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Diverse coherence-resonance chimeras in coupled type-I excitable systems
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Coherence-resonance chimera was discovered in [Phys. Rev. Lett. 117, 014102 (2016)], which combines the
effect of coherence-resonance and classical chimeras in the presence of noise in a network of type-II excitable
systems. However, the same in a network of type-I excitable units has not been observed yet. In this paper
we report the occurrence of coherence-resonance chimera in coupled type-I excitable systems. We consider
a paradigmatic model of type-I excitability, namely, the saddle-node infinite period model, and show that the
coherence-resonance chimera appears over an optimum range of noise intensity. Moreover, we discover a unique
chimera pattern that is a mixture of classical chimera and the coherence-resonance chimera. We support our
results using quantitative measures and map them in parameter space. This study reveals that the coherence-
resonance chimera is a general chimera pattern and thus it deepens our understanding of role of noise in coupled
excitable systems.
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I. INTRODUCTION

Chimera patterns have been in the center of recent stud-
ies for the last two decades (see [1] and references therein).
The inherent peculiarity of chimeras, such as coexistence
of synchrony and asynchrony in networks of identical os-
cillators as the result of symmetry-breaking dynamics, has
intrigued the researchers in the field of natural and biological
sciences [2,3]. Since its discovery in phase oscillators [4],
diverse chimera patterns are observed [5–12] and studied in
several natural and manmade systems [13–19]. Apart from the
academic interest, the relevance of chimera patterns in neu-
ronal processes [20–23] makes it a vibrant topic of research.
Chimeras are found to be the underlying process that governs
certain neuronal processes like unihemispheric sleep [24,25]
and epileptic seizures [26,27].

In nature, noise and random fluctuations are inevitable
[28,29]. Noise manifests its most profound effects in excitable
systems: noise-induced orders in the form of stochastic reso-
nance [30] and coherence resonance [31,32] have long been
the subjects of intense research. As neurons are inherently
excitable, these studies play crucial role in explaining several
neurophysiological processes such as noise-induced attractor
switching that leads to seizure [33] (see [34] and references
therein). However, surprisingly, little study has been done on
the interplay of noise and excitability in the context of chimera
patterns. Only recently, Semenova et al. [35] reported a novel
chimera pattern, called the coherence-resonance chimera (CR
chimera), that combines temporal features of coherence reso-
nance [32] and spatial properties of chimera states. In [35], the
authors considered a network of FitzHugh–Nagumo systems
in their excitable state in the presence of noise and showed
that for an optimum range of noise strength, noise-induced
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spiking gives rise to spatial coherence-incoherence dynam-
ics equivalent to chimera patterns. The FitzHugh–Nagumo
model belongs to the type-II excitability, where the transi-
tion from excitable to oscillatory state occurs through Hopf
bifurcation. In this context there exists another broad class of
excitable systems that exhibit type-I excitability, where the
transition from excitable state to oscillation occurs through
saddle-node bifurcation [36,37]. Examples of type-I excitable
systems include regular spiking neurons in the rat somatosen-
sory cortex [38], cerebellar stellate cells [39], which are
GABAergic interneurons found in the superficial molecular
layer of the cerebellar cortex [40], and auditory nerve spike
generators [41] to name a few. However, surprisingly, the
coherence-resonance chimera has not been observed yet in
type-I excitable systems. In this paper we ask the following
long-standing question: Do type-I excitable neurons exhibit
coherence-resonance chimera? If yes, what are the manifes-
tations and origin of that chimera pattern?

