
PHYSICAL REVIEW E 106, 054206 (2022)

Diffusion-controlled annihilation A + B → 0: Coalescence, fragmentation, and collapse
of nonidentical A-particle islands submerged in the B-particle sea

Boris M. Shipilevsky
Institute of Solid State Physics, Chernogolovka, Moscow District 142432, Russia

(Received 11 May 2022; accepted 20 October 2022; published 9 November 2022)

We present a systematic analysis of diffusion-controlled interaction and collapse of two nonidentical spatially
separated d-dimensional A-particle islands in the B-particle sea at propagation of the sharp reaction front A +
B → 0 at equal species diffusivities. We show that at a sufficiently large initial distance between the centers of
islands 2� and a relatively large initial ratio of island-to-sea concentrations, the evolution dynamics of the island-
sea-island system demonstrates remarkable universality and, depending on the system dimension, is determined
unambiguously by two dimensionless parameters � = N+

0 /N� and q = N−
0 /N+

0 , where N+
0 and N−

0 are the
initial particle numbers in the larger and smaller of the islands, respectively, and N� is the initial number of sea
particles in the volume � = (2�)d . We find that at each fixed 0 < q � 1, there are threshold values ��(q) and
�s(q) � ��(q) that depend on the dimension and separate the domains of individual death of each of the islands
� < ��(q), coalescence and subsequent fragmentation (division) of a two-centered island ��(q) < � < �s(q),
and collapse of a single-centered island formed by coalescence � > �s(q). We demonstrate that regardless of d ,
the trajectories of the island centers are determined unambiguously by the parameter q, and we reveal a detailed
picture of the evolution of islands and front trajectories with an increase in �, focusing on the scaling laws of
evolution at the final collapse stage and in the vicinity of starting coalescence and fragmentation points.
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I. INTRODUCTION

For the last decades the reaction-diffusion system A +
B → 0, where unlike species A and B diffuse and irreversibly
react in a d-dimensional medium, has acquired the status
of one of the most popular objects of research [1–6]. This
attractively simple system, depending on the initial condi-
tions, displays a rich variety of phenomena, and, depending
on the interpretation of A and B, it provides a model for a
broad spectrum of problems [7–16]. A crucial feature of many
such problems is formation of the localized reaction front
A + B → 0, which propagates between domains of unlike
diffusing species A and B and occurs as a consequence of their
effective dynamical repulsion.

The simplest model of a planar reaction front, introduced
by Galfi and Racz [17], is the quasi-one-dimensional model
for two initially separated reactants which are uniformly dis-
tributed on the left side (x < 0) and on the right side (x > 0) of
the initial boundary. Taking the reaction rate in the mean-field
form R(x, t ) = ka(x, t )b(x, t ) (k being the reaction constant),
GR discovered that in the long time limit kt � 1 the reaction
profile R(x, t ) acquires a universal scaling form with the width
w ∝ (t/k2)1/6, so that on the diffusion length scale LD ∝ t1/2

the relative width of the front asymptotically contracts unlim-
itedly

w/LD ∝ (kt )−1/3 → 0

as kt → ∞. Based on this fact, a general concept of the front
dynamics for nonzero diffusivities, the quasistatic approxima-
tion (QSA), was developed [18–22]. The key property of the

QSA is that the front width w(J ) depends on t only through
the time-dependent boundary current JA = |JB| = J , the cal-
culation of which is reduced to solving the external diffusion
problem with the moving absorbing boundary (Stefan prob-
lem). Following this approach, in most subsequent works the
use of the QSA was traditionally restricted by the quasi-one-
dimensional sea-sea problem with A and B domains having
an unlimited extension, i.e., with unlimited number of A and
B particles, where asymptotically the stage of monotonous
quasistatic front propagation is always reached.

In the recent Refs. [23–31] it has been shown that based
on the QSA the scope of the A + B → 0 problems which
allow for analytic description can be appreciably broadened
including the systems where the particle number of one or
both species is finite (island-sea and island-island systems)
and, therefore, in the final state one or both islands disappear
completely. It has been demonstrated that in the sharp-front
regime these systems exhibit rich scaling behavior, and though
in these systems the QSA is always asymptotically violated,
at large initial particle numbers and a high reaction constant
the vast majority of particles die in the sharp-front regime
over a wide parameter range. One of the most important
problems here is the evolution of the island-sea system, in-
troduced originally in Ref. [23] for quasi-one-dimensional
geometry (flat front) and generalized for d dimensions (ring-
shaped or spherical fronts) in the recent Ref. [31]. This system
is the basic model for a wide range of phenomena and is
realized in numerous applications from Liesegang pattern
formation [32–35] to electron-hole luminescence in quantum
wells [7–9]. It has been established that at sufficiently large
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reaction constant k the death of a majority of island particles
N (t ), regardless of the initial particle distribution, proceeds in
the universal scaling regime

N = N0G(t/tc),

where tc ∝ N 2/d
0 is the lifetime of the island in the sharp-front

limit and on the final stage of collapse

N /N0 ∝ T (d+2)/2 → 0

as T = (tc − t )/tc → 0. It has been shown that at a relatively
large starting ratio of island to sea concentrations, regardless
of the starting particle number and the system dimension,
while dying, the island first expands to certain maximal am-
plitude and then begins to contract by the universal law

ζ f = r f /rM
f =

√
eτ | ln τ |, (1)

where τ = t/tc and rM
f ∝ N 1/d

0 is the island maximal expan-
sion radius at the front turning point tM = tc/e.

It has been established that regardless of the system di-
mension in the mean-field regime the relative front width
η = w/r f changes by the law

η = ηM/(eτ ln2 τ )1/3,

where at the front turning point ηM ∝ 1/N 2/3d
0 k1/3 and, there-

fore, on the final stage of collapse

η ∝ (TQ/T )2/3,

where TQ ∝ 1/N 1/d
0

√
k → 0 as N0, k → ∞.

According to Eq. (1), with an increase of the initial particle
number in the island, the amplitude of island expansion at
the front turning point increases unlimitedly and, therefore,
in the presence of neighboring islands in the sea the scenario
described above for the autonomous evolution of the island is
realized only as long as the amplitude of the island expansion
remains much less than the distance between the centers of
neighboring islands. If in the sea there are one or several
neighboring islands and this condition is violated, it is obvious
that the dynamics of island evolution must radically change.

Recently, the problem of diffusion-controlled interaction
of two spatially separated identical d-dimensional A-particle
islands in the B-particle sea has been systematically investi-
gated at equal species diffusivities in Ref. [36]. This model
is the simplest basic model of the island-sea-island system
which allowed revealing the key features of the evolution
dynamics under the assumption of sharp-front formation.
Moreover, because of mirror symmetry, this model simultane-
ously describes the evolution of the d-dimensional A-particle
island in a semi-infinite B-particle sea with a reflecting
(d − 1)-dimensional “wall.” It has been discovered that if the
initial distance between the centers of the islands 2� is large
enough compared to their characteristic initial size and initial
ratio of island to sea concentrations is relatively large, the evo-
lution dynamics of the island-sea-island system is determined
unambiguously by the dimensionless parameter

� = N0/N�,

where N0 is the initial particle number in the island and N� is
the initial number of sea particles in the volume � = (2�)d . It
has been shown that:

(i) In the limit of small �2/d � 1 each of the islands
evolves and dies autonomously not feeling the presence of
neighboring island;

(ii) There is a threshold value

�� = (πe/2d )d/2/2,

below which the islands dies individually and above which
island coalescence occurs;

(iii) Regardless of d the centers of each of the islands move
toward each other along the universal trajectory, merging in a
united center at the critical value

�s = (
√

e/2)(π/2)d/2 � ��,

so that at � > �s coalescence is completed by the collapse of
the single-centered island in the system center;

(iv) In 2D and 3D systems in the range �� < � < �s the
coalescence is accompanied by the subsequent fragmentation
(division) of the two-centered island and is completed by
individual collapse of each of the islands.

In Ref. [36] a detailed picture of coalescence, fragmen-
tation, and collapse of the identical islands is presented,
the remarkable properties of self-similarity of the evolution
of islands are revealed, and a comprehensive self-consistent
picture of the relative front width evolution is given. Gen-
eralizing the model developed in Ref. [36], in this article
we consider a much more complex and nontrivial problem
of diffusion-controlled interaction and collapse of two non-
identical spatially separated A-particle islands submerged in
the B-particle sea. We show that at a sufficiently large initial
distance between the centers of islands 2� and a relatively
large initial ratio of island to sea concentrations, the evolu-
tion dynamics of the island-sea-island system demonstrates
remarkable universality and is determined unambiguously by
two dimensionless parameters,

� = N+
0 /N�

and

q = N−
0 /N+

0 ,

where N+
0 and N−

0 are the initial particle numbers in the
larger and smaller of the islands, respectively, and N� is the
initial number of sea particles in the volume � = (2�)d . We
find that at each fixed 0 < q � 1, there are threshold val-
ues ��(q) and �s(q) � ��(q) that depend on the dimension
and separate the domains of individual death of the islands
� < ��(q), coalescence and subsequent fragmentation of a
two-centered island ��(q) < � < �s(q), and collapse of a
single-centered island formed by coalescence � > �s(q). We
demonstrate that regardless of d , the trajectories of the island
centers are determined unambiguously by the parameter q,
and we reveal a detailed picture of the evolution of islands
and front trajectories with an increase in �, focusing on
the scaling laws of evolution in the vicinity of coalescence,
fragmentation, and collapse points. Finally, we give a compre-
hensive analysis of the relative front width evolution and show
that the presented picture of island evolution is self-consistent
in a wide range of parameters.
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II. DIFFUSION-CONTROLLED INTERACTION OF
NONIDENTICAL A-PARTICLE ISLANDS SUBMERGED

IN THE B-PARTICLE SEA

A. Model

Let two nonidentical A-particle islands, which for simplic-
ity have the shape of a d-dimensional hypercube with the
side 2h and the centers of which are located on the x axis at
the points x = ±�, are surrounded by a uniform unlimited B-
particle sea with the initial concentration b0. We shall assume
that initially in each of the islands A particles are distributed
uniformly with the concentrations a+

0 at the x = +� center
and a−

0 � a+
0 at the x = −� center, respectively. We shall

also assume that initially the ± islands have the same spatial
orientation and that the coordinate axes with the origin at the
point x = 0 on the x axis are normal to hypercube “faces” so
that y ↔ −y, z ↔ −z symmetry takes place. Particles A and B
diffuse with the diffusion constants DA,B, and when meeting
they annihilate with some nonzero probability A + B → 0. In
the continuum version, this process can be described by the
reaction-diffusion equations

