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Effect of mobility on collective phase dynamics of nonlocally coupled oscillators with a phase lag
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Nonlocally coupled oscillators with a phase lag self-organize into various patterns, such as global synchro-
nization, the twisted state, and the chimera state. In this paper, we consider nonlocally coupled oscillators that
move on a ring by randomly exchanging their positions with the neighbors and investigate the combined effects
of phase lag and mobility on the collective phase dynamics. Spanning the whole range of phase lag and mobility,
we show that mobility promotes synchronization for an attractive coupling, whereas it destroys coherence for
a repulsive coupling. The transition behaviors are discussed in terms of the timescales of synchronization and
diffusion of the oscillators. We also find a novel spatiotemporal pattern at the border between coherent and
incoherent states.
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I. INTRODUCTION

Collective synchronization is observed in a wide range of
natural phenomena, such as flashing fireflies, cardiac beats,
and circadian rhythms [1]. Although a global coupling ex-
plains the emergence of fully synchronized states [2], a
nonlocal (or finite-range) coupling introduces the twisted and
the chimera states. The twisted state [3,4] is a state in which
the phase difference between two successive oscillators in a
linear array is constant. The chimera state [5] is characterized
by spatial coexistence of coherent and incoherent groups of
oscillators, which was discovered by introducing a phase lag
in the nonlocal coupling [6]. It has been a target of extensive
studies in the past decade [7,8], realized in various physical
systems, and its relevance to neuronal activities is recently
attracting attention [9,10]. These states are most simply de-
scribed by the phase oscillators on a linear array, the time
evolution of which obeys

φ̇(x, t ) = ω0 −
∑
x′ �=x

g(x − x′) sin[φ(x, t ) − φ(x′, t ) + απ ],

(1)
where φ(x, t ) is the phase at position x and time t , ω0 is
the intrinsic phase velocity, g(x) is the interaction kernel, and
απ is the phase lag (we assume 0 � α � 1 without loss of
generality). The phase lag induces frustration in the system
which gives rise to a variety of intriguing patterns. For α <

0.5, the coupling is attractive. If α is sufficiently small, the
system that started from a random initial condition eventually
reaches a coherent state (either a synchronous or a twisted
state). When α exceeds a threshold, the frustration destroys
coherence and forms a chimera state or a multichimera state
with many coherent and incoherent regions [11]. The onset of
the multichimera state is a critical transition that resembles di-
rected percolation [12,13]. For a repulsive coupling (α > 0.5),
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we find coexistence of twisted states with positive and nega-
tive phase differences separated by incoherent strips [14]. A
randomly branching multichimera state disappears at an upper
threshold of α and is replaced by stripe patterns with smooth
boundaries. For α close to unity, frequency synchronization
takes place in the coexisting twisted states.

Another interesting situation is brought by the oscillators
that move in space and change the partners to interact with.
Mobile oscillators are related to biological phenomena in-
cluding animal groups [15] and chemotactic elements [16]
and have potential technological applications, i.e., in robotics
[17,18] and wireless sensor networks [19]. The effect of mo-
bility on synchronization has been an actively studied subject
in the past decade [20–31]. In Ref. [20], it was shown that
mobility destabilizes the twisted states and promotes syn-
chronization. Reference [22] shows that mobility speeds up
synchronization by extending the effective coupling range.
Reference [27] studied the system with a delayed coupling
and found that mobility can induce chimera states. Reference
[28] considered mobile oscillators with mutual interaction
between motion and phase and found a variety of nontrivial
swarming and synchronized patterns. However, little is known
about the combined effects of phase lag and mobility on the
twisted and chimera states. Two recent studies considered the
system with a phase lag: Ref. [29] demonstrated the transition
between the synchronous state and the chimera states with one
or two coherent regions; Ref. [31] shows that disorder of the
oscillators facilitates stability of chimera. These papers focus
on a system with the phase lag α close to 0.5, and a study
spanning a wide range of α is still lacking.

