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The boundary of the lemon billiards is defined by the intersection of two circles of equal unit radius with
the distance 2B between their centers, as introduced by Heller and Tomsovic [E. J. Heller and S. Tomsovic,
Phys. Today 46, 38 (1993)]. This paper is a continuation of our recent papers on a classical and quantum ergodic
lemon billiard (B = 0.5) with strong stickiness effects [Č. Lozej et al., Phys. Rev. E 103, 012204 (2021)], as
well as on the three billiards with a simple mixed-type phase space and no stickiness [Č. Lozej et al., Nonlin.
Phenom. Complex Syst. 24, 1 (2021)]. Here we study two classical and quantum lemon billiards, for the cases
B = 0.1953, 0.083, which are mixed-type billiards with a complex structure of phase space, without significant
stickiness regions. A preliminary study of their spectra was published recently [ Č. Lozej, D. Lukman, and M.
Robnik, Physics 3, 888 (2021)]. We calculate a very large number (106) of consecutive eigenstates and their
Poincaré-Husimi (PH) functions, and analyze their localization properties by studying the entropy localization
measure and the normalized inverse participation ratio. We introduce an overlap index, which measures the
degree of the overlap of PH functions with classically regular and chaotic regions. We observe the existence
of regular states associated with invariant tori and chaotic states associated with the classically chaotic regions,
and also the mixed-type states. We show that in accordance with the Berry-Robnik picture and the principle of
uniform semiclassical condensation of PH functions, the relative fraction of mixed-type states decreases as a
power law with increasing energy, thus, in the strict semiclassical limit, leaving only purely regular and chaotic
states. Our approach offers a general phenomenological overview of the structural and localization properties of
PH functions in quantum mixed-type Hamiltonian systems.

DOI: 10.1103/PhysRevE.106.054203

I. INTRODUCTION

Classical generic Hamiltonian systems exhibit both regular
and chaotic motion [1], depending on the initial condition.
They are referred to as systems with divided phase space or
mixed-type systems because the phase space is divided into
regular and chaotic invariant components, with an intricate
hierarchical structure of islands of stability embedded in the
chaotic sea. Accordingly, the chaotic sea(s) and islands of
stability, comprised of invariant tori, may be combined into
disjoint measurable subsets with a positive a Liouville mea-
sure (phase space volume). According to the correspondence
principle, one expects that the eigenstates of the equivalent
quantized system should behave similarly. The states may be
separated into subsets that correspond to either the chaotic
or regular classical dynamics, with a spectral density that is
equal to the classical Liouville measure of the corresponding
invariant component in the phase space. The idea was first
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conjectured by Percival [2], further elaborated by Berry [3,4],
and later developed into the principle of uniform semiclassical
condensation (PUSC); see [5] and references therein. The
states may be separated, depending on the overlap with either
the regular or chaotic part of the classical phase space, by
means of Wigner functions or Husimi functions. Following
PUSC, the high-lying eigenstates are supported either on the
chaotic sea or the invariant tori forming the islands of stability
in the ultimate semiclassical limit. The partial spectrum of the
regular states follows Poissonian statistics, while the spectral
statistics of the chaotic states are well described by random
matrix theory (RMT) [6,7]. The whole spectrum may be col-
lectively described by the Berry-Robnik spectral statistics [8].
An abundance of numerical evidence corroborates the Berry-
Robnik picture and PUSC as its foundation [9–18]. However,
a true separation to regular and chaotic states may only be
expected in the asymptotic semiclassical limit (where the ac-
tion is large compared to h̄). Before reaching this asymptotic
regime, many states will exhibit a mixed behavior with various
tunneling processes between the structures of the classical
phase space, and much less is known about this regime de-
spite its rich and interesting phenomenology. For instance,
the mixed eigenstates support important physical phenom-
ena, such as chaos-assisted tunneling [19], that has recently
been shown to have useful applications in quantum simula-
tion [20]. For a general introduction and a rather complete
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FIG. 1. Illustration of the two lemon billiards considered in this
work together with the probability distributions of a high-lying quan-
tum eigenstate. (a) B = 0.1953, regular eigenstate at k = 462.122;
(b) B = 0.083, chaotic eigenstate at k = 457.533.

account of quantum chaos, we refer to the books by Stöck-
mann [6] and Haake [7], and to the recent review papers on
the stationary quantum chaos in generic (mixed-type) systems
[21,22].

In this paper, we compute and study the properties of a
large number (approximately 106) of eigenstates for two ex-
amples of lemon billiards with complex divided phase spaces.
Billiards are excellent examples of generic model Hamil-
tonian systems, widely used for studies in quantum chaos.
The lemon billiards were introduced by Heller and Tomso-
vic [23] and have been extensively studied (including some
generalizations) [24–31] in the context of classical regular
and chaotic dynamics, and as quantum billiards, including our
recent works [32–34].

The lemon billiard table is defined as the intersection
of two circles of equal unit radius, with a distance of 2B
between their centers (the construction is explained in Ap-
pendix A). In this work, we study classical and quantum
mechanics of two lemon billiards, namely, B = 0.1953 and
B = 0.083. They are illustrated in Fig. 1. It must be em-
phasized that although the lemon billiards all belong to the
same family as for the mathematical definition, individually
they have quite different and very rich dynamical properties,
which makes them important in both the classical and quan-
tum contexts. The specific parameters were chosen with the
following considerations. The phase space of both billiards
consists of one significant chaotic component and several
islands of stability. In the B = 0.1953 case, three major is-
land chains are present, while B = 0.083 shows a complex
web of many island chains. In both cases, stickiness effects
(see Refs. [35,36] for an introduction to the phenomenon)
are negligible. This fact is of great significance since classi-
cal stickiness also has considerable effects on the quantum
dynamics and structure of the eigenstates, as we have re-
cently shown for the case of the presumably ergodic B = 0.5
billiard in Ref. [32]. Previously, we have also studied the
aspects of quantum chaos in three mixed-type lemon billiards,
B = 0.42, 0.55, 0.6, with a simple structure (only one domi-
nant chaotic component without stickiness regions, coexisting
with only one large regular component), in Ref. [33]. The
cases considered in the present paper allow for an increased
complexity and richness of the mixed eigenstates and tun-
neling effects, but still exclude the effects of strong partial
transport barriers that would classically result in stickiness.
The discovery of these dynamically different and interesting

lemon billiards has only been made possible thanks to the
recent extensive analysis of Lozej [30]. The entire family of
classical lemon billiards for a dense set of about 4000 values
of B ∈ [0.01, 0.99 975] (in steps of dB = 0.00 025) has been
systematically analyzed for their phase space structure and
stickiness effects.

A study of quantum energy spectra of the billiards consid-
ered in the current work has recently been published in [34],
where specifically we studied the fluctuation of the number
of energy levels around the mean value determined by the
Weyl rule with the perimeter corrections, and the energy level
spacing distributions for all (four) symmetry classes.