In this paper we show that coherence-resonance chimera
is indeed exhibited by a network of type-I excitable sys-
tems. For our study we employ a paradigmatic model of
type-I excitability, namely, the SNIPER (saddle-node infi-
nite period) model that gives limit cycle through saddle-node
infinite period bifurcation, also known as saddle-node bifur-
cation on an invariant cycle [36]. We consider a network
of nonlocally coupled identical SNIPER systems in their
excitable steady state and show that the interplay of noise
and coupling gives rise to coherence-resonance chimera pat-
tern. Unlike type-II excitable systems, we observe a unique
chimera pattern in the moderate coupling strength which
combines the features of classical chimera and coherence-
resonance chimera. Using suitable measures we characterize
the dynamical behaviors and delineate the dynamical zones in
the parameter space. This study will show that the CR chimera
is indeed a general chimera pattern and has other forms of
manifestation.
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FIG. 1. A single SNIPER system in the excitable regime b =
0.95. (a) Phase space diagram. Hollow circle (filled circle) denotes
the saddle point (stable node). The origin is an unstable focus. Two
unstable manifolds approach the stable node along the periphery
of a unit circle in two different directions. (b) Time series of x(t )
and y(t ).

II. MATHEMATICAL MODEL

We consider a network of N identical type-I excitable sys-
tems obeying the SNIPER model coupled through a nonlocal
matrix coupling. The mathematical model of the network
reads

ẋi = xi
(
1 − x2

i − y2
i

) + yi(xi − b)

+ ε

2P

i+P∑
j=i−P

[bxx(x j − xi ) + bxy(y j − yi )],

ẏi = yi
(
1 − x2

i − y2
i

) − xi(xi − b)

+ ε

2P

i+P∑
j=i−P

[byx(x j − xi )

+ byy(y j − yi )] +
√

2Dξi(t ), (1)

where i = 1, 2, 3...N , ε > 0, is the coupling strength, and
P ∈ [1, N/2] is the number of neighbors of each oscillator
on either side. The limits P = 1 and P = N/2 give the near-
est neighbors and all to all coupling, respectively. b is the
bifurcation parameter (b ∈ R). Here ξi(t ) ∈ R is the normal-
ized Gaussian white noise, i.e., 〈ξi(t )〉 = 0 and 〈ξi(t )ξ j (t ′)〉 =
δi jδ(t − t ′) ∀i, j, and D represents the noise intensity. The
coefficients of blm, where l, m ∈ [x, y], are the elements of the
rotational matrix:

B =
[

bxx bxy

byx byy

]
=

[
cos φ sin φ

− sin φ cos φ

]
, (2)

where φ ∈ [−π, π ]. The matrix B governs both direct cou-
pling as well as cross coupling between x and y [42].
In this work we take φ = π/2 − 0.1 as was prescribed in
Refs. [35,42,43].

For b < 1, the uncoupled system of Eq. (1) has three fixed
points: an unstable focus at the origin and a pair consisting of a
saddle point and a stable node on the unit limit circle with co-
ordinates [b,+

√
(1 − b2)] and [b,−

√
(1 − b2)], respectively.

The dynamics is shown in Fig. 1 for b = 0.95 in phase space
(a) and time series (b). At bc = 1 the saddle point and the
stable node collide with each other through a saddle-node
infinite period bifurcation [36] and give rise to a stable limit

cycle. Vüllings et al. [43] studied this SNIPER model in the
oscillatory zone (i.e., for b > bc) without noise and observed
clustered classical chimera patterns. However, in this work our
region of interest is b < 1, i.e., all the SNIPERs are in the
nonoscillatory excitable steady state and investigate the effect
of noise on the collective dynamics of the coupled network.

III. RESULTS

We consider N = 1000 SNIPER systems given by Eq. (1)
with b < 1. In the absence of external noise, the individual
nodes do not fire and the whole network stays in a stable
homogeneous steady state. We fixed the bifurcation parameter
at b = 0.995, i.e., near the bifurcation point. We choose the
phase–antiphase initial condition that has been widely used in
the literature of chimera [1,8,44]: x(1−500), y(1−500) = 1,−1;
x(501−1000), y(501−1000) = −1, 1. However, we verify that for
random initial conditions distributed on a unit circle (x2

i +
y2

i = 1) the network gives qualitatively the similar results.