In this paper, we investigate the combined effects of phase
lag and mobility on the collective phase dynamics of nonlo-
cally coupled oscillators on a ring. We span the whole range
of phase lag and mobility and find that mobility promotes
synchronization for an attractive coupling, whereas it destroys
coherence for a repulsive coupling. The transition behaviors
are discussed in terms of the timescales of synchronization
and diffusion of the oscillators. For the attractive case, we
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FIG. 1. Spatiotemporal patterns of the phase difference �(x, t ), for α = 0.41, 0.44, 0.68, 0.88 from the left to the right column, and
p = 0, 0.0004, 0.002 from the top to the bottom row.

estimate the size of the basins of attraction for the syn-
chronous and twisted states and characterize the collapse of
the twisted states into the synchronous states quantitatively.
We also find a novel meshlike pattern that consists of inter-
secting traveling waves near the coherent-chimera transition.
For the repulsive case, mobility induces noisy patches of
twisted states, which gradually crosses over to a fully inco-
herent state as the mobility is increased.

II. MODEL

We consider N oscillators that are distributed on a ring with
N sites labeled by the integer coordinates x (mod N). Each site
on the ring is occupied by a single oscillator at a time. The
model is built upon Eq. (1) for non-mobile oscillators with the
interaction kernel,

g(x)

{
= 1

2R
(|x| � R),

= 0 (|x| > R),
(2)

where R is the coupling range. The intrinsic frequency ω0

is set to zero without losing generality. The oscillators move
stochastically by exchanging their positions with their nearest
neighbors at a constant rate. It is implemented by a discrete
dynamical rule with a small time step δt . At each time step,
each oscillator exchanges its position with its right nearest
neighbor with the probability p, which causes the change
in phases φ(x, t + δt ) = φ(x + 1, t ) and φ(x + 1, t + δt ) =
φ(x, t ). Since the average number of moves of each oscillator
during one time unit is 2p/δt , the mean square displacement
is given by

〈(�x)2〉 ≡ 〈[x(t ′ + t ) − x(t ′)]2〉 = 2p

δt
t, (3)

and the diffusion constant is D = p/δt . Thus, the model is
characterized by three parameters R, α, and p.

We solve Eq. (1) using the Runge-Kutta method with a time
step 0.01. Unless otherwise stated, we set R = 5 and N = 500.
Uniformly random values of the phases are used for the initial

condition. The mobility is implemented by randomly choos-
ing a site x and exchanging the phases of the oscillators at
x and x + 1 with the probability p. This process is repeated
N times at each time interval δt , which is also set to 0.01.
We checked that a smaller value of δt does not significantly
change the results presented in the next section.

III. NUMERICAL RESULTS

A. Spatiotemporal patterns and the strength of incoherence

In Fig. 1, we plot the spatiotemporal patterns of the phase
difference between two neighbor oscillators �(x, t ) = [φ(x +
1, t ) − φ(x, t )]/π , truncated in the range [−1:1). The first
row shows the patterns for p = 0 with α varied. We varied
α in the range of 0 � α < 1, and only a few samples are
shown. For α < 0.44, the system reaches a coherent state
with a uniform and very small value of � [Fig. 1(a)]. For
0.44 � α < 0.5, incoherent regions unceasingly branch and
disappear, forming a multichimera state [12,13] [Fig. 1(b)].
For a repulsive coupling (α > 0.5), twisted states with pos-
itive and negative values of � are separated by incoherent
strips of width ∝R; for α not far from 0.5, a randomly branch-
ing multichimera state appears [Fig. 1(c)] which is replaced by
coexisting twisted states with smooth boundaries for a larger
α [Fig. 1(d)] [14].

The mobility of the oscillators introduces a novel spa-
tiotemporal pattern. The patterns for p = 0.0004 and 0.002
are shown in the second and third rows of Fig. 1, respectively.
For 0.38 � α < 0.44, we find a meshlike pattern that consists
of intersecting traveling waves [Figs. 1(e)–1(i)]. The chimera
state for α = 0.44 obtains finer structures of incoherent re-
gions due to the mobility [Figs. 1(f)–1(j)]. For α > 0.5, noisy
spots are added to the multichimera states [Figs. 1(g) and
1(h)]. At p = 0.002, the patterns are further randomized, and
we cannot recognize the original patterns for p = 0 [Figs. 1(k)
and 1(l)].