∂a/∂t = DA∇2a − R, ∂b/∂t = DB∇2b − R, (2)

where a(r, t ) and b(r, t ) are the mean local concentrations of
A and B and R(r, t ) is the macroscopic reaction rate. We shall
assume, as usual, that species diffusivities are equal DA =
DB = D. This important condition, due to local conservation
of difference concentration a − b, leads to a radical simplifica-
tion that permits to obtain an analytical solution for arbitrary
front trajectory [36]. Then, by measuring the length, time
and concentration in units of h, h2/D, and b0, respectively,
and defining the ratio a+

0 /b0 = c+, the ratio a−
0 /b0 = c− and

the ratio L = �/h � 1, we come from Eq. (2) to the simple
diffusion equation for the difference concentration s(r, t ) =
a(r, t ) − b(r, t ),

∂s/∂t = ∇2s, (3)

at the initial conditions

s0[x ∈ (L − 1, L + 1)] = c+,

s0[x ∈ −(L + 1, L − 1)] = c−, (4)

and s0 = −1 (sea) outside the islands in the 1D case,

s0[x ∈ (L − 1, L + 1), y ∈ (−1,+1)] = c+,

s0[x ∈ −(L + 1, L − 1), y ∈ (−1,+1)] = c−, (5)

and s0 = −1 (sea) outside the islands in the 2D case,

s0[x ∈ (L − 1, L + 1), y, z ∈ (−1,+1)] = c+,

s0[x ∈ −(L + 1, L − 1), y, z ∈ (−1,+1)] = c−, (6)

and s0 = −1 (sea) outside the islands in the 3D case, with the
boundary conditions

s(|r| → ∞, t ) = −1 (7)

and the symmetry conditions

∂ys |y=0= ∂zs |z=0= 0.

Exact solution of the problem Eqs. (3)–(7) has the form

s(x, t ) + 1 = �(x, t ) = (c+ + 1)

2
L+ + (c− + 1)

2
L− (8)

in the 1D case,

s(r, t ) + 1 = �(x, t )Q(y, t ) (9)

in the 2D case, and

s(r, t ) + 1 = �(x, t )Q(y, t )Q(z, t ) (10)

in the 3D case, where

L+(x, t ) = erf

(
L + 1 − x

2
√

t

)
− erf

(
L − 1 − x

2
√

t

)
, (11)

L−(x, t ) = erf

(
L + 1 + x

2
√

t

)
− erf

(
L − 1 + x

2
√

t

)
, (12)

and

Q(v, t ) = 1

2

[
erf

(
1 + v

2
√

t

)
+ erf

(
1 − v

2
√

t

)]
. (13)

According to the QSA in the diffusion-controlled limit at large
k → ∞ at times t ∝ k−1 → 0, there forms a sharp reaction
front w/|r f | → 0 so that in neglect of the reaction front width
the solution s(r, t ) defines the the law of its propagation

s(r f , t ) = 0

and the evolution of particles distributions a(r, t )= s(r, t )> 0
within the island and b(r, t ) = |s(r, t ) < 0| beyond it.

B. Long-time asymptotics in the sharp-front limit

We shall assume that the ratio of island to sea concen-
trations is large enough c+ � c− � 1 (concentrated islands).
In Ref. [36], it has been shown that in the limit of large
c+ = c− = c � 1 the “lifetime” of the islands tc � 1, so the
majority of the A particles die at times t � 1, when the dif-
fusive length exceeds appreciably the initial island size. The
evolution of the islands in such a large-t regime is of principal
interest since, as it has been demonstrated in Ref. [36], in the
limit of large t � 1, L � 1, and c � 1 regardless of the initial
shape, orientation, and sizes of the islands the asymptotics
of island evolution takes a universal form which at a given
initial sea density is determined unambiguously only by the
initial number of particles in the islands (the instantaneous
source regime) and the initial distance between their centers.
Assuming that the diffusion length

√
t � 1 and expanding the

functions L+(x, t ), L−(x, t ), and Q(v, t ) in powers of 1/
√

t
we find

L+(x, t ) = 2e−(L−x)2/4t

√
πt

(1 + α+), (14)

L−(x, t ) = 2e−(L+x)2/4t

√
πt

(1 + α−), (15)

Q(v, t ) = e−v2/4t

√
πt

(
1 − (1 − v2/2t )

12t
+ · · ·

)
, (16)

where

α± = 1

12t

[
(L ∓ x)2

2t
− 1

]
+ · · · .
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Neglecting further the transient terms α±, (v/t )2 � 1, we
conclude from Eqs. (8)–(10), (14)–(16) that in agreement with
Refs. [31,36] regardless of the initial island shape (hypercube
or hypersphere) at 1 � t � L2 each of the ± islands takes the
shape of a d-dimensional sphere with the front radius ρ±

f (t )
which changes by the law

ρ±
f (t ) = √

2dt ln(t±
c /t ), (17)

whence it follows that at any d in the limit of large 1 � c± �
Ld each of the ± islands first expands reaching some maximal
radius ρM,±

f , and then it contracts disappearing in the collapse
point

t±
c = (c± + 1)2/d

π
= (γ±N±

0 )2/d

4π
, (18)

where γ± = (c± + 1)/c± ≈ 1 and N±
0 is the initial particle

number in the island in units of hd b0.

C. Instantaneous source regime

According to Eqs. (14)–(17), at large L � 1 in the do-
main t � Max[1, ln(t±

c /t )] evolution of each of the ± islands
bounded by the front becomes independent on its initial size,
therefore, the initial distance between the island centers 2� be-
comes the only length scale determining the evolution. Then
by measuring the length and time in units of � and �2/D,
i.e., going to the dimensionless variables T = t/L2, X =
x/L,Y = y/L, Z = z/L, and neglecting the transient terms
α±, (v/t )2 � 1 we find from Eqs. (8)–(10), (14)–(16),

s + 1 = �

(πT )d/2
exp

[
− (1 − X )2 + �2

4T

]
(1 + qe−X/T ),

(19)

where � = (c+ + 1)/Ld , q = (c− + 1)/(c+ + 1) and �2 =
Y 2 or �2 = Y 2 + Z2 at d = 2, 3, respectively. We conclude
from Eq. (19) that in the instantaneous source regime evolu-
tion dynamics of the asymmetrical island-sea-island system is
determined unambiguously by two dimensionless parameters,

� = N+
0 /N�

and

q = N−
0 /N+

0 ,

where in view of the requirement c± � 1(γ± ≈ 1) N+
0 and

N−
0 are the initial particle numbers in larger (+) and smaller

(−) of the islands, respectively, and N� is the initial number
of sea particles in the volume � = (2�)d . Taking s f = 0 we
derive from Eq. (19) the law of the reaction front motion

exp

(
− (1 − Xf )2 + �2

f

4T

)
(1 + qe−Xf /T ) = (πT )d/2

�
. (20)

Equations (19) and (20) are basic equations that determine
the evolution of the islands and front trajectories for an ar-
bitrary ratio of the initial number of particles in the islands
0 < q � 1, including the evolution of identical islands con-
sidered in Ref. [36] as the special particular case q = 1. Our
goal will be to reveal the key regularities of the interaction and
evolution of the islands and fronts in the instantaneous source
regime.

III. EVOLUTION OF THE ASYMMETRICAL
ISLAND-SEA-ISLAND SYSTEM IN THE INSTANTANEOUS
SOURCE REGIME: COALESCENCE, FRAGMENTATION,

AND COLLAPSE OF ISLANDS

A. Trajectories of the centers of islands and sea: Thresholds
of coalescence ��(q) and of a single-centered

island formation �s(q)

It follows from Eq. (19) that, as well as in the special
particular case of identical islands, at any d the points where
the concentration of A particles reaches its maximum, which
we will call the island centers, are located on the X axis.
Calculating the trajectories of motion of the centers X�(T )
from the condition ∂s/∂X = 0, we find from Eq. (19)

1 − X�

1 + X�

= qe−X�/T . (21)

In the general case, Eq. (21) has three real roots: X (+)
� , X (−)

� ,
and X (0)

� . The first two roots describe the trajectories of the
centers of the ± islands,

0 � X (+)
� (q, T ) � 1

and

−1 � X (−)
� (q, T ) < 0,

respectively. The third root, X (0)
� (q, T ), which we will call the

sea center, determines the trajectory of the local minimum of
s:

X (−)
� (q, T ) < X (0)

� (q, T ) � 0.

It is important to emphasize that, regardless of d and �, the
trajectories of the centers are the single-valued functions of
the parameter q. In the limit of small T � 1, from Eq. (21)
we find

X (+)
� (q, T ) = 1 − 2qe−1/T + · · · ,

X (−)
� (q, T ) = −1 + (2/q)e−1/T + · · · , (22)

X (0)
� (q, T ) = T ln q + · · · ,

whereas in the limit of large T � 1, we derive

X (+)
� (q, T ) = (1 − q)

(1 + q)
(1 + αq/T + · · · ), (23)

where αq = 2q/(1 + q). The trajectories of the islands and
sea centers calculated according to Eq. (21) for several fixed
values of q are shown in Fig. 1. One can see that at q < 1,
according to Eqs. (22), with an increase in T the centers of the
smaller island, X (−)

� (T ), and sea, X (0)
� (T ), move toward each

other with acceleration, merging in a united center at some
critical point [Ts(q), Xs(q)] that obviously is the inflection
point, as shown by the arrows below:

MaxX (s) → ∂2s

∂X 2
[Ts, Xs] = 0 ← MinX (s).

Determining the trajectory of the inflection point Xs(T )
from Eq. (19), we find

X 2
s = 1 − 2T,
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FIG. 1. The trajectories of the center of the smaller island −1 �
X (−)

� (q, T ) < Xs(q), the center of the sea Xs(q) < X (0)
� (q, T ) � 0,

and the center of the larger island 0 � X (+)
� (q, T ) � 1 calculated

from Eq. (21) for q = 1, 0.9, 0.5 and 0.1. Dashed lines show the
trajectories XM (T ) = −(1 − 2dT )1/2 for d = 1, 2, and 3 (from top
to bottom). Squares and circles mark the critical points XM , TM and
Xs, Ts, respectively (note that at d = 1, XM = Xs and TM = Ts).

whence, in combination with Eq. (21), it follows that for each
fixed value of q, regardless of d the coordinates of the critical
point Ts(q), Xs(q) are unambiguously fixed by the system of
equations

1 − Xs

1 + Xs
= qe−Xs/Ts , Ts =

(
1 − X 2

s

)
2

. (24)

One can see from Fig. 1 that at the critical point Ts(q), Xs(q),
the center of the smaller island X (−)

� “disappears.” It follows
from this that the collapse of the smaller island on the trajec-
tory X (−)

� (T ) occurs only at T < Ts(q), whereas at T > Ts(q)
a single-centered island is formed as a result of islands coales-
cence, the collapse of which occurs on the trajectory X (+)

� (T ).
According to Eqs. (21) and (24), at q < 1 the trajectories of
the centers of the smaller island and sea reach the critical point
Ts(q), Xs(q) by the universal law

|Xs − X�| =
√

2(Ts − T ) + · · · .