A. Coherence-resonance chimera

To understand the spatial coherence and incoherence dy-
namics of the chimera pattern, we use the local order
parameter [45,46] that is defined as

Zi =
∣∣∣∣∣

1

2δm

∑
|i−k|�δm

e j�k

∣∣∣∣∣, (3)

where j = √−1, i = 1, 2, ...N , and δm is the nearest neighbor
of the ith node on both sides. The geometric phase of the
ith element is defined by �i = arctan(yi/xi ) [42]. The local
order parameter Zi ≈ 1 denotes that the ith oscillator belongs
to the coherent group of the chimera pattern; Zi < 1 indicates
that the ith oscillator belongs to the incoherent group [35,47].
Here in our computation of local order parameter, we take the
number of nearest neighbors δm = 25 [35].

To demonstrate the effect of noise, we vary the noise
intensity (D) for a fixed coupling strength (ε) and coupling
range (P): three distinct patterns are observed as shown in
Fig. 2 using a spatiotemporal plot of the variable xi and the
corresponding local order parameter Zi (shown in the first two
columns of Fig. 2, respectively). For zero to a certain low
noise intensity (D � 0.000 05) the network stays in a homoge-
neous steady state. This is shown in Figs. 2(a)–2(d): the snap
shots of xi and the corresponding local order parameter Zi in
Figs. 2(c) and 2(d), respectively, support this fact. In the inter-
mediate range of noise intensity (0.000 05 � D � 0.008) we
observe coherence-resonance chimera (CR chimera), where
certain oscillators form the spatial incoherent pattern and the
remaining oscillators are in coherent motion with respect to
each other. Figures 2(e)–2(h) depict the occurrence of CR
chimera at an exemplary value of D = 0.002. The spatiotem-
poral plot of xi in Fig. 2(e) shows that with time, the coherent
and incoherent domain swap their position in space. However,
in time domain they appear periodically. This is similar to
the CR chimera defined for the type-II excitable system in
Ref. [35]. Interestingly, the interchange of a coherent-inherent
pattern has a resemblance with the noise-induced attractor
switching in neuronal networks that leads to epileptic seizure
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FIG. 2. Space-time plots of (xi) (left column), local order param-
eter (Zi) (second column, δm = 25), snapshot of xi (third column),
and snapshot of order parameter (right column) (at t = 1988) for
different noise intensities. (a)–(d) D = 0: homogeneous steady state.
(e)–(h) D = 0.002: coherence-resonance chimera. The rectangle
containing the spatial incoherent nodes serves as a visual guidance.
(h) Snapshots of Zi at t = 1988 (blue) and t = 1992 (red). (i)–(l)
D = 0.05: incoherent in space and time. Parameter values: ε = 0.33,
b = 0.995, P = 490, and N = 1000.

[33]. Figure 2(g) shows the snapshot of xi at t = 1988 that
clearly demonstrates that the oscillators of the right half are
in incoherent motion while the oscillators in the left half are
synchronized. Figure 2(h) (in blue) supports the observation
through the corresponding snapshot of Zi; it also shows the
same (in red) in a later time (t = 1992) where the coherent-
incoherent zones are swapped. We find that, unlike [35], the
height of the incoherent domain does not depend upon the
choice of the noise intensity or other coupling parameters.
Further increase in noise intensity leads to a complete in-
coherent dynamics in space and time. Unlike the results of
Ref. [35], the network does not exhibit a state of complete
spatial incoherence and temporal coherence. Figures 2(i)–2(l)
demonstrate the spatiotemporal incoherent dynamics for D =
0.05. The snapshot of xi shows that all the oscillators are
oscillating in an incoherent manner, which is also supported
by the corresponding plot of Zi [Fig. 2(l)].

