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Phase space analysis of nonlinear wave propagation in a bistable mechanical
metamaterial with a defect
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We study the dynamics of solitary waves traveling in a one-dimensional chain of bistable elements in the
presence of a local inhomogeneity (“defect”). Numerical simulations reveal that depending upon its initial
speed, an incoming solitary wave can get transmitted, captured, or reflected upon interaction with the defect.
The dynamics are dominated by energy exchange between the wave and a breather mode localized at the defect.
We derive a reduced-order two degree of freedom Hamiltonian model for wave-breather interaction and analyze
it using dynamical systems techniques. Lobe dynamics analysis reveals the fine structure of phase space that
leads to the complicated dynamics in this system. This work is a step toward developing a rational approach to
defect engineering for manipulating nonlinear waves in mechanical metamaterials.
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I. INTRODUCTION

Acoustic metamaterials [1] are (generally) periodic struc-
tures assembled using artificially engineered units and
designed to possess unconventional mechanical wave propa-
gation characteristics. This class of mechanical metamaterials
has potential applications in vibration control [2], energy
harvesting [3], mechanical computing [4], precision sensing
[5], and cloaking [6]. The key to realizing the vast promise
of such metamaterials lies in developing rational design and
control techniques for manipulating the flow of energy in
these systems. Since the dispersion relation contains all the
information about the propagation and growth (or decay) of
linear waves, the research in linear acoustic metamaterials has
focused on developing techniques for tailoring the dispersion
relation [7,8].

For nonlinear metamaterials [9], the design space is vastly
less explored due to the increased complexity of the non-
linear dynamics of wave propagation. One of the popular
architectures consists of a one-dimensional chain of bistable
elements connected by linear springs [10–12]. This class
of metamaterials supports the propagation of solitary waves
[13,14], i.e., large amplitude, spatially localized waves that
can travel large distances without distortion. Depending on the
system geometry, continuum approximations of such systems
(corresponding to inter-mass distance going to 0) reduce to
variants of the canonical nonlinear partial differential equa-
tions (PDEs) such as the Sine-Gordon and Klein-Gordon
equations. This connection has been exploited in the analysis
of 1D and 2D acoustic bistable metamaterial systems in pre-
vious works [11,12,15,16]. The propagation of solitary waves
in such nonlinear structures can be tailored by introducing
suitable spatial variations in mass or spring stiffness. In previ-
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ous works, the effect of introducing inhomogeneity in bistable
chains has been studied analytically in the weakly nonlinear
regime for the case of 1D chain with spatially graded stiffness
[12], and numerically in the case of 1D or 2D structures with
localized inhomogeneities (“defects”) in mass and stiffness
[11,15,17]. The presence of a defect can give rise to an os-
cillatory mode (“breather”) localized at the defect [11,13,18].

In this paper, we employ methods of dynamical systems
theory to gain a deeper understanding of the dynamics of soli-
tary waves in a 1D chain of bistable elements in the presence
of a stiffness defect. Numerical simulations of the discrete
chain show that depending on its speed, an incoming solitary
wave can be transmitted, captured, or reflected back upon
interaction with the defect. To understand these numerical
results, following earlier work on Sine-Gordon equation with
a defect [19], we derive a two degree of freedom (DOF)
reduced-order model for the continuum approximation of this
system using the method of collective coordinates. The two
DOFs correspond to the position of the solitary wave, and
the amplitude of the breather. This model is shown to capture
some qualitative aspects of dynamics. The analysis of phase
space transport in the system reveals the organizing structures
that delineate the sets of initial conditions of solitary waves
leading to qualitatively different outcomes after interaction
with the defect.

II. SYSTEM MODEL AND COHERENT STRUCTURES

A. System without a defect

1. N-DOF System

We begin by discussing the defect-free chain of bistable
elements studied in Ref. [10], and summarize their main
results in the fully nonlinear (large amplitude) regime. The
periodic chain consists of N bistable units connected by (“in-
tersite”) linear springs of stiffness k2; see Fig. 1. Each unit
consists of two (“onsite”) identical linear elastic springs with
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FIG. 1. An infinite chain of bistable elements with a defect in
stiffness of a pair onsite springs. The distance between neighboring
ground joints is â. In the unstressed configuration, L is the horizontal
distance between the mass at site i and the corresponding ground
joints. The displacement of the mass at site i is ui. In the absence of
defects, each onsite spring has stiffness k1, and each intersite spring
has stiffness k2. The parameter 0 � γ < 1 controls the size of the
defect.

stiffness k1 and unstressed length l0, connected to point a
mass m in a symmetric fashion. The other ends of the springs
are fixed to the ground via joints that allow rotation. It was
shown in Ref. [10] that this system supports stable propa-
gation of solitary waves (displacement “kinks”) in the large
amplitude limit. Let ui denote the displacement of the ith
mass from the unstressed configuration. From Fig. 1, we get
l2
0 = L2 + b2. The length of each of the two onsite springs at

site i is l (ui ) =
√

(L − ui )2 + b2, and the total force exerted
by them on the ith mass is F (ui ) = 2k1(L − ui )

l (ui )−l0
l (ui )

. Fol-
lowing Ref. [10], we nondimensionalize the system using the
relations: ūi = u

L , Kr = k2
k1

, l̄ (ūi ) =
√

(1 − ūi )2 + d2, d = b
L ,

and l̄0 = √
1 + d2.

The dimensionless equations of motion of the chain are

ūi,t̄ t̄ + Kr (−ūi+1 + 2ūi − ūi−1) − F̄ (ūi ) = 0, (1)

where F̄ (ūi ) = − ∂ψ (ūi )
∂ ūi

= F (ūi )
k1L = 2(1 − ūi )(1 − l̄0

l̄ (ūi )
).

Finally, ψ (ūi ) = [
√

(1 − ūi )2 + d2 − √
1 + d2]2 is the

dimensionless nonlinear spring potential.

2. Continuum limit

Let the ith mass be initially located at xi = iâ and define
nondimensionalized quantities

x̄i = xi

â
, �x̄i = x̄i − x̄i−1 = 1. (2)

In the continuum limit â → 0, Taylor expansion yields

ūi±1 = ūi ± ∂ ūi

∂ x̄
+ 1

2

∂2ūi

∂ x̄2
+ O(3). (3)

Substituting Eq. (3) into Eq. (1) gives the nonlinear PDE

ū,t̄ t̄ − Krū,x̄x̄ − F̄ (ū) = 0. (4)

For the rest of the paper, we drop the overbars for conve-
nience. In the large amplitude limit, this system supports a
solitary wave solution of the form ũk (x, t ) = ûk (x − vt ) =
ûk (z), where v is the propagation velocity and z = x − vt is
a reduced variable. The solitary wave satisfies the implicit

equation in ûk (z),

ln

[
b1(ûk ) + b1(ûk )

b2(ûk )

√
1 + d2

]
+

√
1 + d2

2

× ln

[
1 − b1(ûk )

1 + b1(ûk )

1 − b2(ûk )

1 + b2(ûk )

]
=

√
2

C2
0 − v2

(z − z0),

(5)

where z0 is a constant of integration, C0 = √
Kr , b1(ûk ) =

ûk − 1, and b2(ûk ) =
√

1+d2(ûk−1)√
(ûk−1)2+d2

.