As a measure of the strength of incoherence, we follow a
previous work [32] and use the standard deviation of the phase
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FIG. 2. The strength of incoherence σ� on the (α, p) plane, for
(a) 0 � p < 1 and (b) 0 � p < 0.005. The color scale (grayscale)
shows a coherent state (σ� � 1) in light (whitish) colors, and an
incoherent state (σ� ∼ 1) in dark colors (black and dark gray).

difference within a distance R from the site x,

σ�(x, t ) =
√√√√ 3

2R

x+R−1∑
x′=x−R

[�(x, t ) − �(x, t )]2, (4)

where �(x, t ) is the phase difference averaged over the in-
terval [x − R, x + R] and the prefactor is chosen to make the
maximum value of σ�(x, t ) equal to 1. The strength of inco-
herence of the whole system is written as σ�(t ) = 〈σ�(x, t )〉x.
Figure 2 shows the value of σ�(t ) at t = 1000 averaged over
ten independent samples for each set of (α, p). The entire
range of the mobility (0 � p � 1) is shown in Fig. 2(a) and
a magnified view of the range 0 � p � 0.005 is shown in
Fig. 2(b). We obtain coherent states (σ� � 1) for small α

irrespective of the value of p. The degree of incoherence
sharply increases at α = αc 
 0.4, and the threshold αc has
a minor dependence on p. On the other hand, when α > 0.5,
the system falls into complete incoherence (σ� ∼ 1) over
most of the parameter range except for very small p. These
changes brought by the mobility will be further discussed in
the following sections.

B. The effect of mobility on the coherent states

We first focus on the effect of mobility on the coherent
states for α < αc(p). In this parameter range, the system is
multistable, i.e., either the synchronous or q-twisted states
are achieved depending on the initial condition. The phase
difference in these states can be written as � = 2q/N , where
q = 0 represents the synchronous state, and a nonzero integer
with |q| � N−1

2 corresponds to the q-twisted state.
In the simulation, we compute the winding number q as

q = 1

2

N∑
x=1

�(x, t ), (5)

with t = 1000. We take an average over 100 samples for each
value of (α, p) unless otherwise stated, including the inco-
herent states where �(x, t ) is not spatially uniform. We also
measure the root mean square (rms) of q, which is denoted by
σq. Figure 3 shows the histograms of q for specific values of
(α, p). For p = 0, the distribution is wide, and the maximum
value of |q| reaches 6. As p increases, the distribution becomes
narrower, which means that the mobility enlarges the size of

FIG. 3. Histograms of the winding number q for 1000 in-
dependent samples. (a) (α, p) = (0, 0), which gives σq = 1.79,
(b) (α, p) = (0.3, 0), σq = 2.02. (c) (α, p) = (0, 1), σq = 0.76.
(d) (α, p) = (0.3, 1), σq = 0.48.

the basin of attraction for a smaller value of |q|. For p = 1,
the peak for α = 0.3 is higher than the one for α = 0. It
means that the phase lag widens the basin of attraction of the
synchronous state. Note that the estimated size of the basin
of attraction might contain errors due to finite simulation time
and finite number of initial conditions sampled, although we
checked that temporal evolution of q almost ceased at t = 100
for typical cases. A more sophisticated sampling method [33]
would be useful for an accurate estimate of the asymptotic
behavior for large |q|.

Figure 4(a) shows the rms of the winding number on the
(α, p) plane. We focus on the coherent (synchronous or q-
twisted) states with α < αc(p) here. The rms decreases as
α and p increase in the coherent region of the (α, p) plane.
Notably, it becomes almost zero at large p and near α = αc(p)
[Fig. 4(c)], which means that the synchronous state q = 0

FIG. 4. (a) The rms of the winding number σq for each (α, p).
(b) The rms σq versus p for α = 0. (c) The rms σq versus α for p = 1.
The data in (b) and (c) are averages over 1000 independent samples.
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is attained for most of the samples. In Fig. 4(b), we plot
σq for α = 0 as a function of the mobility parameter p. It
is fitted by the power law σq ∼ p−β with the exponent β =
0.239 ± 0.005 in the range of 0.1 � p � 1. We will discuss
in Sec. IV the reason why the exponent is close to 1/4.