To visualize the evolution of coherence-resonance chimera,
we inspect snapshots of the variable xi and the corresponding
phase space in Fig. 3. Also, the genesis of the coherence-
resonance chimera can be explained intuitively from the
phase-space geometry of the SNIPER model. Near the bifur-
cation point, even when noise-induced oscillations appear, a
“ghost zone” [36] [shown in circular shade in Figs. 3(b), 3(d),
and 3(f)] exists around (x, y) = (b, 0) that slows down the
dynamics. Away from this ghost zone, the dynamics become
faster. Figure 3(a) shows that the oscillators of the left half
(except a few in the boundaries) are spatially synchronized
and the oscillators in the right half show noise-induced spa-
tial incoherence at t = 1988. The corresponding phase-space
diagram [Fig. 3(b)] ensures that the coherent oscillators are
localized around a point in the phase space (in red), inside the
ghost zone, whereas the oscillators away from the ghost zone

FIG. 3. Snapshots of xi and the corresponding phase-space dia-
grams of coherence-resonance chimera of Fig. 2(e) at (a), (b) t =
1988, (c), (d) t = 1990, (e), (f) t = 1992. The circular blob in the
right-middle region of (b), (d), (f) sketches the “ghost zone” where
the dynamics become slower. Parameters are D = 0.002, ε = 0.33,
b = 0.995, P = 490, and N = 1000.

are spreading over a large region on the unit circle, giving
rise to the incoherent domain (in green). As time evolves,
the incoherent oscillators are moving fast counterclockwise
and approach towards the ghost zone, whereas the coherent
oscillators (in red) start moving away from the ghost zone.
Figures 3(c) and 3(d) demonstrate the snapshot at t = 1990,
where all the oscillators attain almost the same x value. In
a later time, the oscillators from the left half (in red) move
faster and form the incoherent domain, whereas the oscillators
from the right-hand side (in green) now move slowly and
become coherent. This situation is shown in Figs. 3(e) and 3(f)
at t = 1992. The whole scenario repeats periodically in time
and gives rise to alternatively switched coherence-resonance
chimera. The genesis of the CR chimera is somewhat dif-
ferent from the CR chimera of the FitzHugh–Nagumo model
observed in [35], as there exist two slow zones separated by
two fast zones in the phase space. Further, the CR chimera
observed here slightly differs from that of [35], as here we
observed a few “solitary” nodes that do not belong to the spa-
tial coherent-incoherent domain [see gray zone near i = 500
in Figs. 3(a), 3(c), and 3(e)]. In the next section we will show
that in a broad parameter zone these nodes give rise to a hybrid
version of CR chimera.

B. Hybrid coherence-resonance chimera

Apart from CR chimera, we also observed a hybrid ver-
sion of it, which manifests the signature of both the classical
chimera and CR chimera. This chimera pattern appears in a
broad parameter regime for a comparatively lower coupling
range or stronger coupling strength. Figure 4 demonstrates
the scenario for P = 480 and ε = 0.33. (The first and second
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FIG. 4. Space-time plots of (xi) (left column), local order param-
eter (Zi) (second column, δm = 25) for different noise intensities. (a),
(b), (c) D = 0: steady state; (c) represents the snapshot of xi. (d), (e),
(f) D = 0.002, hybrid coherence-resonance chimera; upper panel of
(f) gives the snapshot of xi at t = 1982, the lower panel shows the
corresponding mean phase velocity. (g), (h), (i) D = 0.05 incoherent
in space and time. Parameter values: ε = 0.33, b = 0.995, P = 480,
and N = 1000.

