. Additionally, the OAM
of a vortex beam can drive particles to rotate, which can be
used as an optical wrench, optical tweezer, optical motor, and
so on [7,8]. Owing to their application potential, researchers
in different fields have used various methods to obtain vor-
tex beams with different properties, including perfect vortex
beams [9], vector vortex beams [10], broadband vortex beams
[11], and terahertz vortex beams [12].

In a nonlinear medium, the soliton may form as a result of
the self-focusing balancing the diffraction [13,14].In particu-
lar, the nonlocal nonlinearity exhibits interesting stabilizing
characteristics, such as suppressing the collapse of (2+1)-
dimensional optical beams [15], overcoming the instability of
vortex beams [16], and others. As a consequence, a variety of
solitons, such as Laguerre-Gaussian (LG) vortex solitons [17],
imaginary value off-axis vortex solitons [18], spiraling elliptic
solitons [19], spiraling anomalous vortex beam arrays [20],
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and ring dark and antidark solitons [21], have been reported
in nonlocal nonlinear media.

Furthermore, the stability of vortex solitons in different
nonlocal nonlinear systems is different, and their stability is
also related to the topological charge; for example, the maxi-
mum allowed m for a single-ring (p = 0) stable vortex soliton
in actual nonlocal media has been revealed to be not more than
2 [22–24]. However, the evolution of higher-order LG beams
has not been thoroughly discussed in actual nonlocal media,
to the best of our knowledge. In fact, the study of higher-order
LG beams, which are carrying more information, deserves
more attention.

In addition, unlike the local nonlinear, the nonlocal non-
linear model as a rule is nonintegrable and cannot be solved
analytically. In a nonintegrable nonlinear system, the higher-
order beams often evolve into chaos, but recently it has been
shown that some beams may evolve into chaoticons, unique
chaotic states that also exhibit solitonlike properties [25].
Chaoticons, as a new kind of beam occurring in nonlocal
nonlinear media, whose existence modes are different from
the chaoticons in dissipative systems [26,27], have become an
interesting research topic. In this sense, it is worth discussing
(1) whether the evolution of higher-order vortex beams in
nonlocal media can evolve into chaoticons or not, and (2)
the variation of beam power and OAM. These issues are
investigated in this paper.

II. THEORETICAL MODEL

The propagation of an optical beam in lead glass can
be described by the two-dimensional dimensionless nonlocal
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FIG. 1. Propagation of LG beams in lead glass for p = 0 and
different m. The cross section through the X = 0 plane is shown. The
parameters are chosen as (a) m = 2, P02 = 38; (b) m = 3, P03 = 51;
(c) m = 4, P04 = 63.

nonlinear Schrödinger equation (NNLSE) [23,28,29]:
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where X = x/a0 and Y = y/a0 are the transverse coordinates
(i.e., scaled by the input beam width a0), and Z = z/ka2

0 is the

longitudinal coordinate. Further, ψ = (αβκ2a4
0/n0κ )1/2

� and
G = κ2a2

0�n/n0 are dimensionless quantities of the complex
field amplitude �, with k = 2πn0/λ being the wavenumber in
media, and n0 and �n being the linear and nonlinear refractive
index, respectively. Then, α, β, and κ represent the absorption,
thermo-optical, and thermal conductivity coefficients of a lead
glass sample, respectively [28,29].

Here, we choose an LG beam [30] as the initial condition
in our numerical simulations,
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where P = ∫ ∫ |ψ |2dXdY is the beam power and r =
(X 2 + Y 2)1/2 is the radial distance. Lm

p [· · · ] are the general-
ized Laguerre polynomials, with m and p being the azimuthal
and radial mode numbers, respectively. ϕ = arctan(Y/X ) is
the azimuthal angle. According to the definition of the second-
order moment [18,19], the statistical width of the beam is

FIG. 2. Evolution of the beam width (a), and of the correlation
coefficient (b) of beams from Fig. 1.

obtained by

apm =
√√√√2

∫ +∞
−∞

∫ +∞
−∞ X 2|ψ |2dXdY∫ +∞

−∞
∫ +∞
−∞ |ψ |2dXdY

. (4)

III. UNBOUNDED STATES AND CHAOTICONS

We investigate numerically the propagation of LG beams
in lead glass by employing the standard split-step Fourier
method. For convenience and without loss of generality, we
set a0 = 1 in all numerical simulations. In addition, the win-
dows of the system in the X and Y directions both range from
–L/2 to L/2, with L = 100 the sample width.