In the special particular case of identical islands q = 1
with mirror −X ↔ X symmetry, the centers of both is-
lands X (+)

� (1, T ) = |X (−)
� (1, T )| merge in a united center with

the stationary sea center X (0)
� (1, T ) = 0 at the critical point

Ts(1) = 1/2, above which the formed single-centered island
dies in the system center X�(1, T > 1/2) = 0, by the law
|X (±)

� | = √
6(Ts(1) − T ) + · · · [36].

Assuming that s(−)
� (Ts, Xs) = 0, from Eqs. (19) and (24) we

find the threshold of single-centered island formation

�s(q) = (πTs)d/2(1 + Xs) exp[(1 − Xs)2/4Ts]/2, (25)

below which each of the islands dies in its own center. It is
easy to demonstrate from Eqs. (19) and (21) that in the do-
main � � �s(q) on the trajectory of the sea center X (0)

� (q, T )
the quantity s(0)

� passes through the maximum s(0)
� (TM, XM ) =

Max[s(0)
� (T )] at some point TM (q), XM (q). Determining the

trajectory of point of the maximum XM (T ) from the condition
ds�/dT = 0, we find from Eqs. (19) and (21)

X 2
M = 1 − 2dT,

whence, in combination with Eq. (21), it follows that for
each fixed value of q, depending on the system dimension
d , the coordinates of the maximum point TM (q), XM (q) are
unambiguously fixed by the system of equations (Fig. 1)

1 − XM

1 + XM
= qe−XM/TM , TM =

(
1 − X 2

M

)
2d

. (26)

It is easy to show that at a fixed value of q, with an increase
in � the quantity s(0)

� (TM, XM ) increases passing through 0 at
some threshold value ��(q). Assuming that s(0)

� (TM, XM ) = 0
(the condition s(0)

� = 0 obviously determines the point of con-
tact of the ±-islands fronts, see below), we find from Eqs. (19)
and (26) the threshold of islands coalescence in the form

��(q) = (πTM )d/2(1 + XM ) exp[(1 − XM )2/4TM ]/2. (27)

It follows from Eqs. (24)–(27) that at any q, the regularities
of the island-sea-island system evolution differ qualitatively
at d = 1 and d > 1.

In 1D systems ��(q) = �s(q), TM (q) = Ts(q), XM (q) =
Xs(q), that is why in the domain � < ��(q) each of
the islands dies individually, not touching the partner,
whereas above the threshold � > ��(q) the single-centered
island formed during coalescence dies on the trajectory
X (+)

� (T > Ts).
At d > 1 in the range ��(q) < � < �s(q) the function

s(0)
� (T, X�) obviously passes through two zeros, the first of

which, s(0)
� (Tcl, Xcl ) = 0, determines the starting point of is-

lands coalescence

Tcl(q,�) < TM (q), Xcl(q,�) > XM (q),

whereas the second one, s(0)
� (Tfr, Xfr ) = 0, determines the

starting point of the fragmentation (division) of the formed
two-centered (dumbbell-like) island

Tfr(q,�) > TM (q), Xfr(q,�) < XM (q),

which again splits into two separated islands with subse-
quent death in the corresponding centers X (±)

� . In the domain
� > �s(q), only the first of these zeros “remains,” which,
as well as in the 1D case, determines the starting point
of islands coalescence that forms a single-centered island
dying on the trajectory X (+)

� (T > Ts). As in the special
mirror-symmetrical case of identical islands, q = 1 [36], it
is easy to understand the reasons for absence of intermediate
coalescence-fragmentation domain in 1D systems. Indeed, in
2D and 3D systems, the sea always remains topologically con-
tinuous (pathwise connected), that is why after the formation
of an isthmus between the islands (coalescence) the current
of sea particles normal to the X axis strives to destroy the
isthmus (A + B → 0) and achieves this (fragmentation) in the
range ��(q) < � < �s(q) as the islands are depleted. In a
qualitative contrast to that, in 1D systems the sea consists
of two areas separated by the islands: a finite “internal” sea
area enclosed between the fronts and an unbounded “external”
sea. Thus, after disappearance of the internal sea area (coa-
lescence) collapse of the formed island is the only remaining
outcome of the reaction in 1D systems.
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FIG. 2. Dependencies Xs(q), Ts(q) (circles) and XM (q), TM (q)
(squares) calculated from Eqs. (24) and (26) for d = 1(circles),
d = 2 (filled squares), and d = 3 (open squares).

Thus, we conclude that at each fixed 0 < q � 1 there
are threshold values ��(q) and �s(q) � ��(q) that depend
on the dimension and separate domains of the individual
death of the islands � < ��(q), coalescence and subse-
quent fragmentation of the islands ��(q) < � < �s(q), and
collapse of the single-centered island formed by coales-
cence � > �s(q). Figures 2 and 3 demonstrate dependencies
of the critical points of the thresholds of coalescence
TM (q), XM (q),��(q) and of formation of the single-centered
island Ts(q), Xs(q),�s(q) on the ratio of the initial num-
bers of particles in the islands q, calculated according to
Eqs. (24)–(27) for d = 1, 2, and 3. One can see from Fig. 2
that, according to Fig. 1, with a decrease in q, the coordi-
nates XM (q) and Xs(q) shift toward the initial center of the
smaller island as a consequence of the acceleration of motion
of the sea center caused by the deceleration of expansion
of the smaller island [XM (q), Xs(q) → −1 as q → 0]. Cor-
respondingly, the duration of the periods TM (q) and Ts(q)
decreases with a decrease in q [TM (q), Ts(q) ∝ 1/| ln q| → 0
as q → 0]. It is worth noticing, however, that in 3D systems
the period TM (q) remains almost constant in a wide range of
q. It should be also emphasized that even a slight difference
in the initial numbers of particles in the islands 1 − q � 1
results in a significant shift of the coordinate Xs(q): Xs(q) ∼
−(1 − q)1/3 + · · · . Figure 3 demonstrate that with a decrease
in q, the thresholds of coalescence ��(q) and of the single-
centered island formation �s(q) increase rapidly [except for
a slight initial decrease in �s(q) at d = 3] with the higher
velocity, the lower q

��(q),�s(q) ∝ 1/q| ln q|d/2 → ∞
as q → 0. One of the important consequences of Fig. 3 is
that with a decrease in q, the relative width of the frag-
mentation domain (d = 2, 3) contracts relatively rapidly, as
demonstrated by the insets.

FIG. 3. Dependencies �s(q) (circles) and ��(q) (squares) cal-
culated from Eqs. (25) and (27) for d = 1, 2, and 3 [note that at
d = 1��(q) = �s(q)]. Insets: Dependencies R�(q) = �s(q)/��(q).

B. Front trajectories: Coalescence, fragmentation,
and collapse of islands

1. Evolution of front trajectories with an increase in �

According to Eq. (20), in the domain of individual death
of the islands � < ��, each of the ± islands with the centers
X (+)

� (q, T ) and X (−)
� (q, T ), respectively, is limited on the X

axis by two leading front points (by two fronts in the 1D case)
X (±)

f ,< � X (±)
� and X (±)

f ,> � X (±)
� , which determine the width of

each of the islands:

X (+)
f ,< � X (+)

isl � X (+)
f ,>, X (−)

f ,< � X (−)
isl � X (−)

f ,>.
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After the initial expansion and subsequent contraction of each
of the islands, the leading front points merge in the corre-
sponding collapse centers

−→ X (+)
f ,<(T (+)

c ) = X (+)
� (T (+)

c ) = X (+)
f ,>(T (+)

c ) ←−,

−→ X (−)
f ,<(T (−)

c ) = X (−)
� (T (−)

c ) = X (−)
f ,>(T (−)

c ) ←−,

the coordinates of which T (+)
c (q,�), X (+)

c (q,�) and
T (−)

c (q,�), X (−)
c (q,�) are unambiguously fixed by the

system of Eqs. (20) and (21) (here and below, the arrows
show the directions of motion of the fronts toward the collapse
and coalescence centers and away from the fragmentation
centers). With an increase in the initial number of particles
in the islands �, the amplitudes of island expansion at the
front turning points increase rapidly. As a consequence, in the
domain � > ��, the leading points of the neighboring fronts
X (−)

f ,> and X (+)
f ,< merge and disappear (coalescence) at some

time moment Tcl(q,�)

−→ X (−)
f ,>(Tcl ) = X (0)

� (Tcl ) = X (+)
f ,<(Tcl ) ←−

forming either a single-centered (� > �s) or two-centered
(dumbbell-like) (d = 2, 3,�� < � < �s) island. In 2D and
3D systems, in the range �� < � < �s the disappeared tra-
jectories of the neighboring fronts X (−)

f ,> and X (+)
f ,< revive again

at some moment of fragmentation start Tfr(q,�)

←− X (−)
f ,>(Tfr ) = X (0)

� (Tfr ) = X (+)
f ,<(Tfr ) −→

disappearing in the corresponding collapse centers of each
of the islands. As well as in the case of island col-
lapse, the coordinates of the starting points of coalescence
Tcl(q,�), Xcl(q,�) and fragmentation Tfr(q,�), Xfr(q,�) are
unambiguously fixed by the system of Eqs.(20) and (21). In
the domain � > �s, the formation of a single-centered island
is accompanied by the transformation

X (−)
f ,<(T < Ts) → X (+)

f ,<(T > Ts),

which is completed by merging of the trajectories of the fronts
X (+)

f ,< and X (+)
f ,> of the single-centered island at the collapse

point T (+)
c . As an illustration, Fig. 4 shows the evolution of

the trajectories of the leading front points Xf (T )|� f =0 with an
increase in �, calculated from Eq. (20) for d = 1 at q = 0.8
and for d = 2, 3 at q = 0.5. One can see from Fig. 4 that
with an increase in �, the effective interaction between the
fronts results in significant deformation of their trajectories,
which above the coalescence threshold �� is accompanied by
turning of the trajectory X (−)

f ,> toward the sea center and for-
mation of a single-centered or two-centered island. Figure 4
clearly demonstrates that at � �= ��,�s, in the vicinity of
coalescence, fragmentation, and collapse points the velocities
of these processes increase unlimitedly. It will be rigorously
shown below that at any d and q, including the special case of
mirror symmetry, the self-acceleration of coalescence, frag-
mentation, and collapse occurs by the law

|Vf | ∝ |T |−1/2 → ∞,

as T → 0 where T = (T0 − T )/T0 and T0 = Tcl, Tf r or T ±
c ,

respectively. As expected, the most interesting behavior that
differs qualitatively from the special case of mirror symmetry
is demonstrated by the trajectories of the fronts q < 1 at the
critical points �� and �s.