3. Dispersion relation

The linearization of Eq. (4) about u = 0 is

u,tt − Kru,xx + ω2
0u = 0, (6)

where ω2
0 = 2

1+d2 . By looking for solutions of the form
u(x, t ) = ũei(qx−ωt ), we obtain the dispersion relation

ωL =
√

ω2
0 + Krq2, (7)

where q ∈ (0,∞) is the (spatial) wave number, and ωL is the
(temporal) frequency. This relation shows that there is a band
gap in the system, i.e., the defectless system supports linear
waves limited to the frequency range ωL ∈ (w0,∞).

B. System with a defect

A localized inhomogeneity is now introduced in the
bistable chain by modifying the onsite spring stiffness to be
(1 − γ )k1 at the origin. Thus, the new nonlinear and linearized
PDEs are

u,tt − Kru,xx − [1 − γ δ(x)]F (u) = 0 (8)

and

u,tt − Kru,xx + [1 − γ δ(x)]ω2
0u = 0, (9)

respectively, where 0 < γ < 1 is the defect magnitude, and
δ(x) is the Dirac δ. Motivated by previous works [13,18–
24], we explore the possibility that this “small” perturbation
of Eq. (6) can support spatially localized coherent structures
with frequencies that lie in the band gap (0, ω0). Inserting
the ansatz u(x, t ) = φ(x)eiωt into the linearized equation (9)
yields

Krφ,xx + (
ω2 − ω2

0

)
φ = −γ δ(x)ω2

0φ. (10)

Let us first solve Eq. (10) in the region x ∈ (−∞,−ξ ) ∪
(ξ,∞), where 0 < ξ � 1. In this region, Eq. (10) reduces to

Krφ,xx + (
ω2 − ω2

0

)
φ = 0. (11)

Putting φ = Ceκx,

Krκ
2φ,xx + (

ω2 − ω2
0

)
φ = 0, (12)

where

κ2 = ω2
0 − ω2

Kr
. (13)

The above equation implies that κ will be real as long as ω

lies in the band gap, i.e., ω < ω0. In that case, Eq. (12) has the
solution of the form

φ(x) = C1eκx + C2e−κx. (14)
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FIG. 2. Space-time plot of an incoming wave transmitting across the defect in the (a) discrete and (b) continuum models. The breather
mode gets ‘activated’ once the wave has passed the defect. The parameters are d = 1, Kr = 2, and γ = 0.9.

Clearly, φ will blow up as x → −∞ unless C2 is zero on
(−∞,−ξ ). Similarly, C1 must be zero on (ξ,∞). Thus, the
solution has the form

φ(x) =
{

C1eκx , x < 0,

C2e−κx , x > 0.
(15)

Continuity of the solution at x = 0 requires C1 = C2, and
hence, φ(x) = C1e−κ|x|. Hence, the solution is localized in
space, and periodic in time, i.e., a breather [21].

To compute the breather frequency ω, we integrate both
sides of Eq. (10) over the interval −ξ < x < ξ , yielding∫ ξ

−ξ

Krφ,xx dx +
∫ ξ

−ξ

(
ω2 − ω2

0

)
φ dx =

∫ ξ

−ξ

−γ δ(x)ω2
0φdx,

(16)

Kr (φ,x|x=ξ − φ,x|x=−ξ ) +
∫ ξ

−ξ

(
ω2 − ω2

0

)
φ dx

=
∫ ξ

−ξ

−γ δ(x)ω2
0φdx. (17)

Taking the limit ξ → 0, the second term of the left hand side
of Eq. (17) vanishes since φ is finite, and we obtain

Kr (−κ C1 e−κx − κ C1 e−κx ) = −γω2
0φ(0) = −γω2

0C1

(18)
and

κ = γω2
0

2Kr
. (19)

Substitution of the relation in Eq. (19) into Eq. (13) yields the
relation

ω = ω0

√
1 − γ 2ω2

0

4Kr
. (20)

Finally, the full breather solution is

ûb(x, t ) = C1 cos (ωt + θ )φ(x) = C1 cos (ωt + θ )e− γω2
0

2Kr
|x|,
(21)

where C1 and θ are constants that depend on the initial con-
ditions. We emphasize that the breather is an exact solution
of the linearized PDE (9). This solution is expected to decay
anomalously slowly in the nonlinear system (8) due to radia-
tion damping effects, rendering it “metastable” [19,25].

Numerical simulations of the discrete and continuum models for
the system with defect

In Figs. 2–4, we show the space-time evolution of initial
conditions that lead to transmission, capture, and reflection of
an incoming solitary wave, respectively. We perform numeri-
cal computations using both the N-DOF system (1) (suitably
modified to include the defect) as well as the continuum
system with defect (8). For the latter, we used a three-point
second-order centered finite difference discretization for both
spatial and temporal second derivatives, with δx = 1 and
δt = 0.1. Following Ref. [26], the defect term is treated as
a point source. This finite difference scheme requires initial

FIG. 3. Space-time plot of an incoming wave getting captured at the defect in the (a) discrete and (b) continuum models. The parameters
are d = 1, Kr = 2, and γ = 0.9.
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FIG. 4. Space-time plot of an incoming wave reflecting from the defect in the (a) discrete and (b) continuum models. The parameters are
d = 1, Kr = 2, and γ = 0.9.

displacement and velocity. We use the approximate solution of
the solitary wave (centered far to the left of the defect) given
in Eq. (29) to obtain both these quantities. This solitary wave
profile is also used as an initial condition in the discrete system
to avoid phonon excitation (“tingling”). Figure 5 summarizes
the input-output behavior of the system with defect. If the
initial speed of an incoming solitary wave, vi, is equal to or
below a critical velocity vcr , it is either captured at the defect
site (v f ≈ 0), or reflected back (v f < 0). For vi > vcr , the
wave passes through the defect. Reflection and/or trapping of
incoming solitary waves has been reported in earlier studies
involving graded stiffness in 1D chains [12], and localized de-
fects in 2D structures supporting vector solitary waves [15].

III. REDUCED-ORDER MODEL

A. Derivation

To understand the numerical results discussed in the previ-
ous section, we derive a reduced-order model for the system
using the method of collective coordinates [13], alternatively
known as the reduced Lagrangian approach [27]. In this
approach, an ansatz is chosen for the solution, and the Euler-
Lagrange equations are obtained by restricting the principle of
stationary action among the class of solutions representable by
that ansatz. Usually, the known exact or approximate coherent
structures are included in the ansatz. Following Ref. [19],
we use an ansatz that assumes that the spatial profiles of the

solitary wave ûk and the breather ûb are unaffected by their
interaction. Specifically, we pick the ansatz

u(x, X (t ), a(t )) = uk (x, X (t )) + ub(x, a(t )), (22)

where X (t ) is location of the kink, uk = ûk[x − X (t )], a(t ) is
the amplitude of the breather, and ub = a(t )φ(x).