A. Unbounded states when p = 0

We start the discussion with the simplest case of p = 0,
displayed in Fig. 1. Note that the low-order vortex modes
m = 0, 1, 2 can form stable vortex solitons in lead glass, as
confirmed in Refs. [22–24] and, as an example, we demon-
strate the propagation of a stable vortex soliton with m = 2 in
Fig. 1(a). However, the propagation of vortices with m � 3
in actual nonlocal nonlinear media is completely unstable.
When selecting proper initial powers, the beams in Figs. 1(b)
and 1(c) both propagate stably over a considerable distance,
then break up and evolve into a set of single-hump profiles
while emitting remnants of their energy. The radiation waves
spread to infinity, resulting in an increasing beam width, as
seen in Fig. 2(a). Obviously, such an unstable beam is in fact
an unbounded state.

The proper input power, which makes the beam (ψpm)
propagate stably initially (meaning that the beam diffraction
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FIG. 3. Propagation of LG beams in lead glass for p > 0. The
setup is as in Fig. 1. The parameters are chosen as P = Ppm, (a) p =
1, m = 2, P12 = 64; (b) p = 1, m = 5, P15 = 101; (c) p = 2, m = 5,
P25 = 127.

is balanced by the nonlinearity) in Fig. 1, can be regarded as
the critical power Ppm. However, when the beam expands or
contracts initially (for example, as shown in Figs. 7(a1) and
7(b1), respectively), resulting from the beam diffraction being
weaker or stronger than the nonlinearity, that means that the
input power is smaller or larger than the critical power.

In addition, the comparison of Figs. 1(a)–1(c) shows that
the instability of the optical beam increases with m, and the
propagation distance before the breakup takes place becomes
shorter and shorter. In fact, one can employ the cross-
correlation function for more clearly observing the significant
changes in the waveform,

c(Z ) = 1

P

∫ ∞

−∞

∫ ∞

−∞
ψ (X,Y, 0)ψ∗(X,Y, Z )dXdY , (5)

where the superscript * denotes the complex conjugate. The
value of |c| starts at 1, and remains constant for the soliton
case (m = 2), whereas for m = 3 and 4, |c| decreases with the
increase of Z . Assuming |c| = 0.95 as the critical point where
the waveform deforms significantly, the breakup positions of
the waveform along the Z axis can be easily estimated from
Fig. 2(b), which clearly agree with those seen in Fig. 1.

B. Vortex chaoticons when p � 1

When p � 1, Fig. 3 shows that the propagation of opti-
cal beams is still unstable and the beam profiles break up
too. However, the intensity is localized well with very little
scattering, which results in the beam width remaining statisti-
cally unchanged, while slightly oscillating irregularly. This is
clearly seen in Fig. 4(a).

The positive Lyapunov exponent is a signature of chaos;
hence we determine the maximal Lyapunov exponents for
the evolution of unstable stationary solutions of vortex beams
in lead glass. The maximal Lyapunov exponent can be

FIG. 4. Evolution of (a) beam width, and (b) maximal Lyapunov
exponents of beams in Figs. 1 and 3. The parameters are chosen as
those in Fig. 1 (blue lines) and Fig. 3 (green, pink, and brown lines).

numerically obtained as [25,26]

L = lim
ε→0

lim
Z→∞

1

Z
ln

d (ψ1, ψ2; Z )

d (ψ1, ψ2; 0)
, (6)

d (ψ1, ψ2; Z ) =
[∫ ∞

−∞

∫ ∞

−∞
|ψ1(X,Y, Z )

−ψ2(X,Y, Z )|2dXdY

]1/2

, (7)

where d (ψ1, ψ2; Z ) is the distance between two func-
tions ψ1(X, Y ; Z ) and ψ2(X, Y ; Z ) in the Hilbert space
(the L2 norm in the Hilbert space); the initial val-
ues are ψ1(X, Y ; 0) = ψ (X, Y ; 0) and ψ2(X, Y ; 0) =
ψ (X, Y ; 0) + δ(X, Y ), where δ(X, Y ) is a random pertur-
bation function (as small as the machine precision allows,
e.g., of the order of 10−7). Using the same procedure as in
Refs. [25,26], the curves of the maximal Lyapunov exponents
are obtained, as shown in Fig. 4(b). One can see that the
curve of the maximal Lyapunov exponent of the vortex soliton
(p = 0, m = 2) approaches 0. However, for unstable beams,
they approach positive values, which is sufficient to indicate
the chaotic behavior along the Z direction.