The main purpose of the present paper is the phenomeno-
logical analysis of the eigenstates of the two selected quantum
lemon billiards, B = 0.1953 and 0.083, with the following
goals: (i) To calculate the Poincaré-Husimi (PH) [37,38]
functions of the eigenstates, analyze their structure in the
phase space in relationship to the classical phase portrait,
and examine the quantum localization of chaotic eigen-
states in the phase space. (ii) To establish the relationships
between various localization and classical-quantum over-
lap measures in order to present a complete overview of
the eigenstates in the PH representation. (iii) To observe
the condensation of the eigenstates on classical invariant
components, with progressive energy, in the context of
the Berry-Robnik picture of quantum chaos in mixed-type
systems [8] and the principle of uniform semiclassical con-
densation [5].

The main results are the following. The great majority
of PH functions are found to be well supported either on
invariant tori in the regular islands or on the chaotic com-
ponent, thus obeying the principle of uniform semiclassical
condensation of Wigner functions [5]. PH functions of mixed
type exist and show a wide variety of tunneling states between
different classical structures. The distributions of localization
and overlap measures may be used to identify the various
interesting regimes and quantify their prevalence. The pro-
portion of mixed-type states shows a power-law decay with
increasing energy in both billiards with an overall exponent
of γ ≈ 0.3 and a local variation from 0.1 to 0.5 pertaining to
different mixed-state regimes.

The paper is organized as follows. In Sec. II, we examine
the classical dynamical properties of the two lemon billiards
under consideration. In Sec. III, we define the quantum bil-
liard problem, discuss its numerical solution, and introduce
the Poincaré-Husimi functions of the eigenstates. In Sec. IV,
we introduce the overlap index M and propose how to sep-
arate the regular and chaotic eigenstates in the sense of
Berry-Robnik [8]. In Sec. V, we introduce and compute the
localization measures of the regular, chaotic, and mixed-type
eigenstates, study the structure of their probability distri-
butions, and relate it to the Poincaré-Husimi functions of
individual eigenstates. In Sec. VI, we study the connection
between the overlap index M and the localization measures.
In Sec. VII, we analyze the energy dependence of the whole
picture. In Sec. VIII, we summarize and discuss the results and
present the conclusions. Appendix A gives a short overview
of the construction and geometry of the lemon billiards and
Appendix B presents some relevant results on stickiness and
recurrence time statistics.
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II. PHASE SPACE STRUCTURE OF LEMON BILLIARDS

A billiard is a dynamical system which consists of a free
moving point particle confined inside a closed domain B in
Euclidean space, referred to as the billiard table. The particle
moves freely inside the billiard table in straight lines and is
specularly reflected when hitting the edge of the table. The
family of lemon billiards is formed by the intersection of two
circles of equal unit radius with a distance of 2B between
their centers, where B ∈ (0, 1). As usual, we consider the
billiard as a discrete dynamical system, taking the boundary
as the surface of the section. We use the canonical variables
to specify the location q and the momentum component p
on the boundary at the collision point, so that the classical
phase space is a cylinder (q, p) ∈ [0, L] × (−1, 1), where q is
the arclength (periodic with a period equal to the circumfer-
ence of the boundary L) and p = sin(α) is the sine of the angle
of reflection. For more details on construction of the lemon
billiards, the canonical variables, and geometric properties,
see Appendix A. The bounce map, mapping from collision
to the next collision, (q, p) → (q′, p′), is area preserving as in
all billiard systems [39].

Due to the two kinks (corners at y = 0), the Lazutkin
invariant tori (related to the boundary glancing orbits) are
broken. The period-2 orbit connecting the centers of the two
circular arcs is always stable (and therefore surrounded by
a regular island), except for the case B = 1/2, where it is a
marginally unstable orbit. This case is presumably ergodic
and has been treated in our recent paper [32]. In all other
cases, the phase space is divided (mixed type) with one dom-
inant chaotic sea (that is significantly larger than all other
chaotic components) and typically a multitude of islands of
stability. Keeping in mind the Berry-Robnik picture, it is
useful to compute the relative measure pertaining to chaotic
and regular components in the phase space. We compute the
relative areas χc and χr = 1 − χc on the surface of the sec-
tion [two-dimensional phase space of canonical coordinates
(q, p)] by using the methods presented in Ref. [40]. However,
the spectral density of the regular or chaotic states is given
by the Liouville measure [volume in the energy surface of
the full four-dimensional phase space in Cartesian coordinates
(x, px, y, py )]. To convert the area into the volume, χc → ρc,
we use a formula due to Meyer [41] given in Appendix A.

The phase portrait for the billiard B = 0.1953 is shown
in Figs. 2 and 3. The relative fractions of the chaotic
component are χc = 0.3585 or ρc = 0.2804 (which is the
Berry-Robnik parameter). Three independent regular island
chains are clearly visible, the largest one around the period-2
orbit which is densely covered by the invariant tori, with no
visible thin chaotic layers inside. We denote the largest island
chain by L, the second largest one by M, and the smallest
one by S . The relative phase space volume of all three regular
regions taken together is ρr = 1 − ρc = 0.7196. The chaotic
sea is very uniform, with no significant stickiness regions, as
evident in the S plot (introduced in Ref. [30]). The S parameter
is the local coefficient of variation of the recurrence times
into small areas of the chaotic component. When S = 1, the
distribution of recurrence times is exponential, as expected
for uniform chaos. If S > 1, this indicates a modified recur-
rence time distribution, i.e., stickiness. For more details, see

FIG. 2. The phase portrait of the lemon billiard B = 0.1953. The
chaotic component is mapped by a single chaotic orbit and recur-
rence time statistics are presented as grayscale plot. The gray coding
on the color bar is the quantity S measuring the stickiness in the
chaotic component (see Appendix B), showing that we uniformly
have S ≈ 1, and thus no significant stickiness. Inside the islands of
stability, we show some representative invariant tori. χc = 0.3585,
ρc = 0.2804, ρr = 1 − ρc = 0.7196, and L = 5.4969

Appendix B. The phase portrait as shown in Fig. 4 for
the billiard B = 0.083 is more complex. The relative fraction
of the area of the chaotic component of the bounce map is
χc = 0.2168, while the relative fraction of the phase space
volume of the same chaotic component is ρc = 0.1617. Thus,
the relative phase space volume fraction of the complementary
regular regions is ρr = 1 − ρc = 0.8383. Also in this case, the
chaotic sea is rather uniform, with no significant stickiness
regions. The details of the desymmetrized part of the phase
space are shown in Fig. 5. We can conclude that the two cases
B = 0.1953, 0.083 are interesting to verify the Berry-Robnik
picture of quantum billiards, including the possible quantum
localization of the chaotic eigenstates and the universal sta-
tistical properties of the localization measures. The two cases
add a level of increased complexity for the island structure,

FIG. 3. The details of the desymmetrized part of the phase por-
trait of the lemon billiard B = 0.1953. For a description, see Fig. 2.
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FIG. 4. The phase portrait of the lemon billiard B = 0.083. For
a description, see Fig. 2. χc = 0.2168, ρc = 0.1617, ρr = 1 − ρc =
0.8383, and L = 5.9508.

while keeping the chaotic sea uniform, without stickiness,
as in the examples of the previous paper [33] where simple
single-island phase spaces were studied. This is quite different
from the ergodic case B = 0.5 studied in Ref. [32], where the
stickiness effects are strongly pronounced and are reflected in
the nonuniversal localization properties of quantum (chaotic)
eigenstates.