The Lagrangian for Eq. (8) is

L =
∫ ∞

−∞

{
1

2
u2

,t − 1

2
Kru2

,x − [1 − γ δ(x)]ψ (u)

}
dx. (23)

Taking the derivative of Eq. (22) with respect to x and t yields

u,x = uk,x + ub,x, u,t = uk,t + ub,t , (24)

where

uk,t = −Ẋ uk,z, uk,x = uk,z, ub,x = aφ,x, and ub,t = ȧφ.

(25)
We approximate higher powers of the derivatives as follows:

u2
,t = (uk,t + ub,t )

2 ≈ u2
k,t + u2

b,t (26)

and

u2
,x = (uk,x + ub,x )2 ≈ u2

k,x + u2
b,x. (27)

FIG. 5. Input-output behavior of the system showing transmission, capture and reflection. Here vi is the velocity of an incoming solitary
wave far to the left of the defect, and v f is its final velocity. The parameters are d = 1, Kr = 2, γ = 0.9.
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Substituting Eqs. (22), (26), and (27) into Eq. (23) yields

L(X, a, Ẋ , ȧ) =
∫ ∞

−∞

{
1

2
u2

k,t + 1

2
u2

b,t − 1

2
Kru2

k,x

− 1

2
Kru2

b,x − [1 − γ δ(x)]ψ (uk + ub)

}
dx.

(28)

Since there is no explicit solution of Eq. (5) for uk , we will
approximate the solitary wave as

uk (x, X ) = 1 − tanh

(
x − X√

2C2

)
, (29)

where C2 =
√

C2
0 −v2

2(
√

1+d2−d )
has been chosen such that the slopes

of the approximate and exact solutions agree at uk = 1; see
Fig. 6. Since C0 	 v, we use C2 ≈ C0

2(
√

1+d2−d )
. The fifth inte-

gral in Eq. (28) can be written as

∫ ∞

−∞
[1 − γ δ(x)]ψ (uk + ub) dx

=
∫ ∞

−∞
ψ (uk + ub) dx −

∫ ∞

−∞
γ δ(x)ψ (uk + ub) dx

=
∫ ∞

−∞
ψ (uk + ub) dx − γψ[uk (0, X ) + a]. (30)

To calculate the integral in Eq. (30), we Taylor expand
the nonlinear potential energy term ψ (uk + ub) around a = 0,
assuming that the excitation of the breather mode is weak. The
rest of the details of computation of the integrals in Eq. (28)
are relegated to Appendix A. The effective Lagrangian is
computed by substituting Eqs. (S1)– (S5) into Eq. (28),

Leff (X, a, Ẋ , ȧ) = A

2
√

2C0

Ẋ 2 + 1

2κ
ȧ2 − C2

0

(
A

2
√

2C0

+ κ

2
a2

)
− C0A

2
√

2
− a2

(1 + d2)κ
+ γψ[uk (0, X ) + a]

= A

2
√

2C0

Ẋ 2 + 1

2κ
ȧ2 −

[
1

(1 + d2)κ
+ C2

0 κ

2

]
a2 − C0A√

2
+ γ [R(a) + F (X, a) + G(X )], (31)

where

F (X, a) = 2

⎧⎨
⎩a tanh

(
X√
2 C2

)
−

√
1 + d2

√[
tanh

(
X√
2 C2

)
+ a

]2

+ d2 + tanh2

(
X√
2 C2

)
− 1

⎫⎬
⎭, (32)

G(X ) = 1 − tanh2

(
X√
2 C2

)
, (33)

R(a) = a2 + 2(1 + d2), (34)

and

A = 2
√

1 + d2 − d2 ln

[√
1 + d2 + 1√
1 + d2 − 1

]
. (35)

The above choice of F (X, a) and G(X ) is crucial for the
perturbation theory arguments that we employ later in the
paper. The equations of the motion derived from the effective
Lagrangian are

A√
2C0

Ẍ − γ

(
∂F

∂X
+ dG

dX

)
= 0, (36)

1

κ
ä +

(
C2

0 κ + 2

(1 + d2)κ

)
a2 − γ

(
∂F

∂a
+ dR

da

)
= 0. (37)

The expressions for partial derivatives in the above equa-
tions are provided in the Appendix B. The system in Eqs. (36)
and (37) is a conservative two degree of freedom system
governing the evolution of the position of the center of the
solitary wave, X , and the breather amplitude, a.

B. Numerical simulations

In Fig. 7(a), we show the input-output behavior obtained
by solving the 4D reduced-order dynamical system given by

Eqs. (36) and (37). To mimic the initial conditions used in
simulations of the full-order models in Sec. II, the initial
conditions (X = −100, a = 0, ȧ = 0) are kept fixed, and the
initial solitary wave speed Ẋ (0) > 0 is varied. Figure 7(b)
shows the time evolution for three different initial conditions
that lead to capture, transmission and reflection, respectively.

15 20 25 30 35
-0.5

0

0.5

1

1.5

2

2.5

FIG. 6. Exact (solid) and approximate (dash) profile of the soli-
tary wave in the continuum model, and the solitary wave profile
from the discrete model (dot-dash). The exact solution is obtained
by numerically solving Eq. (5), and has a slope duk

dz ≈
√

2√
C2

0 −v2
(d −

√
1 + d2) at uk = 1 with z0 = 25. The approximate solution is given

by Eq. (29), where C2 is chosen to match the slope of the exact
solution at uk = 1 with X0 = 25. The discrete solution is obtained
by numerically solving Eq. (1). (for d = 1, v = 1, and Kr = 2).
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FIG. 7. (a) Input-output behavior of the reduced-order system with γ = 0.9. Here, v f and vi denote final and initial wave velocities.
(b) Capture (bold), reflection (dash), and transmission (dot-dash) of incoming solitary waves in the reduced-order model with initial velocities
(0.171, 0.170, 0.169), respectively.

For γ = 0.9, the critical velocity obtained using this model
is vcr ≈ 0.19, which is about 35% lower than the critical ve-
locity for full-order models. Contrary to the full-order models,
capture is rarely seen in the reduced model, and there exist
several intervals of initial velocity below vcr that lead to trans-
mission upon interaction with the defect. Figure 8 shows the
critical velocities for the discrete and reduced-order models
for a range of values of the bistability parameter Kr . In the next
section, we interpret these results by analyzing phase space
transport in the reduced-order dynamical system.

IV. PHASE SPACE ANALYSIS OF THE REDUCED MODEL

Following the approach of Ref. [19], we analyze the
reduced-order model using a perturbative approach. To do
this, we introduce a perturbation parameter μ that is a measure
of the coupling between the solitary wave and the breather
dynamics in the system. We use lobe dynamics and Mel-
nikov theory to understand phase space transport in the 4D
dynamical system in the limit of small (but nonzero) coupling.
We show that for μ � 1, there exist heteroclinic orbits that
correspond to solitary waves that transmit across the defect
with vanishing initial and final speeds. In this limit, we prove
the existence of chaotic dynamics, and provide a phase space
interpretation of the transmitting and reflecting trajectories, as
well as that of the critical velocity. Finally, we argue that the

2 3 4 5 6 7
0.1

0.15

0.2

0.25

0.3

0.35

FIG. 8. Critical velocity vcr in the continuum (solid) and
reduced-order (dashed) models as a function of the bistability pa-
rameter Kr , for γ = 0.9 and d = 1.

qualitative picture persists for the fully coupled case of μ = 1,
and compute the corresponding heteroclinic orbits.