FIG. 4. Evolution of front trajectories with an increase in �.
(a) 1D systems: The trajectories X (±)

f ,< (T ) and X (±)
f ,> (T ) calcu-

lated from Eq. (20) at q = 0.8 for � = 0.9, 1, 1.1, 1.17, �� =
1.20562, 1.215, 1.24, and 1.3; (b) 2D systems: The trajecto-
ries X (±)

f ,< (T ) and X (±)
f ,> (T ) calculated from Eq. (20) at q = 0.5

for � = 1, 1.2, 1.4, 1.55, �� = 1.59556, 1.62, �s = 1.66911, 1.75,

and 1.85; (c) 3D systems: The trajectories X (±)
f ,< (T ) and X (±)

f ,> (T )
calculated from Eq. (20) at q = 0.5 for � = 0.6, 0.8, 1, 1.2, �� =
1.23657, 1.3, 1.4, 1.5, �s = 1.59232, 1.7, and 1.8. The growth of �

corresponds to the visually observed growth of T (−)
c and T (+)

c . The
areas of individual collapse below the coalescence threshold are
colored. Thick lines show the trajectories of the centers of the islands
and the sea. Squares and circles mark the critical points XM , TM and
Xs, Ts, respectively.

(i) 1D systems. According to Fig. 4, in the 1D systems
at the threshold value � = �� = �s three front trajectories
X (−)

f ,<(T ), X (−)
f ,>(T ), and X (+)

f ,<(T ) converge at the critical point
XM , TM . One can see that in the vicinity of the critical point,
the velocities of merging of the trajectories X (−)

f ,<(T ) and

X (+)
f ,<(T ) increase unlimitedly

∣∣V (−)
f ,< (T → TM )

∣∣, ∣∣V (+)
f ,< (T → TM )

∣∣ → ∞,
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whereas the trajectory X (−)
f ,>(T ) passes through the critical

point with a finite velocity, transforming to the trajectory
of a single-centered island X (+)

f ,<(T ), which disappears at the
collapse point T (+)

c > TM

V (−)
f ,> (T = TM − 0) = V (+)

f ,< (T = TM + 0) = V s
m(q).

It should be emphasized that at the threshold value � = �� =
�s the smaller island and the “internal” area of the sea en-
closed between the fronts die simultaneously.

(ii) 2D and 3D systems. According to Fig. 4 in 2D and 3D
systems at the threshold value � = �� < �s the trajectories
of the neighboring fronts X (−)

f ,> and X (+)
f ,< converge at the critical

point XM , TM with the finite velocities V (−)
f ,> (TM − 0) = V M

m (q)

and V (+)
f ,< (TM − 0) = V M

p (q), respectively, “reflecting” at the
time moment TM in opposite directions with an instantaneous
change of the velocity sign. It is remarkable that in the vicinity
of the critical point of islands contact T → TM , front velocity
along the “reflected” trajectory V (−)

f ,> “inherits” front velocity

along the incoming trajectory V (+)
f ,<

V (−)
f ,> (TM + 0) = V (+)

f ,< (TM − 0) = V M
p (q),

whereas front velocity along the “reflected” trajectory V (+)
f ,<

“inherits” front velocity along the incoming trajectory V (−)
f ,>

V (+)
f ,< (TM + 0) = V (−)

f ,> (TM − 0) = V M
m (q).

Figure 5 presents the dependencies T (+)
c (�), T (−)

c (�),
Tcl(�) and Tfr(�) calculated from Eqs. (20) and (21) for d = 1
at q = 0.8 and for d = 2, 3 at q = 0.5. This dependencies
together with Fig. 4 reveal a comprehensive picture of the
location and extension of the domains of individual death
of the islands, coalescence-fragmentation of the two-centered
island with subsequent individual death of each of the is-
lands, and coalescence-collapse of the single-centered island.
The dependencies T (+)

c,a = (�)2/d/π and T (−)
c,a = (q�)2/d/π

revealing the domains of the autonomous collapse of each
of the islands �2/d � 1 and (q�)2/d � 1, respectively, are
shown by dashed lines.

2. Critical value q�

According to Fig. 4 the critical point of islands contact
TM , XM is the point of sudden turning of the larger island front,
at which the front abruptly change the direction of its motion:
up to this point, the larger island expands, and it begins to
contract after islands contact (V M

m > 0). Moreover, in 2D and
3D systems, the critical point of islands contact is the point
of abrupt turning of the direction of motion of both fronts,
up to which both islands expand and after the passage of
which both islands begin to contract (V M

m > 0,V M
p < 0). It is

clear, however, that with a decrease in the parameter q and
a corresponding rapid increase in the coalescence threshold
��(q) (Fig. 2), the expansion of the larger island after islands
contact becomes the dominant trend. It will be rigorously
demonstrated in the next section that there is a dimension-
dependent critical value q�(d ) below which the velocity V M

m
changes its sign,

V M
m (q > q�) > 0 → V M

m (q < q�) < 0,

FIG. 5. Dependencies T (−)
c (�), T (+)

c (�), Tcl(�), and Tfr(�) cal-
culated according to Eqs. (20) and (21) at q = 0.8 for d = 1 and at
q = 0.5 for d = 2, 3 The areas of coalescence and fragmentation are
colored. The critical points ��, TM and �s, Ts are marked by squares
and circles, respectively. The dashed lines show the asymptotics of
the autonomous collapse.

and, consequently, the larger island continues to expand after
the passage of the critical point TM , XM . It will be shown be-
low that the condition V M

m (q�) = 0 reduces to the requirement

TM (q�) = X 2
M (q�) = 1

(2d + 1)
, (28)

from which, according to Eq. (26), it follows that

q�(d ) =
⎧⎨
⎩

0.660278..., d = 1,

0.279810..., d = 2,

0.157176..., d = 3.

(29)

Figure 6 demonstrates evolution of the trajectories of lead-
ing front points Xf (T )|� f =0 with an increase in �, calculated
from Eq. (20) for d = 1 at q = 0.5 < q�(1) and for d = 2, 3
at q = 0.1 < q�(3) < q�(2). One can see that, in qualitative
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FIG. 6. Evolution of front trajectories with an increase in
� at q < q�(d ). (a) 1D systems: The trajectories X (±)

f ,< (T ) and

X (±)
f ,> (T ) calculated from Eq. (20) at q = 0.5 < q�(1) for � =

1, 1.2, 1.4, 1.6, �� = 1.74961, 1.8, and 2; (b) 2D systems: The tra-
jectories X (±)

f ,< (T ) and X (±)
f ,> (T ) calculated from Eq. (20) at q = 0.1 <

q�(2) for � = 1, 2, 3, 4, 5, �� = 5.22736, �s = 5.31766, and 6;
(c) 3D systems: The trajectories X (±)

f ,< (T ) and X (±)
f ,> (T ) calcu-

lated from Eq. (20) at q = 0.1 < q�(3) for � = 0.3, 1, 2, 3.2, �� =
3.56663, �s = 3.97418 and 5. The growth of � corresponds to the
visually observed growth of T (−)

c and T (+)
c . The areas of individual

collapse below the coalescence threshold are colored. Thick lines
show the trajectories of the centers of the islands and the sea. Squares
and circles mark the critical points XM , TM and Xs, Ts, respectively.

contrast to the domain q > q� where the fronts of the larger
and smaller islands move to the contact point TM , XM toward
each other (V (−)

f ,> > 0,V (+)
f ,< < 0, T → TM ), in the domain

q < q� these fronts move in one direction (V (−)
f ,> < 0,V (+)

f ,< <

0, T → TM ) realizing islands contact as a consequence of the
difference between the velocities of their fronts (at the criti-
cal point of islands contact, the “fast” front |V (+)

f ,< | > |V (−)
f ,> )|

“overtakes” the “slow” front). According to Fig. 6 in 1D sys-
tems, at the critical point of death of the smaller island TM, XM

the front of the larger island slows down abruptly, continuing
to move in the same direction up to the front turning point,
which shifts toward T > TM . In 2D and 3D systems, at the
critical point of islands contact TM, XM the fronts X (−)

f ,> and

X (+)
f ,< abruptly exchange their velocities, continuing to move

in one direction, and, as a consequence, their effective “attrac-
tion” change to effective “repulsion.” Thus, after the passage
of the contact point, the smaller island continues to contract
up to the collapse point, while the larger island continues
to expand up to the front turning point, which shifts toward
T > TM . It should be emphasized that in the domain q < q�,
in the range �� < � < �u widening with a decrease in q, the
competition between diffusion fluxes results in the emergence
of two front turning points on the trajectory X (+)

f ,<(T > TM ), as
is clearly demonstrated in Fig. 6(b).

3. Universality of evolution in the system center

According to Eq. (19), in the system center r = 0 we find

s(0, T ) + 1 = �(1 + q)

(πT )d/2
exp(−1/4T ), (30)

from which a remarkable fact follows immediately that the
evolution of particle concentration in the system center is
determined unambiguously by only the reduced total initial
number of A-particles in the islands � = �(1 + q) = (N+

0 +
N−

0 )/N� regardless of how these particles are distributed
between the islands. From Eq. (28) we conclude that s(0, T )
reach the maximum sM (0) = MaxT [s(0, T )] at the time mo-
ment TM (0) = 1/2d from which we obtain

sM (0) = �(2d/πe)d/2 − 1.

The condition sM (0) = 0 determines the threshold of the total
initial number of particles in the islands,

�� = (πe/2d )d/2,

upon reaching which the leading point of the front of the
larger island X (+)

f ,< reaches the system center regardless of
q. In the special case of mirror symmetry q = 1, the thresh-
old �� obviously fixes the threshold of islands coalescence
�� = ��/2. In the domain � > �� the condition s(0, T ) = 0
reveals two roots, T<(0) < TM (0) and T>(0) > TM (0). In the
domain q < 1, the lower root, T<(0), determines the time of
the first passage of the front X (+)

f ,< through the system center
and asymptotically decrease by the law T<(0) ∝ 1/ ln � with
an increase in �, while the higher root T>(0) determines the
time of the inverse passage of the front through the system
center and asymptotically increase by the law T>(0) ∝ �2/d

with an increase in �. In the special case of mirror sym-
metry q = 1, the lower root determines the time of island
coalescence start, while the higher root determines the time of
fragmentation start (�� < � < �s) or the collapse time of the
single-centered island (� > �s). Summing up, we conclude
that although with a change in the initial ratio of particle
numbers in the islands q < 1 the trajectories of fronts and
island centers drastically change, regardless of q the times of
the first and inverse passage of the leading point of the front
X (+)

f ,< through the system center are the universal functions of
the total initial number of particles in the islands �, including
the extreme case of complete absence of the smaller island
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q = 0. The second remarkable fact that follows from Eq. (20)
is that in 2D and 3D systems the evolution of the half-width
(radius) of the island � f (T ) in the section X = 0 is determined
unambiguously by the total initial number of particles in the
islands,

� f (T ) =
√

2dT ln(�2/d/πT ) − 1,

reaching the maximum,

�M
f =

√
(�/��)2/d − 1,

at the time moment T �

M = (�/��)2/d/2d .