III. THE SCHRÖDINGER EQUATION AND THE
POINCARÉ-HUSIMI FUNCTIONS

The quantum billiard B is described by the stationary
Schrödinger equation, in the chosen units (h̄2/2m = 1), given
by the Helmholtz equation

�ψ + k2ψ = 0, (1)

with the Dirichlet boundary conditions ψ |∂B = 0. The energy
is E = k2.

The mean number of energy levelsN (E ) below E = k2

is determined quite accurately, especially at large energies,

FIG. 5. The details of the desymmetrized part of the phase por-
trait of the lemon billiard B = 0.083. For a description, see Fig. 2.

asymptotically exactly, by the celebrated Weyl formula (with
perimeter corrections) using the Dirichlet boundary condi-
tions, namely,

N (E ) = A E

4π
− L

√
E

4π
+ c, (2)

where c are small constants determined by the corners and the
curvature of the billiard boundary. Differentially, they play no
role. Thus, the density of states d (E ) = dN /dE is equal to

d (E ) = A

4π
− L

8π
√

E
. (3)

As shown in the previous paper [34] and according to the
theoretical predictions by Steiner [42,43], the fluctuations of
the number of energy levels (mode fluctuations) around the
mean value of Eq. (2) grow with k, such that their variance
increases linearly with k in integrable systems and as logarith-
mically with k in ergodic chaotic systems. For the mixed-type
systems, it is something in between, namely, the variance is
the sum of the variances of the regular and of the chaotic parts,
provided that we can treat them as statistically independent
of each other, which in the semiclassical regime is a valid
assumption according to the Berry-Robnik picture [8]. Thus,
the fluctuations at large values of k in all cases can be very
large, and the standard deviation even diverges as k → ∞.
In ergodic chaotic systems, the distribution of fluctuations is
predicted to be Gaussian [42,43], while in Ref. [34], we have
shown that it is almost always Gaussian, or very close to that,
even in the integrable and mixed-type systems.

Our numerical method to compute the eigenfunctions is
based on the Vergini-Saraceno scaling method [44,45], with
two possible basis sets, plane waves or circular waves (Bessel
functions for the radial part and trigonometric functions for
the angular part). The numerical methods are available as
part of a PYTHON numerical library [45,46]. The agreement
between calculations using both basis sets is good, so all
the presented calculations were done using the plane-wave
basis because of the much faster computation. The method
computes several eigenstates within a small energy interval
per diagonalization, and its efficiency allowed us to compute
almost 106 eigenstates in the PH representation for each bil-
liard. However, the precision of the computed energy levels
decreases with the distance from the center of the energy
interval. Thus, even after careful comparison of the levels in
overlapping energy intervals, errors in the accumulation of
levels still occur and some levels are lost. The number of
missing levels was never larger than 1 per 1000 levels and,
due to the overall large number of eigenstates, this should have
very little effect on the statistical results.

The lemon billiards have two reflection symmetries, thus
four symmetry classes: even-even, even-odd, odd-even and
odd-odd. For the purpose of our analysis, we have considered
only the quarter billiard, i.e., the odd-odd symmetry class. We
have calculated the energy spectra and PH functions for each
billiard in spectral stretches of about 106 states, starting from
the 104th state. In order to compare the energy-dependent
results between the two billiards, we must first exclude the
effect of densities of states. We use the standard unfolding
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procedure and insert the spectra into the Weyl formula (2),

en := N (En), (4)

where en is the unfolded energy of the nth state. This results
in a spectrum where the mean level spacing is equal to one.

As in previous works [32–34,47–50], we now define
the Poincaré-Husimi (PH) functions, thereby introducing the
quantum phase space whose structure should correspond to
the classical phase space in the semiclassical limit. Thus,
instead of studying the eigenstates by means of the wave
functions ψm(r) as solutions of the Helmholtz equation (1),
we define PH functions as a special case of Husimi functions
[51], which are, in turn, Gaussian smoothed Wigner functions
[52]. They are very natural for billiards. Following Tuale and
Voros [37] and Bäcker et al. [38], we define the properly
L-periodized coherent states centered at (q, p) as follows:

c(q,p),k (s) =
∑
m∈Z

exp[i k p (s − q + m L)]

× exp

[
−k

2
(s − q + m L)2

]
. (5)

The Poincaré-Husimi function is then defined as the abso-
lute square of the projection of the boundary function um(s)
onto the coherent state, namely,

Hm(q, p) =
∣∣∣∣
∮

c(q,p),km (s) um(s) ds

∣∣∣∣
2

, (6)

where um(s) is the boundary function, which is the normal
derivative of the eigenfunction of the mth state ψm(r) on the
boundary at point s,

um(s) = n · ∇rψm[r(s)]. (7)

Here, n is a unit outward normal vector to the boundary
at point r(s). The boundary function satisfies an integral
equation and also uniquely determines the value of the wave
function ψm(r) at any interior point r inside the billiard B.

According to the principle of uniform semiclassical con-
densation (PUSC) of the Wigner functions and Husimi
functions (see [5,22] and the references therein), the PH func-
tions are expected to condense (collapse) in the semiclassical
limit either on an invariant torus or on the chaotic compo-
nent in the classical phase space. This is exactly what we
observe—the higher the energies, the sharper the condensa-
tion or collapse of the PH functions. At not sufficiently high
energies, mixed-type eigenstates (PH functions) may exist due
to the tunneling between regular and chaotic domains (see
[18,53] and references therein), but their number is expected
to decrease monotonically with increasing e.

IV. SEPARATING REGULAR AND CHAOTIC
EIGENSTATES

We use the PH functions to identify regular and chaotic
eigenstates, simply by the criterion of overlap with the clas-
sical invariant tori or the chaotic region, respectively. This
has been introduced and implemented in our previous papers
[47,54]; see, also, Refs. [21,22]. There we have defined an
overlap index M, which in the ideal case is +1 for chaotic
states and −1 for regular states. Namely, we discretize the

classical phase space (q, p) and the quantum phase space
defined by the PH functions H (q, p) into a rectangular grid
of points indexed by (i, j) centered in cells of equal area, and
normalize the PH functions in such a way that

∑
i, j Hi, j = 1.

At each grid point, we define a discrete quantity Ci, j such
that it is +1 if the grid point (i, j) belongs to the chaotic
region, and −1 otherwise. The chaotic region is constructed
and generated by a single sufficiently long and dense chaotic
orbit. This implies that the complement contains all the reg-
ular regions and possibly the other smaller chaotic regions.
Typically, these smaller chaotic regions are so small that they
can be neglected and treated as if they belonged to the regular
part.