The enhancement of synchronization by the mobility is
explained by disturbance of the q-twisted states. The exchange
of two oscillators in a twisted state alters the phase differences
at three successive sites from {�,�,�} to {2�,−�, 2�}.
The total change in the phase differences is 4�, and is larger
for a larger |q| because � = 2q/N . Conversely, a twisted state
with a smaller |q| is less affected, and the fully synchronized
state is unchanged by the exchange. If the disturbance due
to mobility dominates the effect of interaction to recover the
initial (twisted) state, the system leaves the basin of attraction
and hops to another as already shown for α = 0 [3]. In the
following, we analyze the balance between the effects of mo-
bility and coupling quantitatively by computing the timescales
to disturb and restore the twisted states.

A system in a q-twisted state is divided into |q| blocks of
size N/|q|. In each block, the phase changes by 2π . In the
absence of coupling, the time required for the phase differ-
ences to be randomized should be proportional to the time for
each oscillator to travel the distance of N/|q|, the size of a
block. Substituting N/|q| into �x in the left side of Eq. (3),
the characteristic time for the randomization is written as

τrand ∼ N2δt

2pq2
. (6)

In order to quantitatively estimate the timescale, we consider
a system that has only the mobility but no phase coupling. We
analyze the spatial correlation of the phase difference using
the function,

G�(x, t ) = 〈cos π [�(x′ + x, t ) − �(x′, t )]〉x′ . (7)

Here the average is taken over x′ and 100 independent sam-
ples. Note that the function has the maximal value of 1 when
the phase difference is spatially uniform and that it vanishes
if the phase difference is spatially random. We choose the
q-twisted state as the initial condition. In this case, the func-
tion has little dependence on x because the phase difference
is uniform in the initial state, and the randomization takes
place uniformly. Therefore, we use the data for x = N/2 in
the following, and write it as G�(t ). As shown in Figs. 5(a)
and 5(b), G�(t ) decays exponentially in a wide range of p and
q. By fitting G�(t ) by an exponential function, we get

G�(t ) = exp

(
− 2pq2

a2N2δt
t

)
, (8)

with the coefficient a ≈ 0.11. Now we redefine the timescale
for randomization τrand by G�(τrand ) = 0.1, which gives

τrand ≈ 1.4 × 10−4 N2

pq2
. (9)

On the other hand, the coupling between oscillators tends
to restore the twisted states. We turned off the mobility and
calculated the strength of incoherence σ� as a function of
time, starting from random states; see Fig. 5(c) for an attrac-
tive coupling (0 � α � 0.4) and (d) for a repulsive coupling

FIG. 5. (a) and (b) Temporal decay of coherence is measured
by the function G�(N/2, t ) for a system without the coupling. It
is obtained by starting from the q-twisted state with (a) q = 2 and
(b) q = 67. It shows the effect of mobility to randomize the phase
difference. (c) and (d) The strength of incoherence σ� obtained with-
out mobility and starting from the random state for (c) 0 � α � 0.4
and (d) 0.8 � α � 1. It shows the effect of coupling to restore the
q-twisted states.

(0.8 � α � 1). In the attractive case, the decay of σ� is slower
for larger α, which is interpreted as the result of the frustra-
tion introduced by the phase lag. We define the timescale for
restoring coherence τcoh as the time for σ� to decrease from 1
to 0.1. Figure 6(a) shows that τcoh increases as α is increased
from 0 to 0.4.