IV. EVOLUTION OF ISLANDS IN THE VICINITY
OF COALESCENCE, FRAGMENTATION

AND COLLAPSE POINTS

A. Self-similar evolution of islands at the final collapse stage

Let � = X − Xc and T = (Tc − T )/Tc, where Xc|�=0, Tc

are the coordinates of collapse points of the smaller
(X (−)

c , T (−)
c ) or larger (X (+)

c , T (+)
c ) island on the trajectories

of the centers X (−)
� (T ) and X (+)

� (T ), respectively. Then, in the
limit of small |�| � 1, |�| � 1 and |T | � 1 from Eqs. (19)
and (21) we obtain expansion in powers of �,� and T in the
form

s − sc

1 + sc
= F (�) + E (�)[1 + F (�)], (31)

where the concentration of A-particles at the collapse point
�,� = 0 decreases by the law

sc = T (d − χc)/2 + mcT 2 + · · · ,

mc = (d + 2)

8
(d − 2χc) + χc

(
1 + 3X 2

c

)
16Tc

,

and expansions of the functions F (�) and E (�) in powers of
� and �, respectively, have the form

F (�) = c1� + c2�
2 + c3�

3 + c4�
4 + · · · ,

and

E (�) = −�2(1 + T − �2/8Tc + · · · )/4Tc + . . . ,

where the coefficients

c1 = χcXcT
2Tc

[1 + O(T ) + · · · ],

c2 = −1 − χc + ωT + · · ·
4Tc

,

ω = 1 + χc
(
X 2

c

/
Tc − 2

)
,

c3 = − χcXc

12T 2
c

[1 + O(T ) + · · · ],

c4 = 1 + χc
(
X 2

c /2Tc + 1/6Tc − 2
)

32T 2
c

[1 + O(T ) + · · · ],

and the notation is introduced,

χc =
(
1 − X 2

c

)
2Tc

. (32)

1. Self-similar collapse at the critical point �s = �� of 1D systems

At the critical point � = �� = �s we have X (−)
c = Xs,

T (−)
c = Ts, whence, according to Eqs. (24) and (32) it follows

that

χ (−)
c = χs = 1,

and for d = 1 at small |T | � 1 from Eq. (31) we find

sc = msT 2 + · · · , c2 = −ωT /4Ts + · · · .

Assuming further that q < 1, |�| � Ts|Xs|, at small |T | we
derive from Eq. (31) with accuracy to leading terms

s = msT 2 + c1� + c3�
3 + · · · , (33)

whence, substituting here the condition s f = 0, we find
asymptotic trajectories of the fronts

�
(±)
f ,< = ±

√
6TsT + · · · ,

�
(−)
f ,> =

(
2msTs

|Xs|
)
T + · · · . (34)

From Eq. (34), the result announced above follows immedi-
ately that the front �

(−)
f ,> approaches the collapse point Xs with

the finite velocity

V s
m = d�

(−)
f ,>/dT |T →0 = −2ms/|Xs| + · · ·

maintaining it after the transformation �
(−)
f ,>(Ts − 0) →

�
(+)
f ,<(Ts + 0). Moreover, according to Eq. (31), with a de-

crease in the parameter q, the coefficient ms and, as a
consequence, the velocity of the front V M

m change their
sign ms(q → 1) < 0 → ms(q → 0) > 0, passing according
to Eq. (28) through 0 at the critical value q = q�, where
Ts(q�) = X 2

s (q�) = 1/3.
According to Eq. (33), up to the moment of smaller island

collapse (T → 0), the distribution of particles in the smaller
island and internal sea area can be presented in the form
s(�, T ) = msT 2 + T 3/2S (�/

√
T ), whence it follows that

the dominant evolution of this distribution occurs on the time
scale ∝ T 3/2. By neglecting on this scale the transient term
∝ T 2, we conclude that in 1D systems at the final collapse
stage the distribution of particles in the smaller island and
internal area of the sea takes the universal scaling form

s(�, T ) = T 3/2S (�/
√
T ), (35)

where the scaling function S (ξ ) is the odd function of ξ .
Thus, in qualitative contrast to the mirror-symmetrical case
q = 1 [36], where the distribution of particles of the island
and internal sea area at the final collapse stage is described
by the even scaling law s(X, T ) = T 2F (X/

√
T ) and, as a

consequence, the distribution of particles in the island and
sea differs significantly, in the domain q < 1 the distribution
of particles in the smaller island and internal area of the sea
asymptotically becomes the same with the same number of
A- and B-particles in the island and sea, respectively. More-
over, it is remarkable that in the domain q < 1, at the final
collapse stage the number of particles of the smaller island
decreases much slower, ∝ T 2, than in the mirror-symmetrical
case, ∝ T 5/2. As an illustration, Fig. 7 demonstrates collapse
of the normalized distribution of particles |s(�/T 1/2)|/T 3/2
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FIG. 7. Collapse of normalized distribution |s(�/T 1/2)|/T 3/2 to
the scaling function Eq. (35) at q = 0.5 and � = ��. Thin lines—
T = 0.05, 0.01 Eq. (19); thick line—scaling function |S(�/T 1/2)|.
Area under scaling function |S(�/T 1/2)| is colored.

to the scaling function |S (�/T 1/2)| as T → 0 at q = 0.5 and
� = ��.

2. Final stage of evolution of two-centered island at the critical
point �s of 2D and 3D systems

In 2D and 3D systems at the critical point � = �s > ��,
as well as in the case of 1D systems, from Eqs. (24) and (32)
we find

χ (−)
c = χs = 1,

whence, according to Eq. (31), for d > 1 at small |T | � 1 it
follows that

sc = (d − 1)T /2 + · · · , c2 = −ωT /4Ts + · · · .

In radical contrast to 1D systems, where at the critical point
Ts = TM the smaller island disappears at the moment of
islands contact, in 2D and 3D systems long before disap-
pearance of the smaller island center a united two-centered
island is formed (Ts > TM). Moreover, in qualitative contrast
to the mirror-symmetrical case q = 1, where the collapse of
the two-centered island occurs at the moment Tc = Ts(1) [36],
at d > 1 in the domain q < 1 at the moment T = Ts(q) the
united two-centered island becomes single-centered, continu-
ing to evolve up to the point of its collapse T (+)

c > Ts.
Assuming that q < 1 and |�| � Ts|Xs| at small |T | << 1

we derive from Eq. (31) with accuracy to leading terms

s = (d − 1)T /2 + c1� + c3�
3 − �2/4Ts + · · · , (36)

whence, substituting here the condition s f = 0, we find the
asymptotic law of front evolution

−
(

� f

�m
f

)3

+
(

� f

�m
f

)2

= (1 + ζ f + · · · )sgn(T ), (37)

where

�m
f =

[
6(d − 1)T 2

s

|Xs| |T |
]1/3

,

�m
f =

√
2(d − 1)Ts|T |,

and ζ f = −|Xs|� f /(d − 1)Ts (|ζ f | � X 2
s < 1). It follows

from Eq. (37) that in the domain � f < 0, T > 0, the
two-centered island asymptotically takes the shape of a su-
perellipse (2D) or superellipsoid of revolution (3D), the major
semiaxis of which contracts by the law �m

f ∝ T 1/3, whereas
its minor semiaxis contracts by the law �m

f ∝ T 1/2 and,
therefore, the aspect ratio of the superellipse (superellipsoid)
contracts by the law

A = �m
f /�m

f ∝ T 1/6 → 0,

as T → 0. Thus, we conclude that in 2D and 3D systems,
in the domain � f < 0 the island asymptotically takes the
shape of a quasi-one-dimensional “string,” the length of which
contracts unlimitedly by the law ∝ T 1/3 as T → 0. It is
remarkable that in the domain �m

f � � f � Ts|Xs| the front
remain stationary

� f = ±
√

|Xs|/3Ts�
3/2
f + · · · ,

both before (T > 0) and after (T < 0) the disappearance of
the smaller island center, where the front takes the shape
of a superhyperbola (2D) or superhyperboloid of revolution
(3D), the vertex of which moves toward the larger island
center by the law � f (� f = 0) ∝ |T |1/3 as |T | increases. It
follows from Eqs. (36) and (37) that in the limit of small
T → 0 the amplitude of the local maximum of |� f | at � f ,� =
−√

2TsT + · · · (where � f ,� is the coordinate of the smaller
island center) and the amplitude of the local minimum of
|� f | at � f ,i = +√

2TsT + · · · (where � f ,i is the coordi-
nate of the isthmus between the islands) converge to �m

f

by the laws |� f ,�|/�m
f = 1 + O(T 1/2) and |� f ,i|/�m

f = 1 −
O(T 1/2), respectively. In turn, in the limit T → 0 the coor-
dinate of island vertex |� f |(� f = 0) converges to �m

f much
slower, |� f |(� f = 0)/�m

f = 1 + O(T 1/3). Figure 8(a) shows
sequential stages of the evolution of 2D island front, calcu-
lated from Eq. (20) at q = 0.5 and � = �s and demonstrating
the key features of island transformation in the vicinity of the
critical point Ts, Xs. In the Fig. 8(b), the data of Fig. 8(a) for
T > 0 are presented in the scaling coordinates � f /T 1/2 versus
� f /T 1/3 that demonstrate the collapse of front profile to the
scaling law (37) as T , ζ f → 0.

3. Self-similar collapse of islands in the range 0 < χc < 1

It follows from Eqs. (20) and (21) that at q < 1, at the
collapse points of the larger (0 < � < ∞) and smaller (0 <

� < �s) islands on the trajectories of the centers X +
� (T )

and X −
� (T ), respectively, the parameter χc changes within the

limits

0 < χc(q,�, d ) < 1,

whence, according to Eq. (31), at any d at small T � 1 − χc

we find

sc = (d − χc)T /2 + . . . , c2 = −(1 − χc)/4Tc + · · · .