We calculate the overlap index M as follows:

M =
∑
i, j

Hi, j Ci, j . (8)

Ideally, in the sufficiently deep semiclassical limit, M should
obtain either exact value +1 or −1, for the chaotic or reg-
ular type of the PH function, respectively. In practice, since
the semiclassical limit is not yet achieved, M also assumes
values between +1 and −1. The question arises as to what
value M = Ms should be taken as the criterion to separate
the regular and chaotic eigenstates. In the past [47,54], we
have used two possible physical criteria: (i) the classical one
and (ii) the quantum one. In the former case, we choose Ms

such that the fractions of regular and chaotic states are the
classical values ρr and ρc = 1 − ρr , respectively. The quan-
tum criterion for Ms is such that the fit of the chaotic level
spacing distribution best agrees with the Brody distribution.
This method is applicable in a general case. In Sec. VI, we
will analyze the distributions of the overlap index in relation
to the localization measures and show that the number of
mixed-type eigenstates (their PH functions), with intermediate
values of M, monotonically decreases with increasing energy
as expected in the Berry-Robnik picture.

V. LOCALIZATION MEASURES

Following our previous papers, e.g., [54] (see, also, [33]),
we will now introduce the localization measures for PH func-
tions. They are special cases of the more general localization
measures based on Wehrl entropy [55], also recently studied
in Refs. [56–58]. We define the entropy localization measure
of a single eigenstate—of its PH function—Hm(q, p) as

Am = exp Im

Nc
, (9)

where

Im = −
∫

dq d p Hm(q, p) ln[(2π h̄) f Hm(q, p)] (10)

is the information entropy of the eigenstate m. Here, f is
the number of degrees of freedom [for two-dimensional (2D)
billiards f = 2, and for surface of section it is f = 1] and
Nc is a number of Planck’s cells on the classical domain,
Nc = 
/(2π h̄) f , where 
 is the classical phase space volume.
In the case of the uniform distribution (extended eigen-
states), H = 1/
 = const, the localization measure is A = 1,
while in the case of the strongest localization, I = 0 and
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A = 1/NC ≈ 0. The Poincaré-Husimi function H (q, p) (6)
(normalized as mentioned before) was calculated on the grid
points (i, j) in the phase space (q, p), and we express the
localization measure in terms of the discretized function Hi, j

as follows:

Am = 1

N
exp

(
−

∑
i, j

Hi, j ln Hi, j

)
, (11)

where N is the number of grid points of the rectangular mesh
with cells of equal area. We have Hi, j = 1/N in the case
of complete (constant) extendedness, and A = 1. In the case
of maximal localization, we have Hi, j = 1 at just one point,
and zero elsewhere, yielding A = 1/N ≈ 0 for large N . In all
calculations, we have used the grid of 1000 × 750 points, and
thus N = 750 000.

According to this definition, regular eigenstates that con-
dense on invariant tori are localized. The distribution of the
localization measures P(A) for these regular states is close
to linear, starting from small A ≈ 0 and increasing up to a
maximal cutoff value A = Ac, corresponding to the outermost
torus (last torus) of the regular island as explained in [33].
This applies to each possible chain of regular islands.

The chaotic PH functions can be either strongly local-
ized or extended, but never entirely uniformly extended (i.e.,
not uniformly constant), as they experience oscillations and
display a characteristic pattern of their nodal (zero level)
points [37,59]. Therefore, the maximal value of A, denoted
by A0, is approximately A0 ≈ 0.7 according to empirical stud-
ies with real energy spectra [33]. The random wave-function
model yields numerically A0 ≈ 0.694 [45], while a theo-
retical estimate of the random wave-function model in the
ultimate semiclassical limit yields (see Refs. [58,60–63]) A0 =
e(γ−1) ≈ 0.65 522, where γ = 2.71 828 is the Euler constant.
In mixed-type systems, the upper bound of the measure will
be further reduced compared to fully chaotic ergodic systems
since not all of the phase space is accessible. One must renor-
malize and divide the measured A by the relative area χc of the
chaotic component in the phase space to make a quantitative
comparison for the upper bound in the two different settings,
as was done in our previous work. In this work, we examine
regular, chaotic, and mixed states and will not rescale the
measures of the chaotic states and keep the definition given
by Eq. (9) for all types of states.

Of course, one may define many localization measures that
are more sensitive to different features of the underlying PH
functions. In the literature, many possibilities are presented,
and the most general definition is based on the Renyi en-
tropy (see Refs. [56,58]) of class α. α = 1 corresponds to
the information (Shannon) entropy on which the localization
measure A in Eq. (9) is based. Another localization measure is
the normalized inverse participation ratio R corresponding to
α = 2. Here we define it as follows in terms of the discretized
and normalized Poincaré-Husimi function:

R = 1

N
∑

i, j H2
i, j

. (12)

R = 1/N , where N—the number of grid points—is very large,
corresponds to the maximal localization R ≈ 0, while R = 1
corresponds to the full extendedness [delocalization, where

Hi, j = 1/N for all (i, j)]. At this point, it is useful to discuss
the differences between the measures A and R and develop
some intuitive understanding. As already discussed, both mea-
sures are sensitive to the overall “size” or “extendedness”
of the PH function in the phase space. However, taking a
logarithm of the PH function as in A will suppress the dif-
ferences in the magnitudes between the high-intensity and
low-intensity areas, whereas taking a square of the PH func-
tion further enhances the peaks where Hi, j > 1 and suppresses
the low-intensity background where Hi, j < 1. The measures
will thus produce the most distinct results for PH functions
that are strongly peaked in just a small area, but have a much
larger support. This makes the measure especially suitable for
finding states scarred by periodic orbits, as demonstrated for
the Dicke model by Pilatowsky-Cameo et al. in Ref. [63]
and in triangular billiards [64]. In previous works [49,50],
we have shown that after a local averaging in energy, the
relationship between A and R for chaotic states is linear.
Here we explore the relationship further by examining the
joint probability distribution density P(A, R), which is the
probability of finding an eigenstate within an infinitesimal box
[A, A + dA] × [R, R + dR]. We normalize the distributions on
the rectangle (A, R) ∈ [0, 0.4] × [0, 0.3].