A. Hamiltonian formulation

From the expression of the effective Lagrangian in
Eq. (31), we obtain the Hamiltonian as

H (X, a, pX , pa) = Ẋ pX + ȧpa − Leff, (38)

where pX and pa are the momentum variables corresponding
to the collective coordinates X and a, respectively. These
momenta are computed as follows:

pX = ∂Leff

∂Ẋ
= A√

2C0

Ẋ , (39)

pa = ∂Leff

∂ ȧ
= 1

κ
ȧ. (40)

Substituting Eqs. (31), (39), and (40) into Eq. (38) yields

H (X, a, pX , pa)

=
√

2C0

2A
P2

X + κ

2
P2

a +
[

1

(1 + d2)κ
+ C2

0 κ

2

]
a2

−γ [R(a) + F (X, a) + G(X )] + C0A√
2

. (41)

B. Perturbation analysis

We introduce a coupling parameter 0 � μ � 1 to apply
perturbation theoretic arguments. The new Hamiltonian is
taken to be

H (X, a, pX , pa)

=
√

2C0

2A
p2

X + κ

2
p2

a +
[

1

(1 + d2)κ
+ C2

0 κ

2

]
a2

−γ [R(a) + μF (X, a) + G(X )] + C0A√
2

. (42)

1. Uncoupled case (μ = 0)

For μ = 0, the X and a dynamics are uncoupled, and the
Hamiltonian can be written as (ignoring constant terms)

H = HX + Ha, (43)
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-1

-0.5
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-1

-0.5

0

0.5

1

FIG. 9. The X dynamics in the uncoupled case (μ = 0). (a) Potential energy. (b) The two heteroclinic orbits connecting the fixed points at
X = ±∞, with parameters d = 1, Kr = 2, and γ = 0.9. The region R2 is enclosed by these two orbits. Also shown are typical trajectories in
the three regions R1, R2, R3.

where

HX =
√

2C0

2A
p2

X − γ G(X ), (44)

Ha = κ

2
p2

a +
[

1

(1 + d2)κ
+ C2

0 κ

2

]
a2 − γ R(a). (45)

Using Hamilton’s equations, we get from Eq. (44)

Ẋ = ∂HX

∂ pX
=

√
2C0

A
pX , (46)

ṗX = −∂HX

∂X

= γ
dG

dX
= −

√
2γ

C2
sech2

(
X√
2C2

)
tanh

(
X√
2 C2

)
. (47)

Hence, the solitary wave dynamics are that of a particle mov-
ing under a potential V (X ) ∝ −γ G(X ) = γ [tanh2( X√

2 C2
) −

1] that has a single minima at the origin, and goes to zero
as x → ±∞. The system of Eqs. (46) and (47) has three fixed
points (X ∗, p∗

X ): a nonlinear center (0,0), and two parabolic
points (±∞, 0). There exist two heteroclinic orbits connect-
ing the fixed points at X = ±∞; see Fig. 9. The phase space is
divided into three disjoint regions (R1, R2, R3), corresponding
to trajectories that are right moving, traveling on closed curves
about the origin, and left moving, respectively.

From Eqs. (46) and (47), we get

Ẍ = −2γ C0

A C2
sech2

(
X√
2 C2

)
tanh

(
X√
2 C2

)
, (48)

which can be integrated to obtain the equation of the hetero-
clinics:

X 0
± = ±

√
2 C2 sinh−1

⎡
⎣ 1

C2

√√
2 γ C0

A
(t − t0)

⎤
⎦, (49)

where we have assumed that the two trajectories reach the
origin at t = t0. From Eq. (45), the governing equations for
the breather are

ȧ = ∂Ha

∂ pa
= κ pa, (50)

ṗa = −∂Ha

∂a
= −

(
C2

0 κ + 2

(1 + d2)κ
− 2γ

)
a, (51)

which yields ä + [C2
0 κ2 + 2

(1+d2 ) − 2κγ ]a = 0. We pick pa-

rameters such that C2
0 κ2 + 2

(1+d2 ) − 2κγ > 0, and hence the
breather mode is a linear oscillator in the uncoupled case; see
Appendix C for more details.

2. Coupled case (μ > 0)

For μ > 0, the Hamiltonian is given by Eq. (42). The
Hamilton’s equations are

Ẋ = ∂H

∂ pX
=

√
2C0

A
pX , (52)

ṗX = −∂H

∂X
= γ

(
dG

dX
+ μ

∂F

∂X

)
, (53)

ȧ = ∂H

∂ pa
= κ pa, (54)

ṗa = −∂H

∂a
= −

[
C2

0 κ + 2

(1 + d2)κ
− 2γ

]
a + γμ

∂F

∂a
.

(55)

This 4D coupled system has three fixed points
(X ∗, p∗

X , a∗, p∗
a): the origin (0,0,0,0), and (±∞, 0, 0, 0).

For μ = 0, the origin is clearly a fixed point of the type
center × center. In Appendix C, we provide conditions
on parameters C0 and d such that the origin continues to
be a center × center fixed point for all 0 � μ � 1. This
is important to ensure the validity of perturbation theory
arguments that follow.

For total energy slightly above that of the fixed points at
X = ±∞, there exist periodic orbits around them. This is be-
cause in the limit (X → ±∞, pX = 0), the X and a dynamics
decouple, and the pair (a = 0, pa = 0) is a nonlinear center of
the system given by Eqs. (54) and (55).

3. Poincaré map and action-angle coordinates

We transform the the collective coordinate pair (a − pa)
into action-angle coordinates (I − θ ) via

a = S
√

ωI cos(θ ), and pa =
√

2 ωI

κ
sin(θ ), (56)

where ω is the breather frequency defined in Eq. (20), and

S =
√

2κ

C2
0 κ2+ 2

(1+d2 )
−2κγ

. The Hamiltonian in the transformed
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variables is

H (X, pX , I, θ ) = HX (X, pX ) + ωI + μ H1(X, I, θ ) + C3,

(57)
where HX is given by Eq. (43), C3 = C0A√

2
− 2γ (1 + d2) and

H1(X, I, θ )

= −γ F (X, I, θ )

= −2γ

{
S
√

ωI cos(θ ) tanh

(
X√
2 C2

)

+ tanh2

(
X√
2 C2

)
− 1 −

√
1 + d2

×
√[

tanh

(
X√
2 C2

)
+ S

√
ωI cos(θ )

]2

+ d2

⎫⎬
⎭.