At the final collapse stage, in the limit of small

T � Tc(1 − χc)2

(d − χc)
min[

(1 − χc)

|Xc|2 , 1],

054206-11



BORIS M. SHIPILEVSKY PHYSICAL REVIEW E 106, 054206 (2022)

FIG. 8. (a) Evolution of the front of 2D island in the
vicinity of the critical point Ts, Xs calculated from Eq. (20)
at q = 0.5 and � = �s: from left to right T = 0.01621,

0.01, 0.004, 0.001, 0, −0.001, −0.004, −0.01. The front at T =
Ts(T = 0) is shown by a thick line. The area of the single-centered
island T > Ts(T < 0) is colored; (b) Data of Fig. 8(a) for T > 0
replotted in the scaling coordinates � f /T 1/2 vs � f /T 1/3: collapse of
the front profile to the scaling law (37) as T → 0. The area of the
superellipse � � 0 is colored.

we derive from Eq. (31) with accuracy to leading terms
that

s = (d − χc)T /2 + c2�
2 + �2/4Tc + · · · , (38)

whence it follows that in 1D systems the fronts �<
f and �>

f
asymptotically converge symmetrically to the collapse point
by the law

�<,>
f = ∓

√
2TcT + · · · .

According to Eq. (38), in 2D and 3D systems on the fi-
nal collapse stage each of the islands takes asymptotically
the shape of an ellipse (2D) or ellipsoid of revolution
(3D) (

� f

�m
f

)2

+
(

� f

�m
f

)2

= 1 + · · · (39)

the semiaxes of which contract by the laws

�m
f =

√
2Tc(d − χc)T

(1 − χc)
,

�m
f =

√
2Tc(d − χc)T ,

so that asymptotically each of the islands contracts self-
similarly up to the collapse point with the time-independent

FIG. 9. Dependencies χ±
c (�/�s ) for 2D systems calculated

from Eqs. (20) and (21) at q = 0.9, 0.5, q�(2) and 0.1 (from top to
bottom). The dashed line shows the dependence χc(�/�s ) for q = 1.
Circles mark the critical points χs = χc(1) = 1.

aspect ratio

A = �m
f /�m

f =
√

1 − χc.

Figures 9 and 10 demonstrate the dependencies χ (±)
c (�/�s)

calculated from Eqs. (20) and (21) at several fixed values of
q for 2D and 3D systems, respectively. One can see that with
an increase in � the aspect ratio of the smaller island A(−) =√

1 − χ (−)
c rapidly decreases from A(−)(�/�s � 1) ≈ 1 in

the domain of autonomous collapse of the islands, where
both of the islands contract in the shape of a d-dimensional
sphere, to A(−)(� → �s − 0) → 0, where the smaller island
inherits the shape of a quasi-one-dimensional “string.” It is
important to note that at the fixed ratio �/�s, the aspect ratio
A(−) increases with a decrease in q. The aspect ratio of the
larger island A(+) =

√
1 − χ (+)

c demonstrates more nontrivial
behavior. It follows from Figs. 9 and 10 that at q < 1, with
an increase in �, the aspect ratio of the larger island passes
through the minimum MinA(+) < 1, which with a decrease in
q shifts from the domain of the single-centered island formed
by coalescence (� > �s) to the domain of individual death
of the larger island (� < �s) where the “oblateness” of the
larger island is formed by depletion of the sea between the
islands. As expected, with a decrease in q, the sharp minimum
of A(+) becomes more and more “smooth,” and the shape
of the island approaches the spherical one: MinA(+) → 1 as
q → 0.
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FIG. 10. Dependencies χ±
c (�/�s ) for 3D systems calculated

from Eqs. (20) and (21) at q = 0.9, 0.5, q�(3) and 0.1 (from top to
bottom). The dashed line shows the dependence χc(�/�s ) for q = 1.
Circles mark the critical points χs = χc(1) = 1.

B. Evolution of islands in the vicinity of coalescence
and fragmentation points � � ��

Let now � = X − Xst and T = (Tst − T )/Tst, where
Tst, Xst|�=0 are the coordinates of the points of start of coa-
lescence (Tst = Tcl � TM) or fragmentation (TM � Tst = Tfr <

Ts) of islands on the trajectory of the sea center s(0)
� (Xst, Tst ) =

0. It is easy to verify that in the limit of small �2/Tst � 1,
�2/Tst � 1 and |T | � 1 we come back again to Eq.(31)
where the index “st′′ arises instead of the index “c.′′

1. Evolution of 2D and 3D islands at the coalescence
threshold � = ��

At the coalescence threshold � = ��, at the point of is-
lands contact we have Xst = XM , Tst = TM , whence, according
to Eqs. (26) and (32), it follows

χst = χM = d,

and for d > 1 at small |T | � 1 we find

sst = mMT 2 + · · · , c2 = (d − 1)/4TM + · · · ,

where

mM = d[1/TM − (2d + 1)]/4. (40)

Thus, in the entire range 0 < q � 1 in the limit of small |T |,
|�|, and |�|, we derive from Eq. (31) with accuracy to leading

terms

s = mMT 2 + c1� + c2�
2 − �2/4TM + · · · (41)

and conclude that at any q, in the vicinity of the island contact
point, the distribution of particles in the islands and sea re-
mains invariant with respect to the transformation T → −T ,

� → −�. From Eq. (41) it follows that in the vicinity of the
contact point the island fronts take the shape of branches of a
hyperbola (2D) or hyperboloid of revolution (3D)

(� f − RT )2

DT 2
− �2

f

D(d − 1)T 2
= 1 + · · · (42)

the vertices of which both before (T > 0) and after (T < 0)
front contact move along the X axis with a constant velocity
by the laws

�±
f = (R ±

√
D)T + · · · = (R ±

√
R2 − g)T + · · · , (43)

where

R = d|XM |
(d − 1)

, g = 4TMmM

(d − 1)
. (44)

According to Eq. (42), before contact of the fronts �+
f > �−

f

(T > 0), whereas after contact of the fronts �+
f < �−

f (T< 0).

Therefore, because of the obvious requirement �
(−)
f ,> � �

(+)
f ,<,

we conclude that at any q before contact of the fronts (T > 0)
the vertices of the smaller and larger islands move by the laws

�
(−)
f ,> = (R −

√
D)T , �

(+)
f ,< = (R +

√
D)T ,

while (due to T → −T ,� → −� symmetry) after instan-
taneous contact of the fronts (T < 0), exchanging their
velocities V M

m ↔ V M
p , the vertices of the islands move by the

laws

�
(−)
f ,> = (R +

√
D)T , �

(+)
f ,< = (R −

√
D)T .

According to Eqs. (40) and (44), with a change in the param-
eter q from q = 1 to q → 0, the coefficient mM (q) and, as
a consequence, the function g(q) change their sign, − → +,
passing through 0 at the critical value q�, which, in accordance
with Eq. (28), is determined by the requirement TM (q�) =
1/(2d + 1). As a consequence, according to Eq. (43), with a
change in the parameter q from q = 1 to q → 0, the velocity
of the vertex of the smaller island front up to the contact point
V M

m (q) changes its sign, + → −, passing through 0 at the
critical value q�: V M

m (q�) = 0 (“frozen” vertex). Determining
further the ratio of the velocities of vertices of the smaller and
larger islands up to the contact point

R(q) = V M
m (q)/V M

p (q) = R −
√

R2 − g

R +
√

R2 − g
, (45)

we conclude from Eqs. (40), (43), and (44) that with a
change in the parameter q from q = 1 to q → 0 this ra-
tio changes monotonically from R(1) = −1 to R(q → 0) =
(d − √

d )/(d + √
d ) < 1 passing through 0 at the critical

value q�. Thus, from Eqs. (42) and (45) we come to the follow-
ing key conclusions: (1) In the supercritical range q� < q � 1,
in the vicinity of the contact point, the fronts of the larger and
smaller islands move self-similarly to the contact point toward
each other with constant velocities, “reflecting” at moment of
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FIG. 11. Evolution of the fronts of 2D islands moving to the con-
tact point in the normalized coordinates � f /T vs � f /T , calculated
from Eq. (20) at q = 0.5 and � = ��: collapse to the scaling law
(42) as T → 0. Thin lines—T = 0.1, 0.03, 0.01. Thick lines—the
scaling law (42). The areas of islands are colored.

contact in the opposite direction with an abrupt “exchange”
of velocities. (2) In the subcritical range 0 < q < q�, in the
vicinity of the contact point, the fronts of both the larger and
smaller islands move self-similarly to the smaller island center
with constant velocities both before and after the contact with
an abrupt “exchange” of velocities at the moment of islands
contact. (3) At any q < 1, up to the point of contact, the
velocity of the larger island front is always higher in modulus
than that of the smaller island front.

Figure 11 presents the evolution of the fronts of 2D islands
moving to the contact point in the normalized coordinates
� f /T versus � f /T , calculated from Eq. (20) for q = 0.5
and � = ��. One can see that the evolution of the “slow”
front of the smaller island converges to scaling law (42) much
earlier (T < 0.1) than the evolution of the “fast” front of the
larger island (T < 10−2). From Eqs. (41) it follows that at
the moment T = 0 of contact of the islands in the vicinity
|� f |, |� f | � TM of the point of contact, the front of each
of the islands takes the form of an angle (2D) or cone of
revolution (3D) with a vertex at the point of contact and a
d-dependent value of the opening angle 2θ , where

tan θ = |� f |/|� f | =
√

(d − 1). (46)

Thus, we conclude that regardless of q at the coalescence
threshold θM = π/4 (2D) or θM = tan−1

√
2 (3D). As an illus-

tration, Fig. 12 shows the shape of 2D islands at the moment
of their contact T = TM , calculated from Eq. (20) at q = 0.5.

2. Evolution of islands in the vicinity of coalescence
and fragmentation points � > ��

From Eqs. (20) and (21) it follows that in the domain
� > �� in the entire range 0 < q � 1 on the trajectory of
the sea center X (0)

� (T ) at the points of coalescence and frag-
mentation start s(0)

� (Xst, Tst ) = 0 (Tst = Tcl < TM , TM < Tst =
Tfr < Ts) the parameter χst changes within the limits

d < χcl < ∞, 1 < χfr < d,

FIG. 12. The shape of 2D islands at the moment of their contact
T = TM , calculated from Eq. (20) at q = 0.5 and � = ��. The areas
of islands are colored.

respectively, whence in the limit of small |T | � |d − χst|,
(χst − 1) we find

sst = T (d − χst )/2 + · · · , c2 = (χst − 1)/4Tst + · · · .