Let us first consider the B = 0.1953 lemon billiard, with
the comparatively simpler phase space featuring three sta-
ble island chains. In Fig. 6, we show the joint probability
distribution density P(A, R) as a color plot, together with
some representative PH functions from different regions of
the parameter space. The PH functions are selected as the
highest-energy eigenstate found in a local area of the plot.
Let us first focus only on the distribution presented in the
central figure. The white areas are regions where no eigen-
states are found. We immediately notice that the distribution
is supported only on a small area near the diagonal of the
rectangle. This corroborates the previously known result that
the localization measures A and R are, on average, linearly
related. We also observe two main clusters of eigenstates
(note that the color scale is logarithmic): a very sharp peak
supported on a nearly one-dimensional line segment and a
wider peak in the more delocalized regime. The first cluster
is formed by the regular states localized on the invariant tori
of the islands of stability, as can clearly be seen by examining
some representative PH functions presented in Figs. 6(a) and
6(b). The second cluster is formed by the chaotic eigenstates,
with representative examples given in Figs. 6(g), 6(h), 6(i),
and 6(l) on the periphery. We will refer to the two clusters as
the regular and chaotic cluster, respectively. They are visibly
connected by additional structures. Outside the main clusters,
many interesting mixed states may be found. Figures 6(c) and
6(d) show tunneling states between two of the outer tori of
different island chains. These states are interesting because
they can support chaos-assisted tunneling [19]. The states
shown in Figs. 6(e), 6(f) 6(j), and 6(k) represent chaotic states
with a significant overlap with boundary tori, signifying tun-
neling between the chaotic and regular component. Although
one would need to classify each state individually for a full
description, the distribution together with the representative
PH functions provide a good overview of the phenomenology
of the eigenstates. One may also notice that some mixed
states, e.g., Figs. 6(c) and 6(d), belong to much lower wave
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FIG. 6. Center: Color plot of the histogram of the joint probability density P(A, R) for approximately 106 eigenstates with unfolded
energy e ∈ [104, 106] of the B = 0.1953 lemon billiard. The color scale of the main figure is logarithmic. PH functions of the highest-energy
eigenstates within small boxes at various positions are shown on the margin. Their corresponding wave numbers are (a) k = 4638.3906, (b)
k = 4131.8411, (c) k = 2839.9081, (d) k = 3889.6615, (e) k = 4609.8260, (f) k = 4637.4242, (g) k = 4636.6707, (h) k = 4638.1850, (i)
k = 2813.2003, (j) k = 4471.7931, (k) k = 4629.2434, and (l) k = 4501.5252. A classical phase portrait is plotted in the background of each
state for comparison. The color scale at the bottom encodes the relative amplitude of the PH function.

numbers since states in this area cease to exist after a certain
energy is reached. We will more thoroughly present the energy
dependencies in Sec. VII.

We now compare the results from the B = 0.083 lemon
billiard, with the much more elaborate island structure, pre-
sented in the same manner in Fig. 7. The same basic close
to diagonal structure, with two main clusters, may be seen.
However, the exact positions of the structures are different.
This is not unexpected since the localization measures are
sensitive to the geometry of the phase space and sizes of
the tori, islands, and chaotic component. The chaotic cluster
is moved towards lower values of the localization measures
since the relative size of the chaotic component is smaller,
but also because of dynamical localization effects that may be
seen in the PH functions portrayed in Figs. 7(d)–7(f). The state
shown in Fig. 7(f) is also highly peaked near the boundary
of the largest island of stability and might be interpreted as
a mixed state describing tunneling between the three nearby
island chains. The state shown in Fig. 7(g) has strong peaks
in the same areas, but extends weakly across the whole of
the chaotic component. The states shown in Figs. 7(h)–7(l)
are extended chaotic states of various uniformity. However,
some flooding into islands of stability is clearly visible.
In particular, the states shown in Figs. 7(j) and 7(k) flood
the topmost islands of stability completely and partially

overlap other islands. Complete flooding of the topmost is-
lands is also observed in the localized state shown in Fig. 7(e).
The states shown in Figs. 7(a)–7(c) are regular eigenstates and
are typical examples of states from the regular cluster.

To summarize, the joint probability distributions P(A, R)
are structurally similar in both example billiards. They fea-
ture two main clusters of states: the regular cluster supported
on a very narrow strip (practically a line segment) and a
wider chaotic cluster. The wide majority of states is found
in these two clusters. The mixed states are found on the
margins of the clusters and on an additional system-specific
structure connecting the two main clusters that are related
to the various tunneling processes between different island
chains and the chaotic component. It is perhaps surprising
that this much insight into the structure of the phase space
may be gained by studying the relation between two simple
localization measures of the same object, the PH function.
The major advantage of this approach is that no prior infor-
mation of the classical phase space is necessary. This may be
of vital importance when studying higher-dimensional sys-
tems, where the classical computations and production of
detailed phase space portraits become increasingly difficult.
In particular, the regular states are very easily identifiable
since they cluster on such a narrow part of the parameter
space.
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FIG. 7. Center: Color plot of the histogram of the joint probability density P(A, R) for approximately 106 eigenstates with unfolded energy
e ∈ [104, 106] of the B = 0.083 lemon billiard. The color scale of the main figure is logarithmic. PH functions of the highest-energy eigenstates
within small boxes at various positions are shown on the margin. Their corresponding wave numbers are (a) k = 4255.7099, (b) k = 4255.6717,
(c) k = 4255.6550, (d) k = 4253.5121, (e) k = 4255.5289, (f) k = 4251.1624, (g) k = 4253.4432, (h) k = 4255.0162, (i) k = 4255.6096, (j)
k = 4254.0484, (k) k = 3318.7134, and (l) k = 3927.8888. A classical phase portrait is plotted in the background of each state for comparison.
The color scale at the bottom encodes the relative amplitude of the PH function.

VI. OVERLAP INDEX AND LOCALIZATION MEASURES

The classical computations presented is Sec. II enable us to
easily compute the overlap index of the classical chaotic and
regular components and the PH functions, given by Eq. (8).
This is information about the relative overlap with the clas-
sical structures, but this alone is not sufficient to identify
the processes leading to only partial overlap. We therefore
compare the overlap index of each individual state and its
localization measures and study the joint probability distribu-
tions P(A, M ) and P(A, R). We will focus on the distributions
P(A, M ), that is, the probability of finding a state within an
infinitesimal box [A, A + dA] × [M, M + dM]. We normalize
the distributions on the rectangle (A, M ) ∈ [0, 0.4] × [−1, 1].

In Fig. 8, we show the joint probability distribution density
P(A, M ) in the B = 0.1953 as a color plot, together with
some representative PH functions from different regions of
the parameter space. The PH functions are selected as the
highest-energy eigenstate found in a local area of the plot, and
the color scale is logarithmic. The regular states belonging
to the inner invariant tori form a sharp cluster at M = −1,
extending to A ≈ 0.075. An example is shown in Fig. 8(k),
as well as an extreme example with tunneling between two in-
variant tori in Fig. 8(l). The chaotic states form a larger cluster
with M � 0.8. Clearly, quite many chaotic states still have a

small overlap with the outer tori of the regular islands, but can
nevertheless be interpreted as purely chaotic states. On the A
axis, the chaotic cluster extends over a relatively large range
from A ≈ 0.1 to A ≈ 0.3. The states shown in Figs. 8(a)–8(c)
show the transition from localized to increasingly uniform
chaotic states. The regular and chaotic clusters are connected
continuously by the mixed states. Going from the chaotic
towards the regular cluster, we see various tunneling processes
such as between the outer tori and the chaotic component
shown in Figs. 8(d)–8(f), and also including outer tori of
different island chains, shown in Fig. 8(g). In the lower part
of the diagram M < −0.5, we see three structures of greater
density. They correspond to states condensed on the boundary
tori of the three island chains L, S, and M, as is evident from
the PH functions shown in Figs. 8(h)–8(j), correspondingly.
These states should be classified as regular. We have thus
shown that the joint probability distribution P(A, M ) gives
an excellent phenomenological overview of this mixed-type
system.