(58)

Thus, the Hamilton’s equations are

Ẋ = ∂H

∂ pX
=

√
2C0

A
pX , (59)

ṗX = −∂H

∂X
= γ

dG

dX
+ μγ

∂F

∂X
, (60)

θ̇ = ∂H

∂I
= ω − μγ

∂F

∂I
, (61)

İ = −∂H

∂θ
= μγ

∂F

∂θ
. (62)

The uncoupled (μ = 0) equations have a family of orbits

İ = 0 ⇒ I (t ) = I0, (63)

θ̇ = ω ⇒ θ (t ) = ωt + θ0. (64)

The four-dimensional phase space of the coupled system
is foliated by three-dimensional constant energy manifolds.
Consider the manifold defined by

H (X, pX , θ, I ) = h0, (65)

where h0 is a constant. On this manifold, we define a Poincarè
Map Pθ0 on the two-dimensional section �θ0 = {(X, pX ); θ =
θ0, H = h0}. This map is globally well-defined as long as
∂H
∂I > 0 along the trajectories, since in that case one can in-

vert Eq. (65) to obtain I = I (X, pX , θ0; h0) using the implicit
function theorem. From Eq. (61), we conclude that this will
hold for small enough values of the coupling μ.

4. Melnikov analysis and existence of chaotic dynamics
for small μ

When μ � 1, we can transform the coupled two degree of
freedom system given by Eqs. (59)–(62) into a single degree
of freedom periodically forced system in (X, pX ) [19,28].
In that case, we can use Melnikov’s theorem to establish
transversal intersection of stable and unstable manifolds of
fixed points of the Poincarè map defined above. The Melnikov
function is

M(θ0, t0) =
∫ ∞

−∞
{HX , H1}(X 0, p0

X , t + θ0, I0
)
dt =

∫ ∞

−∞

(
∂HX

∂X

∂H1

∂ pX
− ∂HX

∂ pX

∂H1

∂X

)
dt, (66)

where (X 0, p0
X ) is the coordinate-momentum pair corresponding to the heteroclinic trajectory of the unperturbed system given

by Eq. (49). This yields

M(θ0, t0) = 2γ

C2

√√
2γ C0

A

∫ ∞

−∞
sech3

(
X 0

√
2 C2

){
S
√

ωI0cos(t + θ0) + 2 tanh

(
X 0

√
2 C2

)

−
√

1 + d2
[
S
√

ωI0cos(t + θ0) + tanh
(

X 0√
2 C2

)]
√

d2 + [
S
√

ωI0cos(t + θ0) + tanh
(

X√
2C2

)]2

}
dt . (67)

From Eq. (49), sech( X 0√
2 C2

) = 1√
1+N2(t−t0 )2

, and tanh( X 0√
2 C2

) = N (t−t0 )√
1+N2(t−t0 )2

, where N = 1
C2

√√
2C0 γ

A . Inserting these expres-

sions into Eq. (67), we get

M(θ0, t0) = 2γ

C2

√√
2γ C0

A

∫ ∞

−∞

1

(1 + N2(t − t0)2)
√

1 + N2(t − t0)2

{
S
√

ωI0cos(t + θ0) + 2
N (t − t0)√

1 + N2(t − t0)2

−
√

1 + d2
[
S
√

ωI0cos(t + θ0) + N (t−t0 )√
1+N2(t−t0 )2

]
√

d2 + [
S
√

ωI0cos(t + θ0) + N (t−t0 )√
1+N2(t−t0 )2

]2

}
dt . (68)
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Assuming t0 = 0, the Melnikov function can be written as

M(θ0) = 2γ

C2

√√
2γ C0

A

∫ ∞

−∞
Q(t )[M1(t, θ0) + M2(t ) − M3(t, θ0)]dt, (69)

where Q(t ) = 1
(1+N2t2 )

√
1+N2t2 , M1(t, θ0) =

S
√

ωI0cos(t + θ0), M2(t ) = 2 Nt√
1+N2t2 , and M3(t, θ0) =

√
1+d2[S

√
ωI0cos(t+θ0 )+ Nt√

1+N2t2
]√

d2+[S
√

ωI0cos(t+θ0 )+ Nt√
1+N2t2

]2
.

We claim that the Melnikov function M(θ0) vanishes at
θ0 = ±π

2 . To prove this, we compute

M1

(
t,

π

2

)
= −S

√
ωI0 sin(t ), and (70)

M3

(
t,

π

2

)
=

√
1 + d2

[−S
√

ωI0 sin(t ) + Nt√
1+N2t2

]
√

d2 + [−S
√

ωI0 sin(t ) + Nt√
1+N2t2

]2
. (71)

Note that Q(t ) is an even function of time, while M1(t, π
2 ),

M2(t ),and M3(t, π
2 ) are odd functions of time. It follows from

Eq. (D1) that all the three terms of the integral vanish for
θ0 = π

2 , since each integrand is a product of an even and an
odd function. Hence, we have proved that M( π

2 ) = 0. Mel-
nikov’s theorem further requires that π

2 be a simple zero of
M, i.e., dM(θ0 )

dθ0
|θ0= π

2
= 0. We provide a proof of this statement

in the Appendix D. The preceding analysis establishes the
existence of heteroclinic tangles and chaotic dynamics in the
system for small values of μ. It also implies that there exist
orbits heteroclinic to the periodic orbits at X = ±∞ in the
corresponding 4D phase space of Eq. (42).

5. Lobe dynamics and phase space transport for small μ

We use the theory of lobe dynamics [19,29] to interpret
the orbits of solitary waves in this chaotic system. This theory
states that phase space transport can be understood in terms
of forward and backward mapping of parcels (called “lobes”)
bounded by segments of stable (W s

p̂i
) and unstable (W u

p̂i
) mani-

folds of the two fixed points, p̂1 = (−∞, 0) and p̂2 = (∞, 0),
of the map Pθ0 .

The phase space is again divided into three disjoint regions
R1, R2, R3, corresponding to solitary waves that are traveling
right, (temporarily) captured at the defect, and traveling left,
respectively. This division of phase space is performed by
selecting the appropriate primary intersection points (“pips”).
A point q̂i belonging to the intersection of W u

p̂j
and W s

p̂k
is a pip

if the segment U [ p̂ j, q̂i] on W u
p̂j

connecting p̂ j to q̂i, and the
segment S[q̂i, p̂k] on W s

p̂k
connecting q̂i to p̂k , intersect only at

q̂i. We denote the pip formed by intersection of W u
p̂1

and W s
p̂2

at
X = 0 as q̂1, while the pip at the intersection of W u

p̂2
and W s

p̂1

at X = 0 is denoted as q̂2.
Once these primary intersections points are picked, the

boundaries between regions Ri can be demarcated using the
associated invariant manifolds, as shown in Fig. 10. The
region R2 is enclosed by U [ p̂1, q̂1], S[q̂1, p̂2], U [ p̂2, q̂2],
and S[q̂2, p̂1]. The regions R1 and R3 are defined as

R1 = [(x, y)|(x, y > 0) /∈ R2], and R3 = [(x, y)|(x, y < 0) /∈
R2], respectively.

A lobe is an area enclosed by segments U [q̂i, q̂ j] and
S[q̂ j, q̂i] for any neighboring pair of pips q̂i and q̂ j . Lobes are
mapped onto each other by forward and backward iterations
of the map Pθ0 . The lobe Li, j (k) is the set of all points that are
mapped from Ri to Rj after k iterations of Pθ0 . Furthermore,
any point in Ri that eventually enters Rj must pass through
Li, j (1). Figure 10 also shows a few forward and backward
iterates of L1,2(1) and L2,1(1).