Figure 5 shows concretely the intensity variation of an un-
bounded state and a chaoticon in the transverse cross section
during propagation. One can see that both of these beams can
quasistably propagate for a certain distance before breaking
up, the difference being that most of the intensity spreads out
and leaves a single peak in Fig. 5(a4), whereas in Fig. 5(b4)
the intensity remains localized well.

The spiral flow of the electromagnetic energy of vortex
beams results in the nonzero OAM, which is an important con-
cept deserving special attention. The OAM can be obtained by
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FIG. 5. Comparison of an unbounded state beam and chaoticon
in the transverse cross section during propagation. The parameters
of (a1–a4) and (b1–b4) are chosen as those in Figs. 1(b) and 3(a),
respectively. The second and fourth rows depict the corresponding
phase evolution.

Eq. (8) [18,19]:

M = Im
∫ ∞

−∞

∫ ∞

−∞
ψ∗

(
X

∂ψ

∂Y
− Y

∂ψ

∂X

)
dXdY. (8)

Recalling that the intensity of the unstable beams displays
more or less scattering, investigating the retained power and
OAM of the intensity distribution only in the central region
(X , Y ∈ [−6, 6]) has the actual application value. The blue
lines in Fig. 6 show that the soliton can maintain its power and
OAM very well during propagation. It is surprising that the
power and OAM of the chaoticon remain almost unchanged
(pink line), while those of the unbounded state beam de-
cay fast in the central region (yellow line), due to intense
scattering.

IV. OTHER PROPAGATION PROPERTIES OF VORTEX
CHAOTICONS

When the input power is not equal to the critical power, the
vortex beams (m � 2) will evolve into breathers and present
a periodically oscillating width during propagation [17,22].
For the chaoticons, such as exemplified in Fig. 3(c), when the
input power is equal to 1.3P25 and 0.7P25, Fig. 7(a1)–7(c1)
show that the vortex beams will evolve into breathers in a
short propagation distance. However, after a long distance,
the beams will break up and are localized well too, without
any energy lost by radiation during the evolution, and both
widths maintain well their values, as seen in Figs. 7(a2)–(c2).
Different statistical beam widths corresponding to different
input powers are another feature of chaos, which is sensitive
to the initial value.

FIG. 6. Evolution of power (a) and OAM (b), for the soliton (blue
line), unbounded state beam (yellow line), and chaoticon (pink line).
The parameters of blue, yellow, and pink lines are all chosen as those
in Figs. 1(a), 1(b), and 2(b), respectively.

Figure 8(a) demonstrates the particlelike interaction phe-
nomenon between two vortex solitons, which is another
typical property of an optical soliton. Obviously, similar inter-
action in the quasielastic collision of two identical chaoticons
also exists, as shown in Figs. 8(b) and 8(c). However, after
the long propagation distance, both the interacting solitons
and chaoticons will merge into a single local beam with

FIG. 7. Evolution of vortex chaoticons in lead glass with P =
1.3P25 (a) and P = 0.7P25 (b). Evolutions of beam widths are de-
picted as dashed blue and red lines in (c), and solid lines are the
corresponding mean values.

054214-4



VORTEX CHAOTICONS IN THERMAL NONLOCAL … PHYSICAL REVIEW E 106, 054214 (2022)

FIG. 8. Incoherent interaction in quasielastic collisions between
two initially parallel identical beams. The parameters of beams
in (a)–(c) are all chosen as those in Figs. 1(a), 2(b), and 2(c),
respectively.

periodically oscillating width and, rarely, scattering. It should
be pointed out that the initial chaoticons are ψ (X, Y, Z0) for
Z0 � 200, in order to ensure that the inputs are completely
irregular states.