Neglecting further shift of the sea center with time |�| �
ε|d − χst| and assuming that

|�| � �u = min[ε(χst − 1), μ
√

χst − 1], (47)

where ε = Tst/|Xst|χst and μ = 1/
√|c4|Tst, in the limit of

small �2/Tst and |T | we derive from Eq. (31) with accuracy
to leading terms

s = T (d − χst )/2 + c2�
2 − �2/4Tst + · · · (48)

From Eq. (48) it follows that in 1D systems at any q the fronts
of coalescence asymptotically converge symmetrically to the
contact point by the laws

�
(−)
f ,> = −

√
2TclT , �

(+)
f ,< = +

√
2TclT . (49)

Here we focus mainly on the coalescence and fragmentation
of 2D and 3D islands that demonstrate a much richer picture
of evolution. According to Eq. (48), at d > 1 and any q, in the
vicinity of contact points the fronts of coalescence and frag-
mentation take the shape of a hyperbola (2D) or hyperboloid
of revolution (3D)(

� f

�m
f

)2

−
(

� f

�m
f

)2

= sgn[T (χst − d )] + · · · , (50)

where with an increase in T , the semiaxes of the hyperbola
(hyperboloid of revolution) first contract (T > 0), and then
grow (T < 0) by the laws

�m
f =

√
2Tst|(χst − d )T |

(χst − 1)
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FIG. 13. Dependencies χcl(�/�s ) and χfr(�/�s ) calculated
from Eqs. (20) and (21) for 2D and 3D systems at q = 1, 0.9, 0.5,

and 0.1 (from left to right). Squares and circle mark the critical points
χM = d and χs = 1, respectively.

and

�m
f =

√
2Tst|(χst − d )T |.

According to Eq. (50), in the coalescence domain (χcl > d)
the vertices of the hyperbola (two-sheet hyperboloid) ±�m

f
move toward each other (T > 0), accelerating, up to the
coalescence point T = 0, where the semiaxes � f becomes
imaginary and �m

f (T < 0) determines a decelerating increase
in width (radius) of the isthmus of the formed two-centered
island (one-sheet hyperboloid). In the fragmentation domain
(1 < χ f r < d), where the two-centered island divides into
two separated islands, this process occurs in a reverse order
(one-sheet hyperboloid (T > 0) → two-sheet hyperboloid
(T < 0). Figure 13 demonstrates the dependencies χcl(�/�s)
and χfr(�/�s) calculated from Eqs. (20) and (21) for 2D
and 3D systems at several values of q. One can see that
with an increase in �, the quantity χcl increases unlimitedly
from χM = d to ∞ (χcl ∝ ln(�/�s) → ∞ as �/�s → ∞),
whereas the quantity χ f r decreases from χM = d to χs = 1 in
the narrower range of �, the lower q.

Comparing the reduces velocities of motion of front ver-
tices |Vm

�| = |d�m
f /dT |√|T | and of increase (contraction)

in the radius of the isthmus between the islands |Vm
� | =

|d�m
f /dT |√|T |, we find

Mm(χst ) = ∣∣Vm
�

∣∣/∣∣Vm
�

∣∣ =
√

χst − 1, (51)

whence we come to the following conclusions:

(i) In the coalescence domain d < χst = χcl < ∞ at any
0 < q � 1 and d > 1 the reduced velocity of an increase
in the isthmus radius after coalescence start (T < 0) always
exceeds the reduced velocity of motion of front vertices to the
point of coalescence start (T > 0) increasing unlimitedly with
an increase in �.

(ii) In the fragmentation domain 1 < χst = χfr < d in 2D
systems the reduced velocity of motion of front vertices from
the point of fragmentation start (T < 0) always exceeds the
reduced velocity of contraction of the isthmus radius to the
point of fragmentation start, whereas in 3D systems Mm > 1
in the range 2 < χfr < 3 and Mm � 1 in the range 1 < χfr �
2. The reduced velocity of front motion from the point of
fragmentation start increases unlimitedly as � approaches the
critical value �s.

3. Shape of 2D and 3D islands at the starting points
of coalescence Tcl and fragmentation Tf r

According to Eq. (48), at the moment of islands contact
Tst = 0, in the vicinity of small |�| satisfying the condition
of Eq. (47), the front of each of the islands at any 0 < q � 1
takes the form of an angle (2D) or cone of revolution (3D)
with a vertex at the point of contact � = 0 and the χst depen-
dent value of opening angle 2θ , where

tan θ = |� f |/|� f | =
√

χst − 1. (52)

From Eq. (52) it follows immediately that at any q in the
coalescence domain (Tcl < TM ) the angle θcl(χcl ) increases
from θM = π/4 (2D) or tan−1

√
2 (3D) to θcl(� → ∞) =

π/2 with an increase in �, whereas in the fragmentation
domain (TM < Tfr < Ts) the angle θfr(χfr ) decreases from θM

to θfr(� → �s) → 0 with an increase in �. We conclude
thus that, as expected, (a) at any 0 < q � 1 and ��(q) < � <

�s(q) the angle of coalescence is always grater than that of
fragmentation

θcl(�, q) > θfr(�, q),

and (b) in the limit � → �s (χfr → 1) at the moment of
start of fragmentation Tfr, in the domain � � �u both of the
islands “inherit” the shape of a quasi-1D string |� f |/|� f |→
0. As an illustration, Fig. 14 presents the sequential stages
of coalescence, fragmentation, and collapse of 2D islands at
� = 1.62 and q = 0.5, which demonstrate the key features
of the evolution of their shape in the range �� < � < �s.
A remarkable fact should be emphasized that at any 0 <

q � 1 the angle of the front at the moment of coalescence
(fragmentation) start determines unambiguously the ratio of
the velocities of growth (contraction) of the isthmus between
the islands and motion of front vertices before and after
coalescence (fragmentation) start

tan θ (χst ) = Mm(χst ).

It remains for us to reveal how the upper boundary of the
domain of formation of identical island angles �u(q,�) shifts
with a decrease in the parameter q, i.e., with an increase
in the island asymmetry and corresponding increase in the
coalescence threshold ��. From Eq. (47) in combination
with the requirement �2

f /Tst � 1, we come to the following
conclusions: (1) in the vicinity of the coalescence threshold
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FIG. 14. Sequential stages of coalescence, fragmentation and
collapse of 2D islands calculated from Eq. (20) at � = 1.62 and
q = 0.5 for the time moments T = Tcl = 0.19650497 (a), T = 0.23
(b), T = Tfr = 0.26350821 (c), T = 0.275 (d), and T = 0.55 (e).
The areas of islands are colored.

|χst − d| � 1, the domain �u logarithmically slowly con-
tracts by the law

�u ∝ 1/| ln q|

as q → 0. It is clear that the abnormally slow contraction of
the domain �u with an increase in the islands asymmetry is
due to a rapid increase in the coalescence threshold �� ∝ 1/q
that effectively “compensates” for asymmetry increase; (2) in
the limit of large χcl � 1, with an increase in � the domain
�u logarithmcally slowly contracts by the law

�u ∝ 1/χcl ∝ 1/ ln(q�) ∝ 1/ ln(�/�s)

as �/�s → ∞; (3) in the vicinity of the critical fragmentation
point (χ f r − 1) � 1, with an increase in � the domain �u

rapidly contracts by the law

�u ∝ (χ f r − 1)/| ln q|
as �/�s → 1.

V. EVOLUTION AND DELOCALIZATION
OF THE REACTION FRONT

One of the key requirements that underlies the results of
previous sections is the assumption that the reaction front is
sharp enough and, as a consequence, the front moves qua-
sistatically up to a narrow vicinity of the island collapse
point. We have demonstrated in Ref. [36] that in the mirror-
symmetrical limit q = 1 this assumption is realized in a wide
range of parameters and, therefore, the whole picture of island
evolution is completely self-consistent. In this section, we
will be primarily interested in revealing (a) the parameter
domain within which the front delocalization occurs at the
final (self-similar) collapse stage where the front width grows
unlimitedly as T approaches the collapse point Tc and (b) the
parameter domain within which front delocalization occurs in
a narrow vicinity of the points of coalescence Tcl where the
front width increase unlimitedly as the front approaches the
point of contact.

In Refs. [17,18,21,22] it has been established that at d > 2
in the dimensional variables the dependence of the quasistatic
front width w on the boundary current density J is described
by the mean-field law

wMF ∼ (D2/kJ )1/3. (53)

As well as in Ref. [36], to avoid unnecessary complications,
we will consider evolution of the front in the mean-field
regime for quasi-1D, quasi-2D, and 3D systems. According
to Eq. (53), in the units that we have accepted, the mean-field
front width takes the form

w ∼ 1/(κJ )1/3, (54)

where the effective reaction constant

κ = kb0�
2/D

and the boundary current density

J = |∇s||rf = [
√

(∂X s)2 + (∂�s)2]|rf .

A. Self-similar collapse of the smaller island at � < �s

From Eqs. (38) and (54) we find that on the final self-
similar collapse stage the relative width of the reaction front
along the X axis increases by the law

ηm
� = w�/�m

f =
(T Q

�

T

)2/3

, (55)

where the characteristic time of front delocalization is

T Q
� =

√
(1 − χc)

2κTc(d − χc)2
. (56)
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In the quasi-2D and 3D systems Eqs. (55) and (56) determine
the evolution of the relative front width along the major semi-
axis of the ellipse (ellipsoid), whereas the evolution of the
relative front width along the minor semiaxis of the ellipse
(ellipsoid) is determined by the law

ηm
� = w�/�

m
f =

(T Q
�

T

)2/3

, (57)

where the characteristic time of front delocalization is

T Q
� = 1/

√
2κTc(d − χc)2. (58)

According to Eqs. (56) and (58) T Q
� /T Q

� = √
1 − χc < 1,

whence it follows that the upper limit of front delocalization is
determined by the characteristic time of delocalization along
the minor semiaxis of the ellipse (ellipsoid). Our goal will be
to reveal the domain χ (q,�, d ) within which, in the diffusion-
controlled limit of large κ � 1, the regime of self-similar
collapse of the smaller island is reached long before front
delocalization.

1. Quasi-1D systems

According to Eq. (38), in quasi-1D systems, the condition
of reaching the self-similar collapse of an island in the sharp-
front regime in the vicinity of the critical point 1 − χc � 1,
where this condition becomes the most “rigid,” reduces to the
requirement

T Q
� � Tc(1 − χc)min[(1 − χc)/|Xc|2, 1],

whence, according to Eq. (56), in the limit of small 1 − q � 1
we find

1 − χc � κ−1/3

and

T Q
� � κ−1/3.

In the opposite limit of small q � 1, we find

1 − χc � | ln q|3/5/κ1/5,

whence it follows

T Q
� � | ln q|1/5/κ2/5.

2. Quasi-2D and 3D systems

According to Eq. (38), in quasi-2D and 3D systems, the
condition of reaching the self-similar collapse of an island in
the sharp-front regime in the vicinity of the critical point 1 −
χc � 1 reduces to the requirement

T Q
� � Tc(1 − χc)2min[(1 − χc)/|Xc|2, 1],

whence, according Eq. (58), in the limit of small 1 − q � 1
we find

1 − χc � κ−1/4

and

T Q
� ∝ κ−1/2.