Figure 9 shows the distribution P(A, M ) in the other lemon
billiard B = 0.083. It is evident that the separation based on
the values of M is not so simple. The billiard B = 0.083 has a
much more complex classical phase portrait (see Figs. 4 and
5). While the purely regular states on the inner invariant tori
again form a sharp cluster at M = −1, the chaotic states are
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FIG. 8. Center: Color plot of the histogram of the joint probability density P(A, M ) for approximately 106 eigenstates with unfolded
energy e ∈ [104, 106] of the B = 0.1953 lemon billiard. The color scale of the main figure is logarithmic. PH functions of the highest-energy
eigenstates within small boxes at various positions are shown on the margin. Their corresponding wave numbers are (a) k = 4598.5120, (b)
k = 4638.3417, (c) k = 3486.3962, (d) k = 4637.4426, (e) k = 4610.3436, (f) k = 4603.9386, (g) k = 4050.5505, (h) k = 4636.9990, (i)
k = 4637.1017, (j) k = 4236.8109, (k) k = 4638.4472, and (l) k = 3776.8166. A classical phase portrait is plotted in the background of each
state for comparison. The color scale at the bottom encodes the relative amplitude of the PH function.

quite uniformly distributed over a wider range of M values.
Similarly to the previous example, the regular states of the
outer tori of the different island chains form higher-density
“ridges” in the distribution. Because of the complexity of the
phase space, there are now many of them, each corresponding
to a chain of islands. Some of these outer tori states may
be seen in the examples of Figs. 9(j) and 9(k), as well as
Fig. 9(l), where we see tunneling between two nearby island
chains. Progressing upwards towards the chaotic regime, the
states shown in Figs. 9(h) and 9(i) exhibit tunneling between
the outer tori and the chaotic sea. Crossing over into the
predominantly chaotic regime M > 0, we find some very lo-
calized states shown in Figs. 9(a) and 9(e)–9(g), and some
increasingly extended states shown in Figs. 9(b)–9(d). The
relatively small values of the overlap index are caused mainly
by the flooding into the islands of stability, seen already in
the joint localization measure distributions for this billiard
(B = 0.083). The mixed-type states are still strongly repre-
sented, their number decreases with increasing energy e, but
they would disappear only at much higher energies. Purely
chaotic states are practically nonexistent in this energy range,
although their expected relative fraction is classically ρ2 =
0.1617.

Although there are subtle differences between the local-
ization measures A and R (analyzed in the previous section),

the general behavior of both is the same. For comparison, we
show the distributions P(R, M ) in Fig. 10.

VII. ENERGY DEPENDENCE AND THE SEMICLASSICAL
CONDENSATION

In the semiclassical limit, we expect that the mixed chaotic
regular states will gradually disappear in keeping with Berry-
Robnik picture and PUSC. To study this, we consider the
localization measures and overlap indices of eigenstates in
narrower energy intervals, starting at progressively higher
energies. Let us first inspect how the joint localization mea-
sure distributions P(A, R) change with increasing the energy
and progressing deeper into the semiclassical limit. This is
shown in Fig. 11 for both billiards. The invariant tori are one-
dimensional objects in the phase space. When the energy is
increased, the PH functions of the regular states condense on
the invariant tori and become ever thinner and the localization
measures of the regular states are decreased. The chaotic sea,
on the other hand, is a positive measure set. In the final semi-
classical regime, we would expect to see a δ-distribution-like
peak at (A, R) = (0, 0) containing ρ1 (the relative classical
Liouville measure of the regular components) and another
peak containing the ρ2 = 1 − ρ1 chaotic states at A = A0 and
R = R0. The exact position of the chaotic peak at (A0, R0)
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FIG. 9. Center: Color plot of the histogram of the joint probability density P(A, M ) for approximately 106 eigenstates with unfolded
energy e ∈ [104, 106] of the B = 0.083 lemon billiard. The color scale of the main figure is logarithmic. PH functions of the highest-energy
eigenstates within small boxes at various positions are shown on the margin. Their corresponding wave numbers are (a) k = 4221.4610, (b)
k = 4253.9880, (c) k = 4227.7699, (d) k = 2649.8961, (e) k = 4250.2980, (f) k = 4254.5877, (g) k = 4113.9895, (h) k = 4254.0666, (i)
k = 2126.9352, (j) k = 4255.2063, (k) k = 4255.6550, and (l) k = 4181.7921. A classical phase portrait is plotted in the background of each
state for comparison. The color scale at the bottom encodes the relative amplitude of the PH function.

will depend on the measure of the chaotic component and the
geometry of the phase space. In the B = 0.1953 billiard (top
row of Fig. 11), the chaotic and regular clusters are already
distinguishable in the lowest-energy interval, starting with e =
104, although there are still many intermediate mixed states
forming a smooth transition between them (we must keep in
mind that the color scales are logarithmic and as such reduce
the contrast between the different orders of magnitude). As we
increase the starting energy, the mixed states gradually disap-
pear, the features of the distribution P(A, R) become sharper,
and a gap between the regular and chaotic states starts to open.
The localization measures of the chaotic states (the center of
the chaotic cluster) remain roughly the same with increased
energy. Even though the semiclassical limit, with no mixed
regular-chaotic states, is not yet achieved, the trend towards
this regime is evident. The joint distributions for the B =
0.083 billiard are still further away from the semiclassical
regime, owing to the greater complexity of the phase space.
The center of the chaotic cluster is located at lower values of
the localization measure since the chaotic sea of this system is
very thin. Flooding effects and dynamical localization are also
present, as we observed in the representative PH functions in
Secs. V and VI. All this contributes to the fact that only a
slight indication of a gap opening between the chaotic and
regular states is visible in the color plots.

The semiclassical condensation is even more evident when
observing the energy dependence of the joint probability
distributions P(A, M ). The distributions for different energy
intervals are presented in Fig. 12. In the B = 0.1953 billiard,
separation of the chaotic and regular eigenstates is very clear,
and the mixed states become ever scarcer as we increase
the energy. The three structures containing the outer tori of
the three island chains also become very sharply defined.
In accordance with our previous findings, the separation of
the chaotic and regular states in the B = 0.083 billiard is
more ambiguous. However, we can still very clearly see the
condensation of the states on the outer invariant tori of the
many island chains and that mixed states, especially at M < 0,
appear less abundant. To quantify the decay of mixed states,
we consider the following quantity. We define some interval in
M that we believe corresponds to the mixed states. Although
this interval is somewhat arbitrary, the qualitative analysis
of the PH functions may give an informed opinion on what
values to take in each case. We then take an energy interval of
width w starting at e and count the number of mixed states
and divide by the number of all states in the interval. We
observe the decay of this relative proportion of mixed states
labeled χM (e) as a function of energy and also the interval
taken in M. We find that for mixed states, this quantity de-
cays asymptotically as a power law χM (e) ∝ eγ , where the