columns show the spatiotemporal pattern of xi and the local
order parameter Zi, respectively). For a lower noise intensity,
as before, the network stays in a state of homogeneous steady
state [Figs. 4(a)–4(c)]. In an optimum range of noise we
observe the hybrid coherence-resonance chimera, as shown
in Fig. 4(d). Here the spatial coherent-incoherent domains
of the CR chimera are separated by spatiotemporal incoher-
ent oscillations. The corresponding local order parameter in
Fig. 4(e) supports this fact. Figure 4(f) (upper panel) shows
the snapshot of xi at t = 1982, which clearly exhibits that the
incoherent oscillations appear in between the coherent and in-
coherent domain of the original CR chimera. Therefore, in the
hybrid CR chimera state, the incoherent domain consists of
two different kinds of oscillatory dynamics: one corresponds
to the spatial incoherency and the other to the spatiotemporal
incoherency. We compute the mean phase velocity to charac-
terize this chimera state. The mean phase velocity [1] profile
of each oscillator is given by

�i = 2πMi

	T
, (4)

where Mi denotes the numbers of periods of the ith oscillator
in the time interval 	T . From the mean phase velocity profile
of Fig. 4(f) (lower panel) we can see that the spatiotemporal
incoherent region shows an arclike shape (noisy due to the
presence of noise) that is a signature of classical chimera.
The hybrid CR chimera gets destroyed beyond a certain noise
intensity; Figs. 4(e) and 4(f) demonstrate the spatiotemporal
incoherent dynamics for D = 0.05.

The spatial spreading of coherent and incoherent zone of
hybrid CR chimera depends upon coupling strength (ε) and
noise intensity (D). We compute the variation of the nor-
malized length of the coherent domain (δ/N) with ε and D.
Figure 5(a) shows the plot of ε − δ/N for D = 0.002: the
shaded zone represents the zone of occurrence of hybrid CR
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0.000 0.003 0.005D
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FIG. 5. (a) Normalized length of coherent zone (δ/N) vs cou-
pling strength (ε) for D = 0.002. The hybrid CR chimera appears in
the shaded zone. (b) δ/N vs noise intensity D for ε = 0.33. Other
parameters are b = 0.995, P = 480, and N = 1000.

chimera. The left of this zone contains homogeneous steady
state, and the right zone contains spatiotemporal incoherence.
Figure 5(b) gives the variation of δ/N with the noise intensity
D for a fixed coupling strength (ε = 0.33) and range (P =
480). It shows that for D = 0, all the nodes are in the steady
state (i.e., δ/N = 1). As we increase the noise intensity, at
first only a few nodes form the coherent domain; however,
at an optimum range of noise intensity, a larger number of
nodes cooperate to form the coherent domain. Beyond that
noise intensity, the number of coherent nodes gets reduced and
ultimately all the nodes become incoherent, giving spatiotem-
poral incoherent behavior. The presence of an optimum range
of noise intensity is the signature of the coherence-resonance
phenomenon.

Finally, we map all the dynamical behaviors in the phase
diagram of ε − P parameter space. Figure 6 shows the two-
parameter phase diagram for a constant noise level D =
0.002. From the figure it can be noticed that up to P ≈
470 only two types of dynamics are possible: for the lower
coupling strength all the nodes stay in the homogeneous
steady state; however, for ε � 0.34, incoherent oscillations set
up in the network. Chimera patterns appear for P � 470 and

FIG. 6. Two parameter plot in ε − P space. CRCh: Coherence-
resonance chimera, HCRCh: hybrid coherence-resonance chimera.
Other parameters are b = 0.995, D = 0.002, and N = 1000.
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ε � 0.32. The CR chimera occurs near global coupling (i.e.,
P � 485) and the rest of the chimera patterns are hybrid CR
chimeras. The boundaries of the incoherent state, the hybrid
CR chimera, and CR chimera are multistable (not shown
here). In fact, this hybrid CR chimera is found to be the most
abundant chimera pattern in the network. For a random initial
condition a pure CR chimera is not observed and the only
chimera pattern is the hybrid CR chimera (see Appendix).