Actually, with respect to time and space, there are two
kinds of chaotic states for a partial differential equation
system: the temporal chaos with spatial coherence and the spa-
tiotemporal chaos with spatial decoherence [25–27]. Hence,
for making the type of our chaotic solutions clear, we calcu-
late the spatial cross-correlation function of two long-enough
wave-amplitude series at locations (X1, Y1) and (X2, Y2):

μ[(X1, Y1), (X2, Y2)]

= lim
Z→∞

∫ Z0

0 ψ (X1, Y1, Z )ψ∗(x2, Y2, Z )dZ√∫ Z0

0 |ψ (X1, Y1, Z )|2dZ
∫ Z0

0 |ψ (X2, Y2, Z )|2dZ
.

(9)

Without loss of generality, here we arbitrarily select one
point (X1 = 1, Y2 = 1), which is marked by a red asterisk, and
then calculate the spatial cross-correlation function of such a
point with all other points in space, as shown in Fig. 9. One
can see that |μ| equals 1 for solitons, and decreases rapidly

FIG. 9. Spatial cross correlation of the red asterisk point with
other points in space for the soliton (a1) and chaoticon (b1), whose
parameters are chosen as those in Figs. 1(a) and 3(b), respectively.
(a2), (b2) The spatial cross-correlation function of (a1), (b1) in
X2 = 1 (red lines) and Y2 = 1 (blue lines) directions.

around the red asterisk point for chaoticons. The quick drop
of correlation signifies the spatial decoherence.

V. CONCLUSION

In summary, this paper demonstrates the existence of vor-
tex chaoticons, which are formed by LG beams in cases
when p � 1, in lead glass. The vortex chaoticons exhibit both
chaotic and solitonlike properties. The chaotic behavior is
marked by positive maximal Lyapunov exponents and spatial
decoherence. The solitonlike properties include the invariant
statistical width and the quasielastic collision during interac-
tion of the beams. In addition, we find that the power and
OAM of an unbounded state beam both display strong decay,
whereas those of chaoticons maintain their values very well.
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[8] M. Gecevičius, R. Drevinskas, M. Beresna, and P. Kazansky,
Single beam optical vortex tweezers with tunable orbital angu-
lar momentum, Appl. Phys. Lett. 104, 231110 (2014).

[9] V. Pravin and L. Rusch, Perfect vortex beam: Fourier transfor-
mation of a Bessel beam, Opt. Lett. 40, 597 (2015).

[10] F. Yue, D. Wen, J. Xin, B. Gerardot, J. Li, and X. Chen, Vector
vortex beam generation with a single plasmonic metasurface,
ACS Photonics 3, 1558 (2016).

[11] H. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, Broadband vortex
beam generation using multimode Pancharatnam–Berry meta-
surface, IEEE Trans. Antennas Propag. 65, 7378 (2017).

[12] Y. Hira and Y. Monnai, Sub-terahertz vortex beam generation
using a spiral metal reflector, Opt. Express 29, 24118 (2021).

[13] L. Zeng, B. A. Malomed, D. Mihalache, Y. Cai, X. Lu, Q. Zhu,
and J. Li, Bubbles and W-shaped solitons in Kerr media with
fractional diffraction, Nonlinear Dyn. 104, 4253 (2021).

[14] L. Zeng and J. Zeng, One-dimensional gap solitons in quantic
and cubic-quintic fractional nonlinear Schrödinger equations
with a periodically modulated linear potential, Nonlinear Dyn.
98, 985 (2019).

[15] O. Bang, W. Krolikowski, J. Wyller, and J. J. Rasmussen,
Collapse arrest and soliton stabilization in nonlocal nonlinear
medium, Phys. Rev. E 66, 046619 (2002).

[16] D. Briedis, D. E. Petersen, D. Edmundson, W. Krolikowski, and
O. Bang, Ring vortex solitons in nonlocal nonlinear medium,
Opt. Express 13, 435 (2005).

[17] D. Deng and Q. Guo, Propagation of Laguerre-Gaussian beams
in nonlocal nonlinear medium, J. Opt. A: Pure Appl. Opt. 10,
035101 (2008).