054203-10



PHENOMENOLOGY OF QUANTUM EIGENSTATES IN … PHYSICAL REVIEW E 106, 054203 (2022)

FIG. 10. Center: Color plot of the histogram of the joint probabil-
ity density P(R, M ) for approximately 106 eigenstates with unfolded
energy e ∈ [104, 106] of the (a) B = 0.1953 and (b) B = 0.083 lemon
billiard. The color scale is logarithmic.

exponent γ < 0 depends on the interval we take in M. From
the visual inspection of the PH functions (see Figs. 8 and 9),
we determined that the mixed states are contained in the inter-
val M ∈ [−0.8, 0.8] for the B = 0.1953 and M ∈ [−0.8, 0.1]
for the B = 0.083 billiard. We found that taking w = 104

gives us a good compromise between the energy resolution
and statistical significance for the relative number of states
contained in the interval. In Fig. 13(a), we show the decay of
the relative number of mixed states when taking the maximum
interval in M for each billiard. The decay rate is similar for
both billiards, γ = −0.29. Similar power-law decays may
also be seen when considering smaller intervals in M. In
Fig. 13(b), we show the change of the decay exponent when
taking relatively small intervals [M, M + δM] with δM = 0.1.
The decay exponents show a transition from γ ≈ −0.15 to
γ ≈ −0.5 with increasing M. This indicates that the number
of states related to the flooding processes decays faster than
that of the states related to the tunneling from regular islands.
The transition is similar in both billiards, but is slightly dis-
placed in the B = 0.083 case.

VIII. SUMMARY, DISCUSSION, AND CONCLUSION

In the present paper, we have investigated two lemon bil-
liards with complex classical phase portraits of the mixed
type, exhibiting a dominant uniform classical chaotic com-
ponent and several chains of regular islands. The choice B =
0.1953 and B = 0.083 is based on the systematic survey of the
large family of lemon billiards in Ref. [30]. The two billiards
were singled out due to the complexity of the phase space and
the absence of any apparent domains of stickiness, as shown

by the classical computations of recurrence time statistics. Our
study is focused on the quantum mechanics of these billiards.
In the present paper, we have presented a detailed analysis of
the eigenstates in the Poincaré-Husimi representation and a
phenomenological study, which gives a very good overview
of all types of eigenstates, from regular to chaotic and mixed.

To summarize our main results: (i) We analyze the joint
probability distributions of Reny-Wehrl localization measures
of different orders of the eigenstates, revealing characteristic
structures related to the regular chaotic and mixed eigenstates
and quantifying their prevalence. (ii) We analyze the joint
probability distributions of Reny-Wehrl localization measures
in relation to a simple overlap measure with the classical phase
space. The structure of the joint probability distribution allows
for an even easier interpretation of chaotic, mixed, and regular
states. Different tunneling processes may be identified, for
instance, states on the boundary of the islands of stability (last
invariant tori), states that support chaos-assisted tunneling
between islands, chaotic states that flood into islands of stabil-
ity, etc. (iii) We analyze the transition into the Berry-Robnik
regime as a function of energy and show that the fraction of
mixed eigenstates decreases as a power law. The exponent
depends on the type of tunneling process and ranges from
−0.2 to −0.5.

A preliminary survey of the spectra of the two lemon bil-
liards was published in Ref. [34], where the fluctuation of the
number of the energy levels (mode fluctuation) was shown to
obey the Gaussian distribution quite well. The level spacing
distribution of the entire spectrum was shown to follow the
Berry-Robnik-Brody (BRB) distribution. In the billiard B =
0.1953, the value of the level repulsion exponent β (Brody
parameter) is close to 1, reflecting the absence of dynamical
localization of the chaotic eigenstates, and the Berry-Robnik
parameter ρr is close to its classical value. This is in line with
the results of the current paper, where we see a very clear sep-
aration of the eigenstates at high energies in the same billiard.
On the other hand, in the billiard B = 0.083, which has a much
more complex phase space structure, the results for β and ρr

fluctuate significantly from case to case for the four parities.
A decrease of the level repulsion exponent has been linked to
the presence of dynamically localized chaotic states [48,49],
which we clearly observe in this billiard. The fluctuations of
the Berry-Robnik parameter can also be explained since the
energy-dependent joint probability distributions of the local-
ization and quantum-classical overlap measures show that the
asymptotic regime is not yet reached.

In the present paper, we presented an approach to interpret
the localization measures by studying the joint probability
distributions. We introduced two localization measures of in-
dividual PH functions, i.e., the entropy localization measure
A and the normalized inverse participation ratio R, and the
overlap index M, which measures the degree of overlap of
the PH function with the regular and chaotic regions in the
classical phase space. Ideally, in the strict semiclassical limit,
M = −1 in purely regular regions and M = 1 in pure chaotic
regions. In practice, we also find various eigenstates (PH func-
tions) with −1 < M < 1, which belong to mixed states. We
studied the joint probability distributions of all combinations
of the measures, namely, P(A, R), P(A, M ), and P(R, M ).
Our analysis confirms that A and R are, on average, linearly

054203-11



LOZEJ, LUKMAN, AND ROBNIK PHYSICAL REVIEW E 106, 054203 (2022)

FIG. 11. Color plots of the histogram of the joint probability density P(A, R) for approximately 105 eigenstates for progressively higher-
energy intervals starting from (left to right) e0 = 104, 105, 5 × 105, 9 × 105 for the B = 0.1953 (top row) and B = 0.083 (bottom row) lemon
billiard. The color scale is logarithmic.

related. Therefore, the classification of states and the results
on the statistical properties of the degree of localization for
the chaotic states do not depend very much on the definition
of the localization measure. However, subtle differences allow
us to identify interesting mixed-type states and also distin-
guish between the regular and chaotic states based strictly on
comparing the different localization measures, without con-
sidering the classical phase portraits. Indeed, measures based
on higher-order Renyi entropy might also be considered to
enhance the differences.

Very similar localization measures defined on different
Hilbert space basis sets have been used to describe multi-
fractality in random matrix models [65], many-body localized
[66] and nonergodic extended states [67], the transition
to chaos in interacting boson systems described by Bose-
Hubbard Hamiltonians [68,69], and Anderson localization
of Rydberg electrons interacting with ground-state atoms
[70], to name some examples. Using the various definitions

mentioned above, it would be possible to extend our ap-
proach and phenomenological descriptions to systems without
a clearly defined classical limit. In particular, we propose to
study the relations between the different orders of the local-
ization measures in terms of joint probability distributions,
as presented in this paper. The Berry-Robnik picture and the
separation of eigenstates into regular and chaotic states is
well established for noninteracting low-dimensional quantum
systems with a well-defined semiclassical limit, and has been
again demonstrated in the present paper. However, even clas-
sically, ergodicity and chaos is hard to prove when considering
many-body interacting systems, as small, barely detectable
islands of stability may persist. Naively, one expects that
generic many-body interacting systems are ergodic and admit
a statistical-mechanical description, yet these types of quan-
tum systems may still display intermediate spectral statistics
(between chaos and integrability). Weak ergodicity breaking
has also been attributed to so-called many-body scarred states

FIG. 12. Color plots of the histogram of the joint probability density P(A, M ) for approximately 105 eigenstates for progressively higher-
energy intervals starting from (left to right) e0 = 104, 105, 5 × 105, 9 × 105 for the B = 0.1953 (top row) and B = 0.083 (bottom row) lemon
billiard. The color scale is logarithmic.
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FIG. 13. Decay of the relative number of mixed states with en-
ergy. (a) The relative number of states in the interval as a function
of unfolded energy. Both decay exponents are close to γ = −0.29.
(b) Decay exponents for smaller intervals [M, M + δM] with δM =
0.1.