Now we compare the timescales τrand and τcoh to ana-
lyze the competition between the mobility and coupling. In
Fig. 6(b), we plot τrand given by Eq. (9) for q = 1, 2 with
solid lines and τcoh for α = 0, 0.3, 0.4 with dashed lines. For
α = 0, we have τcoh = 7.4, and it is smaller than τrand for all
p and for q = 1, 2. This is in agreement with the result that
the q-twisted states with q = 1 and 2 are stable up to p = 1
[Fig. 3(c)]. For α = 0.3, we get τcoh = 16.6, which exceeds
τrand for q = 2 when p � 0.5. This suggests that the twisted
state with q = 2 is unstable, whereas the twisted state with
q = 1 is still stable for all p’s, which is also consistent with
the full numerical results [Fig. 3(c)]. For α = 0.4 and large
p, τcoh = 54.0 is smaller than τrand even for q = 1, which
explains the result that only the synchronized state remains

FIG. 6. (a) The timescale for restoring coherence τcoh versus α.
(b) Comparison of the timescales. Solid lines: τrand for q = 1, 2.
Dashed lines: τcoh for α = 0, 0.3, 0.4.
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FIG. 7. The spatiotemporal correlation function Gσ (x, t ) for
(a) (α, p) = (0.44, 0), and (b) (α, p) = (0.41, 0.002), which corre-
sponds to the patterns in Figs. 1(b) and 1(i), respectively. The gray
scale represents the strength of correlation. (c) The average speed of
the traveling wave vw versus p.

stable [Fig. 4(a)]. Thus we have shown that the stability
of the q-twisted states for α < αc(p) is determined by the
competition between mobility and coupling, and that the two
timescales that are measured separately can explain the result:
the q-twisted state is unstable if the disturbance caused by the
mobility is faster and is stable if the recovery of coherence by
the coupling is faster.

C. Traveling waves in the transition region

We next consider the effect of mobility in the transition re-
gion just above α = αc(p), where the strength of incoherence
σ� is between 0 and 1. The spatiotemporal patterns obtained
in this range is characterized by the spatiotemporal correlation
function of σ�,

Gσ (x, t ) = 〈σ�(x′, t ′)σ�(x′ + x, t ′ + t ) − σ 2
�(x′, t ′)〉x′,t ′ .

(10)
In Fig. 7, we show this function computed in the time window
500 < t ′ < 1000 and averaged over 100 independent samples.

For p = 0, the randomly branching pattern of incoherent
states [Fig. 1(b)] gives the monotonically decaying correla-
tion function in Fig. 7(a). For p > 0, the meshlike pattern
consisting of intersecting traveling waves [Fig. 1(i)] gives the
V-shaped correlation pattern in Fig. 7(b). In order to measure
the speed of the traveling waves, we identify the average
trajectory xw(t ) of each traveling wave with the “ridge” of
the correlation function, where Gσ (x, t ) is maximal for each
t . The average speed vw of the traveling wave is measured by
fitting xw(t ) with a line. The dependence of vw on the mobility
p is shown in Fig. 7(c). The speed linearly increases with p,
and slightly decreases as α is increased above αc.

FIG. 8. The transition threshold αc(p). For α < αc, only the co-
herent states remain in the long-time limit, whereas traveling waves
appear for α > αc.

We define the threshold αc as the smallest value of α for
which σ� takes a nonzero value. For p = 0, αc is known
to be about 0.44. We obtained the threshold αc(p) in Fig. 8
by seeing if the system enters the coherent state in a very
long time (5 × 105 time units). For each value of α, σ� was
calculated for ten independent samples. If the system reaches
the coherent state (σ� = 0) in every sample, we judge that
α < αc. If any one of the samples shows a nonvanishing value
of σ� at t = 5 × 105, then α > αc. Figure 8 shows that the
p dependence of αc is nonmonotonic. For 0 < p < 0.0002,
increasing p lowers the threshold. For p > 0.0002, αc slowly
increases with p. For any p > 0, traveling waves are obtained
just above αc and are replaced by the chimera state at a larger
value of α. Direct transition from the coherent to chimera
states is found only for p = 0.