In the opposite limit of small q � 1 we find

1 − χc �
√

| ln q|/κ1/6,

whence it follows,

T Q
� ∝ (| ln q|/κ )1/2.

Thus, we conclude that although in the limit of small q the de-
localization domain expands, at sufficiently large values of the
effective reaction constant κ � 1 the domain of self-similar
collapse of an island in the sharp-front regime extends up to
a narrow vicinity of the critical point 1 − χc � 1 in a wide
range of q.

B. Collapse of the smaller island at the critical point � = �s

1. Quasi-1D systems

From Eqs. (33) and (54) we find that on the final collapse
stage the relative width of the reaction fronts �±

f ,< increases
by the law

η� = w�/|�±
f | =

(T Q
�

T

)5/6

,

where the characteristic time of front delocalization is

T Q
� ∼ 1

/(
κT 1/2

s |Xs|
)2/5

. (59)

According to Eq. (33), at the critical point � = �� = �s the
condition of reaching the final stage of island collapse in the
sharp-front regime reduces to the requirement

T Q
� � Ts|Xs|2,

from which it follows,

T 1/2
s |Xs| � 1/κ1/6, T Q

� � κ−1/3. (60)

From Eq. (60), in the limit of small 1 − q � 1 we find

1 − q � 1/
√

κ,

whereas in the opposite limit of small q � 1 we obtain

| ln q| � κ1/3.

2. Quasi-2D and 3D systems

From Eqs. (36) and (54) we find that at the final self-
similar collapse stage, the relative width of the reaction front
along the major semiaxis of the superellipse (sulerellipsoid)
(� < 0) increases be the law

ηm
� = w�/�m

f =
(T Q

�

T

)5/9

,

where the characteristic time of front delocalization is

T Q
� ∼

( |Xs|2
T 4

s κ3

)1/5

,

whereas the relative width of the reaction front along the
minor semiaxis of the superellipse (superellipsoid) (� = 0)
increases by the law

η� = w�/�
m
f =

(T Q
�

T

)2/3

,

where the characteristic time of front delocalization is

T Q
� ∼ (κTs)−1/2.
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According to Eq. (36), at the critical point � = �s the con-
dition of reaching the final stage of island collapse in the
sharp-front regime reduces to the requirement

max
(
T Q

� , T Q
�

) � Ts|Xs|4,
whence it follows that the self-similar collapse of the superel-
lipse (superellipsoid) occurs in the sharp-front regime under
the condition

T 3/4
s |Xs|2 � 1/κ1/4. (61)

From Eq. (61), in the limit of small 1 − q � 1 we find

1 − q � 1/κ3/8,

whereas in the opposite limit q << 1 we derive

| ln q| � κ1/3.

Thus, we conclude that in the limit of large κ , at the critical
point � = �s the collapse of the superellipse (superellipsoid)
in the sharp front regime is reached in a wide range of q.

C. Front delocalization in the vicinity of island
coalescence point � > ��

From Eqs. (48), (50), and (54) we find that on the final self-
similar stage of opposing motion of the vertices of the fronts
�m

f (T > 0) to the point of coalescence start, the relative width
of the reaction front in the vicinity of the vertices increases by
the law

ηm
� = w�/�m

f =
(

�Q

�m
f

)4/3

=
(T Q

�

T

)2/3

, (62)

where the characteristic “length” of front delocalization is

�Q ∼
[

Tcl

κ (χcl − 1)

]1/4

, (63)

and the characteristic time of front delocalization is

T Q
� ∼

√
(χcl − 1)

κTcl(χcl − d )2
. (64)

Thus, according to Eq. (48), we conclude that the self-similar
stage of Eq. (50) is reached in the sharp-front regime under
the condition

�Q � �u, ε(χcl − d ).

1. Front delocalization in the limit � � ��

Far away from the coalescence threshold � � ��, χcl �
χM = d , it obviously follows that Tcl � TM , where TM

changes from TM ∼ 1/2d at 1 − q � 1 to TM ∼ 1/| ln q| at
q � 1. Thus, we conclude that far away from the coales-
cence threshold χcl ∼ 1/Tcl, whence, according to Eqs. (47)
and (63), we derive

�Q ∼ (
T 2

cl

/
κ
)1/4 � Tcl

and finally find

κ−1/2 � Tcl � TM , T Q
� ∼ κ−1/2. (65)

It follows from Eq. (65) that in the diffusion-controlled limit
of large κ the self-similar asymptotics (50) is reached in the
sharp-front regime in a wide range of q.

2. Front delocalization in the vicinity of coalescence
threshold χcl − d � 1

(a) Quasi-1D systems. In the vicinity of coalescence
threshold χcl − 1 � 1, we find from Eqs. (47) and (63) that in
the limit of small 1 − q � 1 the asymptotics (50) is reached
in the sharp-front regime under the condition

χcl − 1 � κ−1/3,

whence it follows T Q
� � κ−1/3. In the opposite limit q� 1 we

find from Eqs. (47) and (63)

χcl − 1 � (| ln q|3/κ )1/5,

from which it follows that T Q
� � (| ln q|/κ2)1/5.

(b) Quasi-2D and 3D systems. In the vicinity of coa-
lescence threshold χcl − d � 1, satisfying the requirements
T Q

� � χcl − d and �Q � ε(χcl − d ), we find that in the limit
of small 1 − q � 1 the asymptotics (50) is reached in the
sharp-front regime under the condition

χcl − d � κ−1/4,

whence it follows that T Q
� � κ−1/4. In the opposite limit

q � 1, we find

χcl − d � (| ln q|3/κ )1/4,

from which it follows T Q
� � (| ln q|κ )−1/4. We conclude that

in the diffusion-controlled regime of large κ in a wide range of
q the asymptotics (50) is reached in the sharp-front regime up
to a narrow vicinity of the coalescence threshold χcl − d � 1.

3. Diffusion-controlled annihilation regime

In the diffusion-controlled limit, the mean-field constant of
pair annihilation is determined by the expression k = ζDra,
where ra is the annihilation radius and ζ = 8π . Thus, for the
effective reaction constant in quasi-1D, 2D, and 3D systems,
we obtain

κ = ζ rab0�
2, (66)

whence it follows that at fixed ra and �, the effective re-
action constant is determined unambiguously by the initial
sea density. Taking for illustration the realistic values ra ∼
10−8 cm, b0 ∼ 1020 cm−3, and � ∼ 10 cm we find κ ∼ 1015,
whence it follows that in the diffusion-controlled regime the
effective reaction constant is very large in a wide range of b0

and �. As a consequence, we conclude that in a wide range of
b0, � and q the front remains sharp up to a narrow vicinity of
coalescence, fragmentation, and collapse points.

Completing this chapter, we will not dwell here on the
details of front relocalization in the processes of growth of
the isthmus between the islands and fragmentation (division)
of the two-centered island, which have been analyzed in de-
tail in Ref. [36] for mirror-symmetrical islands. It is easy to
demonstrate from Eqs. (48) and (50) that at sufficiently large
κ these processes occur in the sharp-front regime in a wide
range of the parameter q up to a narrow vicinity of coalescence
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and fragmentation points and, therefore, the whole picture of
island evolution presented above is completely self-consistent.

VI. CONCLUSION

In this work, we have presented a systematic analytical
study of diffusion-controlled evolution, coalescence, fragmen-
tation, and collapse of two nonidentical spatially separated
d-dimensional A-particle islands in the B-particle sea at prop-
agation of the sharp reaction front A + B → 0. The obtained
self-consisted picture of the evolution of the islands and front
trajectories is based on the condition of local conservation of
the difference concentration s(r, t ) which follows from the
“standard” requirement of equality of unlike particles diffu-
sivities and on the assumption that the relative front width
can be neglected during islands evolution which follows from
the remarkable property of effective dynamical “repulsion” of
unlike species. The key features of the rich picture of evolu-
tion of the islands and front trajectories can be formulated as
follows:

(1) It has been established that if the initial distance be-
tween the centers of the islands 2� and the initial ratio of
island to sea concentrations are relatively large, depending on
the system dimension the evolution of the island-sea-island
system is determined unambiguously by two dimensionless
parameters � = N+

0 /N� and q = N−
0 /N+

0 , where N+
0 and

N−
0 are the initial particle numbers in the larger and smaller

of the islands, respectively, and N� is the initial number of sea
particles in the volume � = (2�)d .

(2) It has been shown that regardless of d , the trajec-
tories of the centers of the islands and sea are determined
unambiguously by the parameter q and found that at each
fixed 0 < q � 1 there are threshold values ��(q) and �s(q) �
��(q) that depend on the dimension and separate the do-
mains of individual death of each of the islands � < ��(q),
coalescence and subsequent fragmentation (division) of the
two-centered island ��(q) < � < �s(q)(d � 2), and col-
lapse of the single-centered island formed by coalescence
� > �s. It has been demonstrated that with the decreasing
parameter q, the thresholds of coalescence ��(q) and of
the single-centered island formation �s(q) rapidly increase,

changing in the limit of small q � 1 by the law

��(q),�s(q) ∝ 1/q| ln q|d/2.

(3) A remarkable fact has been discovered that the evo-
lution of particle concentration in the system center r = 0
is determined unambiguously by only the reduced total ini-
tial number of A-particles in the islands � = �(1 + q) =
(N+

0 + N−
0 )/N� regardless of how these particles are dis-

tributed between the islands. As a consequence, although with
a change in q the front trajectories change drastically, above
some threshold value ��(d ) the times of the direct and inverse
passage of the larger island front through the system center
become the universal functions of �.

(4) A detailed picture of the evolution of the front trajecto-
ries with an increase in � has been revealed and scaling laws
of the evolution of the fronts in the vicinity of collapse, coales-
cence, and fragmentation points has been found for arbitrary
q < 1. Among a number of important consequences of the
presented analysis, it has been established that the picture of
island coalescence qualitatively changes below some critical
value q�(d ).

(5) Within the QSA, the self-consistent power laws of
evolution of the relative front width in the vicinity of coales-
cence and collapse points have been revealed for quasi-1D,
quasi-2D and 3D systems. The characteristic times of front
delocalization have been obtained depending on the defining
parameters of the problem. It has been shown that in the
diffusion-controlled annihilation regime, the fronts remains
sharp up to a narrow vicinity of coalescence and collapse
points and, consequently, the whole picture is self-consistent
in a wide range of q.

In conclusion, we hope that the future extensive numeri-
cal calculations together with the corresponding experimental
data will enable revealing a comprehensive picture of evo-
lution of the front during its delocalization and allow us to
reveal the limits of applicability of the macroscopic diffusion
description in the vicinity of the collapse point [37].
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