For a right-moving solitary wave to transmit across the
defect, it must either stay in R1 for all times, or transit from
R1 to R2, and then back to R1. Figure 11(a) shows a trajectory
doing the latter. Once this trajectory enters R2, it is mapped
onto a pre-image of L2,1(1), and eventually gets ejected back
to R1. Analogously, for a right moving solitary wave to get
reflected back from the defect, it must transit from R1 to R2

and then from R2 to R3. Figure 11(b) shows such a trajectory.
Once this trajectory enters R2, it is mapped onto a pre-image
of L2,3(1), and eventually gets ejected into R3.

Since the Poincarè map Pθ0 is area preserving, by argu-
ments similar to those in Ref. [19], the set of points that
are captured by the defect for all times has measure zero.
As a result, capture is observed only for isolated values of
incoming velocities in the reduced-order model (see Fig. 7).
This is in contrast to the full-order model results in Fig. 5
that show existence of finite intervals of initial velocities that
lead to permanent capture of incoming waves. This however
does not rule out the existence of trajectories that are captured
for arbitrarily long times by the defect in the reduced-order

FIG. 10. The stable and unstable manifolds of the fixed points
at X = ±∞ for the Poincarè map P at the section θ0 = π/2. The
region R2 is bounded by bold segments. The lobe L1,2(1) is the set
that is mapped from R1 into R2 in one iteration of P. This lobe and
its three forward iterates are shown in red. The lobe L2,1(1) is the set
that is mapped from R2 into R1 in one iteration. This lobe and its one
forward as well as two backward iterates are shown in black. Note
that the lobe P3(L1,2(1)) intersects the lobe P−2(L2,1(1)), implying
that trajectories can travel from R1 to R2 and then back to R1. The
parameters are h0 = 0.5, μ = 0.5, and γ = 0.9.
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FIG. 11. (a) Phase space evolution of a solitary wave transmitting
across the defect. The trajectory begins in R1, and enters R2 via the
lobe L1,2(1) bounded by W s

+∞ (purple) and W u
−∞ (blue). It is mapped

onto P−2(L2,1(1)) after three iterations inside R2, leading to its re-
entry into R1 after the sixth iteration. (b) Phase space evolution of a
solitary wave reflecting back from the defect. The trajectory begins
in R1, and enters R2 via L1,2(1). After the first iteration inside R2, it
is mapped onto L2,3(1), a lobe bounded by W u

+∞ (orange) and W s
−∞

(green), leading to its entry into R3 after the second iteration. The
parameters are h0 = 0.5, μ = 0.5, and γ = 0.9.

model. In fact, the existence of horseshoes [30] in the system
leads us to conjecture that for each positive integer n, there
exists an initial condition such that a trajectory coming into
R2 from R1 performs n clockwise “revolutions” around the
origin, before exiting to either R1 or R3.

6. Lobe dynamics interpretation of critical velocity

For a given total energy level h, the maximum height of the
sequence of lobes P−n(L1,2(1)) for (n = 1, 2, 3, . . . ) reaches
an asymptote p−∞ as n → ∞. If the initial momentum of an
incoming solitary wave (at X → −∞) is higher than p−∞,
then the trajectory will travel above the lobes, staying in
region R1 and transmitting across the defect. However, if
the initial momentum of an incoming solitary wave is lower
than or equal to p−∞, then its fate will be decided by the
lobe dynamics discussed previously, and all three outcomes of
transmission, capture and reflection are possible. For fixed h,
an incoming solitary wave with maximum allowable velocity
vmax corresponds to an initial condition with no energy in
the breather. Hence, vmax can be obtained by putting (X →

FIG. 12. Poincarè section for h = −0.4 > hcr = −0.72 with
μ = 0.5 and γ = 0.9. The trajectory in black has incoming veloc-
ity vi ≈ vmax > v−∞ and transmits across the defect while traveling
above the lobes. The trajectory in red has vi ≈ v−∞, while the one
in blue has vi < v−∞. Here v−∞ is the velocity corresponding to the
momentum p−∞. The evolution of both red and blue trajectories is
governed by the lobe dynamics. At initial time, the breather has no
energy in the case of the black trajectory, while it has non-zero energy
in the other two cases.

−∞, a = 0, pa = 0) in the Hamiltonian (57), and inverting
the equation H = h. Similarly, an incoming solitary wave
with minimum allowable velocity vmin = 0 corresponds to an
initial condition with all the energy in the breather.

Recall that we defined the critical velocity vcr to be the
velocity above which an incoming solitary wave (with zero
initial energy in breather) will always transmit across the de-
fect. Let the corresponding energy level be denoted by hcr. Our
lobe dynamics computations reveal that for any fixed energy
level h > hcr, the maximum allowable incoming momentum
(pmax = A√

2C0
vmax) is higher than the corresponding p−∞, as

shown in Fig. 12 for h = −0.4, with hcr = −0.72. Hence, for
each h > hcr, incoming waves with vi ∈ (

√
2C0
A p−∞, vmax] will

always transmit, while those with vi ∈ (0,
√

2C0
A p−∞] will be

governed by the lobe dynamics. Note that if vi = vmax, there
is non-zero energy in the breather at initial time (since the
total energy is fixed). Figure 12 shows three trajectories (all
at h = −0.4) with incoming velocity greater than, equal to
and less than v−∞, respectively. However, we find that for
each h � hcr, pmax = p−∞, and hence, the fate of all possible
incoming trajectories with vi ∈ (0, vmax] will be governed by
lobe dynamics. Figure 13 shows such a case with h ≈ hcr =
−0.72, and vmax ≈ vcr = 0.19.

C. Heteroclinic orbits for μ = 1

Recall that we recover the original reduced-order Hamil-
tonian system (41) by putting μ = 1 in Eq. (42). To compute
orbits heteroclinic to the periodic orbits at X = ±∞ for this
case, we use the fact that the stable manifolds in Fig. 10 can
be obtained by reflecting the unstable manifolds across the pX

axis. This is a consequence of the invariance of the system
under the transformation:

(−X, pX , a, pa, t ) → (X, pX ,−a, pa,−t ), (72)
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FIG. 13. Poincarè section for h ≈ hcr = −0.72 with μ = 0.5 and
γ = 0.9. In this case, p−∞ ≈ pmax and v−∞ ≈ vmax. The trajectory in
black has incoming velocity vi ≈ vmax, while the trajectory in red
has vi < vmax. The evolution of both black and red trajectories is
governed by the lobe dynamics.

where a = 0 for the Poincarè section of Fig. 10. Hence, if the
unstable manifold of the periodic orbit at X = −∞ intersects
the X = 0 surface at a = 0, then the intersection also belongs
to the stable manifold of the periodic orbit at X = +∞.