[18] Q. Wang and Z. Deng, Controllable propagation path of imagi-
nary value off-axis vortex soliton in nonlocal nonlinear media,
Nonlinear Dyn. 100, 1589 (2020).

[19] G. Liang and Q. Wang, Rotation controlling of spiraling elliptic
beams in inhomogeneous nonlocal media, New J. Phys. 23,
103036 (2021).

[20] L. Song, Z. Yang, S. Zhang, and X. Li, Spiraling anomalous
vortex beam arrays in strongly nonlocal nonlinear media, Phys.
Rev. A 99, 063817 (2019).

[21] T. P. Horikis and D. J. Frantzeskakis, Ring dark and antidark
solitons in nonlocal media, Opt. Lett. 41, 583 (2016).

[22] U. A. Laudyn, M. Kwasny, M. Karpierz, and G. Assanto, Vortex
nematicons in planar cells, Opt. Express 28, 8282 (2020).

[23] H. Zhang, M. Chen, L. Yang, B. Tian, C. Chen, Q. Guo, Q.
Shou, and W. Hu, Higher-charge vortex solitons and vector
vortex solitons in strongly nonlocal medium, Opt. Lett. 44, 3098
(2019).

[24] Y. V. Izdebskaya, V. G. Shvedov, P. S. Jung, and W.
Krolikowski, Stable vortex soliton in nonlocal medium with
orientational nonlinearity, Opt. Lett. 43, 66 (2018).

[25] L. Zhong, Y. Li, Y. Chen, W. Hong, W. Hu, and Q. Guo, Chaoti-
cons described by nonlocal nonlinear Schrödinger equation,
Sci. Rep. 7, 41438 (2017).

[26] L. Zhong, Q. Guo, W. Hu, W. Hong, and W. Xie, Chaotic self-
trapped optical beams in strongly nonlocal nonlinear media,
Phys. Rev. A 99, 043816 (2019).

[27] N. Verschueren, U. Bortolozzo, M. G. Clerc, and S. Residori,
Spatiotemporal Chaotic Localized State in Liquid Crystal Light
Valve Experiments with Optical Feedback, Phys. Rev. Lett. 110,
104101 (2013).

[28] H. Zhang, T. Zhou, Q. Shou, and Q. Guo, Optical elliptic
breathers in isotropic nonlocal nonlinear media, Opt. Express
30, 9636 (2022).

[29] S. A. Louis, T. R. Marchant, and N. F. Smyth, 2-D solitary
waves in thermal media with nonsymmetric boundary condi-
tions, Stud. Appl. Math. 142, 586 (2019).

[30] B. A. Malomed, Vortex solitons: Old results and new perspec-
tives, Physica D (Amsterdam) 399, 108 (2019).

Correction: The previously published Figure 4 contained an
incorrect axis label and has been replaced. A project number
in the Acknowledgment section was incorrect and has been
fixed.

054214-6

https://doi.org/10.1364/OE.14.003792
https://doi.org/10.1364/OL.38.004919
https://doi.org/10.1038/nphoton.2011.81
https://doi.org/10.1063/1.4882418
https://doi.org/10.1364/OL.40.000597
https://doi.org/10.1021/acsphotonics.6b00392
https://doi.org/10.1109/TAP.2017.2761548
https://doi.org/10.1364/OE.430805
https://doi.org/10.1007/s11071-021-06459-3
https://doi.org/10.1007/s11071-019-05240-x
https://doi.org/10.1103/PhysRevE.66.046619
https://doi.org/10.1364/OPEX.13.000435
https://doi.org/10.1088/1464-4258/10/3/035101
https://doi.org/10.1007/s11071-020-05567-w
https://doi.org/10.1088/1367-2630/ac2e3d
https://doi.org/10.1103/PhysRevA.99.063817
https://doi.org/10.1364/OL.41.000583
https://doi.org/10.1364/OE.386422
https://doi.org/10.1364/OL.44.003098
https://doi.org/10.1364/OL.43.000066
https://doi.org/10.1038/srep41438
https://doi.org/10.1103/PhysRevA.99.043816
https://doi.org/10.1103/PhysRevLett.110.104101
https://doi.org/10.1364/OE.448451
https://doi.org/10.1111/sapm.12243
https://doi.org/10.1016/j.physd.2019.04.009