IV. CONCLUSION

In this paper we have shown that coupled type-I excitable
systems exhibit coherence-resonance chimeras. Further, we
have discovered a hybrid chimera pattern that exhibits the sig-
nature of both classical chimera and the coherence-resonance
chimera, which occurs in a broad parameter region. We have
considered excitable SNIPER system, which is a paradigmatic
model of type-I excitability, and showed that in a network
an intermediate noise intensity breaks the homogeneity of
the network and induces the coexisting spatial synchrony-
asynchrony pattern, which is the combined manifestation of
coherence-resonance and chimera states. We have character-
ized all the chimera patterns with suitable measures and map
them in the parameter space. Subsequently, we have explored
the intuitive connection between the slow-fast dynamics and
the observed chimera pattern.

The following are the results and observations that differ in
comparison to the type-II excitable system [35]: (i) We have
discovered a chimera pattern, namely, the hybrid coherence-
resonance chimera, that is a mixture of classical chimera
and the coherence-resonance chimera. This chimera pattern
is unique in the sense that it consists of two “dissipative struc-
tures” [48], namely, the spatial coherence-incoherence pattern
and the spatiotemporal incoherence pattern. (ii) With the ran-
dom initial condition the only chimera pattern is the hybrid
coherence-resonance chimera. Therefore, in type-I excitable
systems the hybrid coherence-resonance chimera is the most
abundant chimera pattern. (iii) We have also explained the
origin of the coherence-resonance chimeras. Unlike the type-
II excitable model [35], here the ghost region governed by the
saddle-node bifurcation is responsible for the chimera pattern.

This study established that the notion of coherence-
resonance chimera is indeed general and much broader, i.e.,
it is exhibited by both type-I and type-II excitable systems
and its manifestation has diverse spatiotemporal dynamics.
We believe that the present study will improve our insight on
the emergent dynamics of excitable systems in the presence of
noise.

ACKNOWLEDGMENTS

T.K. and B.B. acknowledge financial assistance from the
University Grants Commission, India, in the form of a Senior

FIG. 7. Results for random initial condition on unit circle.
(a) Spatiotemporal plot of xi showing hybrid CR chimera. (b) Snap-
shot of xi (t = 1990). Gray nodes belong to the spatiotemporal
incoherent domain. Nodes in green belong to the spatial incoherent
zone of the hybrid CR chimera, whereas red nodes belong to the
spatial coherent zone. (c) The corresponding distribution of all the
nodes in the phase space (t = 1990). Other parameters are the same
as Fig. 2(e), i.e., ε = 0.33, b = 0.995, D = 0.002, P = 490, and
N = 1000.

Research Fellowship. T.B. acknowledges financial support
from the Science and Engineering Research Board (SERB),
Government of India, in the form of Core Research Grant No.
CRG/2019/002632.

APPENDIX: RANDOM INITIAL CONDITION

We verify our results for a random initial condition dis-
tributed on a unit circle, x2

i + y2
i = 1. We do not get any

pure CR chimera for the random initial condition; instead
hybrid CR chimeras are observed. Figure 7(a) demonstrates
the spatiotemporal plot of the hybrid CR chimera with all the
parameters the same as Fig. 2(e). It shows that the spatial
coherent-incoherent domains are separated by a spatiotempo-
ral incoherent domain. Figure 7(b) demonstrates the snapshot
of xi at t = 1990. Here also one can see that the nodes from
the spatial coherent domain (in red) are disconnected from
the spatial incoherent domain (in green) by a spatiotemporal
dynamics which is essentially incoherent in nature (in gray).
The corresponding phase-space diagram of all the oscillators
is plotted in Fig. 7(c). The spatial incoherent nodes (in green)
are spread but localized near the upper-left portion of the
unit circle. and the spatial coherent nodes are localized near
(xi, yi ) = (1, 0). However, interestingly, the spatiotemporal
incoherent nodes are not localized and spread all over the unit
circle. We also compute the phase diagram, which is similar
to Fig. 6, except here the CR chimera zone is replaced by the
hybrid CR chimera pattern.
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