Let φt (X, pX , a, pa) denote the time-t flow map for
Eq. (42). Using Matlab’s BVP4C [31], we solve the following
multipoint boundary value problem (BVP) for a trajec-
tory beginning at (−X ∗, pX−, a−, pa−) at t = 0, reaching
(X0, pX0, a0, pa0) at t = T/2, and terminating at (X ∗, pX+ =
pX−, a+ = −a−, pa+ = pa−) at t = T :

φT/2(−X ∗, pX−, a−, pa−) = (X0, pX0, a0, pa0), (73)

φ−T/2(X ∗, pX−,−a−, pa−) = (X0, pX0, a0, pa0). (74)

To make the problem well-posed, we fix X ∗ ≈ 10.
The BVP consists of eight equations corresponding to
the eight unknowns (pX−, a−, pa−, X0, a0, pX0, pa0, T ). The
initial guesses are obtained from heteroclinic trajectories ob-
tained for μ < 1 using Poincarè sections, as discussed in the
previous section. Once one solution to the BVP is found, we
find other distinct solutions by solving the BVP with different

initial guesses for a− and pa−, while keeping the energy equal
to the first solution.

Figure 14 shows the projections of two such heteroclinic
orbits on the (X − a) and (X − PX ) planes. Each right-moving
heteroclinic orbit corresponds to a solitary wave that arrives
from the periodic orbit at (X → −∞) with pX ≈ 0+ and all
the energy initially in the breather. As this wave approaches
the defect, it absorbs energy from the breather and accelerates.
Once past the defect, the same amount of energy is gradually
transferred back to the breather, and the wave approaches
X → ∞ with vanishing speed. The situation is analogous for
a left-moving heteroclinic orbit.

V. DISCUSSION AND CONCLUDING REMARKS

In this paper, we have derived a reduced-order dynamical
model of an infinite chain of bistable mechanical elements
with a localized defect, and analyzed it using methods of
dynamical systems theory. Focusing on the interactions be-
tween solitary waves and the breather mode that arises due
to the defect, this two degree of freedom Hamiltonian model
captures some qualitative aspects of the system dynamics. The
study of phase space transport in the reduced-order model
via lobe dynamics elucidates the mechanisms via which an
incoming solitary wave may get transmitted, captured, or
reflected upon reaching the defect. Both the full-order and
reduced-order models predict that there is a critical initial
velocity (with no energy initially in the breather) above which
an incoming solitary wave will always pass through the de-
fect. However, there are a number of disagreements between
the models, including the value of the critical velocity itself.
While the reduced-order model predicts strong sensitivity to
initial conditions below the critical velocity, the full-order
models predict that an incoming wave will always be captured
in that regime, except for isolated initial conditions that lead
to reflection.

These discrepancies can primarily be attributed to two
factors. First, it is known that solitary wave-defect interac-
tions lead to “leaking” of energy into the infinite-dimensional
subspace of linear waves (“phonons”), even in the continuum
setting. Phonon excitation also occurs purely due to discrete-
ness of the system. In discrete bistable systems such as those

FIG. 14. Two distinct orbits heteroclinic to the two periodic orbits at X = ±∞, with μ = 1 and γ = 0.9, projected on (a) X − a and
(b) X − pX planes.
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considered in this study, transition waves are accompanied by
oscillatory tails [11] that vanish when discreteness parameter
goes to 0. These tails consist of phonons primarily at a sin-
gle frequency, and mechanisms have been proposed recently
to harvest this energy by inclusion of defects [11,32]. Our
reduced-order model can potentially be made more accurate
by including these two sources of radiation damping [19]. It is
a challenging task to derive an accurate analytical description
of the damping terms to be appended to the Hamiltonian
equations, since it involves a careful study of resonances
between modes corresponding to the discrete and continuous
spectra [25]. Recent advances in data-driven sparse learning
of governing equations [33] may provide an alternative way
to obtain the dominant damping terms. Once a dynamical
model is available, the current framework can potentially
be extended to understand the damped dynamics, since lobe
dynamics and other related phase space transport methods
have been used to study nonconservative systems [29,34].
Second, prior numerical studies of solitary wave-defect inter-
action in the closely related φ4 model have pointed out the
importance of an “internal mode” in the dynamics [20,35].
This internal mode is a spatially localized eigenfunction of
the system linearized about the solitary wave solution. Our

computations confirm that a similar internal mode exists in
the system considered in this study. It corresponds to shape
change of the solitary wave profile, and it can potentially
exchange energy with the solitary wave. While it is plausible
that including this mode into the reduced-order model could
lead to a better agreement with the results of the full-order
model, the application of lobe dynamics to the resulting 4D
system would be a formidable task [36,37]. A promising line
of future work will be to apply singular perturbation theory
and Melnikov analysis following Refs. [23,38] to obtain more
accurate estimate of the critical velocity and its dependence on
system parameters. This analysis may also help uncover the
exact mechanism that leads to trapping of incoming waves.

Our work is a step toward a rational approach to defect
engineering in mechanical metamaterials, based on a fully
nonlinear dynamical systems approach. This approach can
potentially be extended to spatially extended defects, and
three-DOF reduced-order models, as demonstrated in pho-
tonic metamaterials [22,39]. Another promising extension is
active modulation of the defect strength (i.e., onsite spring
stiffness), or the breather oscillations, in an open-loop or feed-
back fashion for designing active mechanical metamaterials
[40–45].

APPENDIX A: DETAILS OF DERIVATION OF THE REDUCED-ORDER MODEL

The first and third integrals are

∫ ∞

−∞

1

2
u2

k,t dx = −
∫ 2

0

1

2
Ẋ 2u2

k,z du = Ẋ 2

2
√

2Kr

[
2
√

1 + d2 − d2 ln

(√
1 + d2 + 1√
1 + d2 − 1

)]
, (A1)∫ ∞

−∞

1

2
u2

k,x dx = −
∫ 2

0

1

2
u2

k,z du = 1

2
√

2Kr

[
2
√

1 + d2 − d2 ln

(√
1 + d2 + 1√
1 + d2 − 1

)]
, (A2)

while the second and fourth integrals are

∫ ∞

−∞

1

2
u2

b,t dx =
∫ ∞

−∞

1

2
ȧ2e−2κ|x| dx = 1

2κ
ȧ2, (A3)∫ ∞

−∞

1

2
u2

b,x dx =
∫ ∞

−∞

1

2
[a(−κ )e−κ|x| sgn(x)]2 dx = κ

2
a2. (A4)

The fifth integral is

∫ ∞

−∞
[1 − γ δ(x)]ψ (uk + ub) dx =

∫ ∞

−∞
ψ (uk + ub) dx − γψ[uk (0, X ) + a]. (A5)

Expanding ψ (uk + ub) via Taylor series around a = 0, we get

ψ (uk + ub) ≈ ψ (uk ) − 2(1 − uk )[
√

(1 − uk )2 + d2 − √
1 + d2]√

(1 − uk )2 + d2
ub +

{
(1 − uk )2

(1 − uk )2 + d2

+ d2(
√

(1 − uk )2 + d2 − √
1 + d2)

[(1 − uk )2 + d2]
√

(1 − uk )2 + d2

}
u2

b + O(a3). (A6)
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Using (21,22,29), we write (A6) as

ψ (uk + ub) ≈ ψ (uk ) −
2 tanh

(
x−X√

2C2

)(√
tanh2

(
x−X√

2C2

) + d2 − √
1 + d2

)
√

tanh2
(

x−X√
2C2

) + d2
ae−κ |x|

︸ ︷︷ ︸
T1

+
⎛
⎝ tanh2

(
x−X√

2C2

)
tanh2

(
x−X√

2C2

) + d2
+

d2
{√[

tanh2
(

x−X√
2C2

)] + d2 − √
1 + d2

}
(

tanh2
(

x−X√
2C2

) + d2
)√

tanh2
(

x−X√
2C2

) + d2

⎞
⎠a2e−2κ |x|

︸ ︷︷ ︸
T2

+O(a3). (A7)

The numerator of T1 is a product of two terms. For |x − X | � 1, the first term is small while the second term remains bounded.
For |x − X | 	 1, the second term is small while the first term remains bounded. Hence, we assume T1 ≈ 0.