D. The effect of mobility for repulsive coupling

We next consider the effect of mobility for a repulsive cou-
pling (α > 0.5). In the absence of mobility, the spatiotemporal
pattern consists of multiple domains of q-twisted states with
positive and negative values of q, separated by incoherent
strips. The range of the winding number is determined by a
linear stability analysis [14], according to which the stable
range of the phase difference is 0.215 < |�| < 0.323. (This
corresponds to 54 < |q| < 80 for a single-domain twisted
state with N = 500.) Because of the large phase difference,
it is much easier for the mobility to disturb the twisted states
than in the attractive case. This explains the result that the
system falls into complete incoherence except for small mo-
bility (p δt � 1) as seen in Fig. 2. A typical spatiotemporal
pattern in the small mobility region is shown in Fig. 1(h)
where the disturbance effect is seen as noisy spots on the
twisted domains. The threshold of the transition from the
noisy pattern to complete incoherence can be again explained
by the competition of the two timescales. The timescale of the
decay of σ�(t ) is on the order of ten time units and has only
minor dependence on α as seen from Fig. 5(d). (Note that σ�

does not drop to zero in the steady state because of the coexis-
tence of multiple domains. In this case, it would be reasonable
to redefine τcoh by the time σ� decays to 0.5.) Meanwhile,
the time for the system to become completely random in the
absence of coupling follows Eq. (9). Here, we replace N/q
with 2/� and use the value of 0.215 < |�| < 0.323 to obtain
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τrand ∼ 10−2/p. Therefore, the two timescales are comparable
to each other if p is less than the order of 10−3, which is
consistent with the threshold found in Fig. 2(b).

IV. DISCUSSION AND CONCLUSION

In this paper, we studied the combined effects of mobility
due to random exchange of oscillators and frustrated coupling
due to the phase lag. First, for α < 0.5, we showed that the
mobility enlarges the basins of attraction of twisted states with
small |q|, including the fully synchronized state by destabi-
lizing the twisted states with large |q|. This is reflected in
the decay of the rms of q as a function of p. For α = 0, we
obtained the power law σq ∼ p−1/4, which is interpreted as
follows. It is shown in a previous study of nonmobile oscilla-
tors [3] that the coupling range R and the standard deviation of
q has the relationship σq ≈ 0.19

√
N/R − 0.11, which reduces

to σq ∼ R−1/2 for R � N . On the other hand, mobility effec-
tively extends the coupling range. It is derived in Ref. [22]
that Reff ∼ p1/2 for large p, which means that the effective
coupling range Reff is given by the mean square displacement
of each oscillator in a given microscopic time. Combining
these two results, we obtain the power law σq ∼ p−1/4.

Second, we analyzed the timescales for randomization and
restoring coherence by considering the mobility and coupling
separately. The threshold mobility for destabilizing the q-
twisted states is obtained by comparing the two timescales.
For the attractive case, destabilization of a q-twisted states
results in hopping to a basin of attraction of other q-twisted
states with a smaller |q|, or the fully synchronized state. On
the other hand, for the repulsive case, the coexistence of the
q-twisted states with large |q| is destroyed by small mobility,
resulting in a fully incoherent state. Thus, mobility has oppo-
site effects for the attractive and repulsive couplings.

Third, we found a meshlike pattern of traveling waves for
the attractive coupling at the onset of incoherence. We suggest

that local defects in the phase pattern caused by the exchange
of oscillators trigger the traveling waves. For p close to 0,
increasing p makes the traveling waves more easily generated,
and, hence, the threshold αc is lowered. For very large values
of p, all the twisted states will be unstable, and only the
synchronous state survives. In this case, the phase pattern is
unaffected by the exchange of the oscillators, and no traveling
waves can be generated. However, the precise mechanism of
their formation is not clear and is left for future work.

In this paper, we considered a minimal model of mobile
oscillators with a frustrated coupling. The mobility acts as a
noise and induces hopping from metastable dynamical states
to the globally synchronized state for the attractive coupling.
For the repulsive case, the noise disturbs the chimera state
and further enhances heterogeneity. We expect that these
mechanisms are robust and valid in a wide class of coupled
oscillators. including networks of immobile oscillators with
dynamic rewiring. The results might find application in syn-
chronization of mobile devices with delayed communication
and neuronal network with rewiring. Neuronal networks show
a plethora of heterogenous states that resemble the chimera
states [9,10], whereas rewiring of synapses called structural
plasticity contributes to homeostasis of brain activities [34]. A
recent study showed that the structural plasticity strengthens
both synchronization and desynchronization of neuronal firing
[35], leaving simultaneous effects of rewiring and frustration
an open question. We hope that the present paper will be
extended to rewiring networks with frustration, including the
neuronal system.
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