[71]. It is not clear whether these states are associated with
classical islands of stability, periodic orbit scarring, dynamical
localization, or some other mechanism. Since clear structures
associated with regular and chaotic states are visible in the
joint probability distributions of the localization measures in
our noninteracting example, it is feasible that some similar
structures, if found in the many-body systems, would indi-
cate the existence of states that are associated with islands
of stability and would thus elucidate the many-body scar-
ring mechanism. Further interesting research directions are
possible in tight-binding billiard models [72], where it has
been shown that the tight-binding billiard has similar ergodic
properties to its continuous counterpart in the fully chaotic
case.

To conclude, our study of the PH functions confirms
that the Berry-Robnik picture of separation into regular and
chaotic eigenstates is correct. The underlying mechanism is
the principle of uniform semiclassical condensation of the
Wigner functions (or PH functions) [5] that was developed
from Percival’s conjecture [2] and Berry’s work [3,4]. The
PH functions are asymptotically (in the ultimate semiclassical
limit) either of the regular type or of the chaotic type. Mixed
PH functions at lower energies exist and we have studied them
in detail. We have shown that their number monotonically
decreases with increasing energy in the semiclassical limit
of high-lying eigenstates. Moreover, we have quantified this
observation by showing that the relative fraction of mixed-
type states decreases as a power law with increasing energy.
This is the central result of our paper. Since billiards are a rep-
resentative example of low-dimensional generic Hamiltonian
systems, the approach is directly applicable to any quantum

2B

R
α

q = 0

FIG. 14. Illustration of the lemon billiard geometry. Here, B =
0.1953

mixed-type Hamiltonian systems with a clear classical limit,
such as the recently studied Dicke model [73], the kicked top
model [74], or the three-site Bose-Hubbard model [75].
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APPENDIX A: LEMON BILLIARD GEOMETRY

The lemon billiards are defined by the intersection of two
circles of equal unit radius with the distance 2B between their
centers. The construction is illustrated in Fig. 14. In Cartesian
coordinates, the boundary is given by the following implicit
equations:

x2 + (y + B)2 = 1, y > 0,

x2 + (y − B)2 = 1, y < 0. (A1)

To construct the canonical Poincaré-Birkhoff coordinates
(q, p), we take the boundary as the surface of the section.
The billiard dynamics (a series of line segments linking the
collisions) is described by a series of points where the bounce
position is given by the arclength q and the corresponding
canonical momentum is p = sin(α). We set the origin of the
q coordinate into the right kink (corner) and integrate the
length of the boundary counterclockwise up to the collision
point. The period q is given by the circumference of the entire
billiard boundary,

L = 4 arctan
√

B−2 − 1. (A2)

The area A of the billiard is equal to

A = 2 arctan
√

B−2 − 1 − 2B
√

1 − B2

= 1
2 L − 2B

√
1 − B2. (A3)

To compute the fractional measure of the chaotic com-
ponent, we will first compute the area χc, with one of the
methods of Ref. [40], in the two-dimensional phase space
(i.e., the surface of section in the Poincaré-Birkhoff coordi-
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nates), and then calculate the Liouville measure in the full
four-dimensional phase space. The relation between the two
is given by the formula derived by Meyer [41],

ρc = χc

χc + (1 − χc)κ
, (A4)

where κ = 〈t〉r

〈t〉c
is the ratio between the average return time

to the surface of section (length of the trajectory between
collisions divided by the speed of the particle) on the regular
components 〈t〉r and the average of the same quantity on the
chaotic component 〈t〉c. For the equivalent formula pertaining
to ρr = 1 − ρc, we only need to exchange the indices r ↔ c
and invert the ratio κ → 1/κ in Eq. (A4). In billiards, the
surface of section is the billiard boundary and the ratio κ is
independent of the speed of the particle. The surface of section
return time is proportional to the length of a link of a trajectory
between two consecutive collisions. The ratio κ is numerically
computed by averaging the length of a link over a number of
collisions and then computing the averages with regard to the
initial conditions.

APPENDIX B: RECURRENCE TIMES AND STICKINESS

A generic mixed-type Hamiltonian commonly exhibits
the phenomenon known as stickiness—chaotic orbits inter-
mittently “stick” to islands of stability or other invariant
structures for extended periods of time. This results in a slow
(subexponential) decay of correlations and other observables
such as recurrence times. Here, we will briefly outline the
method for quantifying stickiness used to produce the S plots,
based on the statistics of recurrence times. See [30,45] for a
more in-depth explanation of the method and related results on
stickiness. We consider the billiard system as a map, and thus
the time is measured discreetly with the number of bounces
(map iterations). Let A be an arbitrary subset of the phase
space, for instance, a small cell dq × d p. The first recurrence
time to A for a point a ∈ A is defined as the number of

iterations an orbit needs to return to the same cell for the first
time,

τA = min
t>0

{t : f t (a) ∈ A}, (B1)

where f : (q, p) → (q′, p′) is the bounce map. We are inter-
ested in the probability distributions of recurrence times. For
chaotic systems, one expects the recurrences to be essentially
uncorrelated, and thus the mean recurrence time is the inverse
of the area of the test set (Kac’s lemma) and the distribution is
exponential. If we discretize the phase space into a grid of Nc

cells,

P(τ ) = 1

Nc
exp

(
− τ

Nc

)
. (B2)

The assumption of completely uncorrelated cell recurrences is
a strong one and, by definition, holds for so-called Bernoulli
systems. Chaoticity in the sense of positive Lyapunov expo-
nents is a weaker ergodic property. However, strong empirical
evidence suggests that the recurrence times generically ex-
hibit an exponential distribution in the bulk of the chaotic
component, even in mixed-type systems, outside of the sticky
areas. This is in agreement with the findings in the so-called
random model [76]. Stickiness is a consequence of partial
transport barriers such as cantori. The chaotic orbits become
intermittently trapped, and thus short recurrences feature more
prominently in the distribution. To quantify this effect, we ex-
ploit a special feature of the exponential distribution, namely,
that its variance is equal to its mean, σ = μ. The variable S =
σ/μ (coefficient of variation) can thus distinguish between
exponential and nonexponential distributions of recurrence
times. When we consider small areas of the phase space (dis-
cretization cells), we may distinguish areas of uniform chaos
S = 1 and sticky areas S > 1. The easiest way to generate
the recurrence time statistics is to just run a sufficiently long
chaotic orbit and track the S parameter locally in each cell.
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