Finally, T2 is a sum of two terms. We only keep the contribution for the case when |x − X | 	 1, and assume that the solitary
wave-defect interaction is captured by the the δ function term in Eq. (A5). With these approximations, the fifth integral is∫ ∞
−∞[ψ (uk ) + ( e−2κ |x|

1+d2 )a2] dx − γψ[uk (0, X ) + a]

=
√

Kr

2
√

2

[
2
√

1 + d2 − d2 ln

(√
1 + d2 + 1√
1 + d2 − 1

)]
+ 1

(1 + d2)κ
a2 − γψ[uk (0, X ) + a].

APPENDIX B: DERIVATIVES OF F, G, AND R

The (partial) derivatives of G(X ), F (X, a), and R(a) are

dG

dX
= −√

2

C2
sech2

(
X√
2C2

)
tanh

(
X√
2C2

)
, (B1)

∂F

∂X
=

√
2

C2
sech2

(
X√
2C2

)⎧⎨
⎩a + 2 tanh

(
X√
2C2

)
−

√
1 + d2

[
tanh

(
X√
2C2

) + a
]

√[
tanh

(
X√
2C2

) + a
]2 + d2

⎫⎬
⎭, (B2)

∂F

∂a
= 2

⎧⎨
⎩tanh

(
X√
2C2

)
−

√
1 + d2

[
tanh

(
X√
2C2

) + a
]

√[
tanh

(
X√
2C2

) + a
]2 + d2

⎫⎬
⎭, (B3)

dR

da
= 2a. (B4)

APPENDIX C: FIXED-POINT ANALYSIS

In this section, we find conditions on parameters C0 and
d such that the fixed point (X ∗ = 0, p∗

X = 0, a∗ = 0, p∗
a = 0)

is always of type center × center for all 0 � μ � 1 and 0 �
γ � 1. This requires that (X ∗, a∗) should be a minimum of
the potential energy

V (X, a) =
[

1

(1 + d2)κ
+ C2

0 κ

2

]
a2

− γ [R(a) + μF (X, a) + G(X )] + C0A√
2

. (C1)

This condition is satisfied if the the Hessian of V (X, a) is
positive definite at (X ∗, a∗). This requires that both the eigen-
values of the Hessian are positive. The eigenvalues are given
by

λH = 1
2

[
(V,XX + V,aa)

±
√

(V,XX + V,aa)2 − 4
(
V,XXV,aa − V 2

,Xa

)]
. (C2)

The following three inequalities guarantee the positivity of
both eigenvalues:

V,XX > 0,V,aa > 0, and V,XXV,aa − V 2
,Xa > 0, (C3)

where for the fixed point at the origin (X ∗ = 0, a∗ = 0) :

V,XX = γ

C2
2

[
1 + μ

(√
1 + d2 − 2d

d

)]
, (C4)

V,aa = 2γ

(√
1 + d2

d
μ − 1

)
+

(
2

(1 + d2)κ
+ κ C2

0

)
,

(C5)

and V,Xa =
√

2
γμ

C2

(√
1 + d2

d
− 1

)
. (C6)

To show that VXX > 0, we note that (
√

1+d2−2d
d ) > −1 for all

d > 0. Since 0 � μ � 1, the result follows.

Next, we show that V,aa > 0 for C0 > γ

√
1 − ω2

0
4 . Squaring

both sides, and using the relations ω2
0 = 2

1+d2 , and κ = γω2
0

2Kr
,
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FIG. 15. dM(θ0 )
dθ0

|θ0=π/2 as a function of the size of the periodic
orbit in the unperturbed system.

we get

C2
0 > γ 2 − γ 2 ω2

0

4
⇒ C2

0 κ + 2

(1 + d2)κ
− 2γ > 0. (C7)

Since 0 � μ � 1, the result follows.
Finally, one can verify by direct substitution that we

can also ensure V,XXV,aa − V 2
,Xa > 0 if we choose C0 =

γ m
√

1 − ω2
0

4 , where

m > max

⎧⎨
⎩
√√√√2(μ − 1)2 − 1

1+d2

[
1 + (√

1+d2

d − 2
)
μ
]

2
(
1 − 2μ +

√
1+d2

d μ
)[

1 − 1
2(1+d2 )

] , 1

⎫⎬
⎭.

(C8)

APPENDIX D: OMITTED DETAILS OF MELNIKOV
ANALYSIS

To finish the Melnikov analysis, and confirm the existence
of heteroclinic tangles in the system, we need to further prove
that dM(θ0 )

dθ0
|θ0=π/2 = 0, where

M(θ0) = 2γ

C2

√√
2γ C0

A

∫ ∞

−∞
Q(t )

× [M1(t, θ0) + M2(t ) − M3(t, θ0)]dt, (D1)

Q(t ) = 1

(1+N2t2 )
√

(1+N2t2 )
, M1(t, θ0) = S

√
ωI0cos(t +

θ0), M2(t ) = 2 Nt√
(1+N2t2 )

, and M3(t, θ0) =
√

1+d2[S
√

ωI0cos(t+θ0 )+ Nt√
(1+N2t2 )

]√
d2+[S

√
ωI0cos(t+θ0 )+ Nt√

(1+N2t2 )
]2

.

From above, we obtain dM(θ0 )
dθ0

|θ0=π/2 = Q′
1 − Q′

3, where

Q′
1 = − ∫ ∞

−∞
S
√

ωI0

(1+N2t2 )
√

(1+N2t2 )
cos(t )dt , and

Q′
3 =

∫ ∞

−∞

√
1 + d2S

√
ωI0 cos t

(1 + N2t2)
√

(1 + N2t2)
√

d2 + (
nt√

1+n2t2 − S
√

ωI0 sin t
)2

⎡
⎣ (

Nt√
1+N2t2 − S

√
ωI0 sin t

)2

d2 + (
Nt√

1+N2t2 − S
√

ωI0 sin t
)2 − 1

⎤
⎦dt . (D2)

Q′
1 can be analytically computed to yield

Q′
1 = −2

S
√

ωI0K1
(

1
N

)
N2

, (D3)

where K1 is the modified Bessel function of the second kind.
Since the second integral could not be computed analytically,
we show the numerical results in Fig. 15. This computation
confirms that dM(θ0 )

dθ0
|θ0=π/2 > 0 for the parameters relevant to

this study.
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