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Modulational instability in nonlinear saturable media with competing nonlocal nonlinearity
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The modulational instability (MI) phenomenon is addressed in a nonlocal medium under controllable satu-
ration. The linear stability analysis of a plane-wave solution is used to derive an expression for the growth rate
of MI that is exploited to parametrically discuss the possibility for the plane wave to disintegrate into nonlinear
localized light patterns. The influence of the nonlocal parameter, the saturation coefficient, and the saturation
index are mainly explored in the context of a Gaussian nonlocal response. It is pointed out that the instability
spectrum, which tends to be quenched by the high nonlocality parameter, gets amplified under the right choices
of the saturation parameters, especially the saturation index. Via direct numerical simulations, confirmations of
analytical predictions are given, where competing nonlocal and saturable nonlinearities enable the emergence
of trains of patterns as manifestations of MI. The comprehensive parametric analysis carried out throughout the
numerical experiment reveals the robustness of the obtained rogue waves of A- and B-type Akhmediev breathers,
as the nonlinear signature of MI, providing the saturation index as a suitable tool to manipulate nonlinear waves
in nonlocal media.
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I. INTRODUCTION

Generation and propagation of nonlinear structures have
been an active research direction for the last few decades. A
relevant mathematical model that has been extensively used
for many physical realizations in optics [1], Bose-Einstein
condensates (BECs) [2], and physics of Langmuir waves in
plasmas [3] is the nonlinear Schrödinger (NLS) equation with
the self-attractive nonlinearity and its extension, due to the
enhancement of nonlinear absorption and nonlinear refractive
index [4,5]. In fact, with the emergence of composite opti-
cal materials aiming at photonic applications, the nonlinear
optical properties of the constitutive colloidal systems of par-
ticles can be controlled, allowing nonlinearity to be managed.
Specifically, a suitable choice of nanoparticle volume frac-
tion can allow nullifying the cubic nonlinearity and promote
the effects from higher-order nonlinearities [6], including
competing nonlinearities. In the latter context, the global non-
linearity results from a few different physical processes, as in
BECs with concomitant local and long-range interactions [7]
and nematic liquid crystals under competitive thermal and
orientational thermal nonlinearities [8]. In other contexts,
nonlinearity can be controlled via an adapted nonlocal func-
tion of the incident field, commonly known as nonlocal
nonlinearity.
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Contrary to media with conventional nonlinearities, the
nonlinear response of nonlocal media depends on the spatial
variability of the material’s refractive index, i.e., determined
by the intensity of the incident field in a certain neighborhood
of a given location [9]. Such properties which come with sta-
bilizing features for solitons can suppress instability [10–12]
and support the emergence of unique soliton states [13–16].
For instance, nonlocality appears to be an inherent property
of thermal media [17,18], nematic liquid crystals [19], atomic
vapors [20], and BECs [21], etc. The nonlocal nonlinearity
also exists in liquid infiltrated photonic crystal fibers [22],
which supports the existence of nonlocal gap soliton [23].
Another very general important class of nonlocal materials
is materials with quadratic nonlinearity [24], from which it
was shown that the nonlocal nature of the quadratic nonlin-
earity could give rise to soliton pulse compression [25], the
exotic X waves [26] and can analytically provide the limits
of the achievable pulse length [27]. On the same note, it was
recently shown that nonlocal Kerr nonlinearity and electro-
magnetically induced transparency effect might couple and
cooperatively support Rydberg-Rydberg interaction between
atoms for high-dimensional, nonlocal, and nonlinear optical X
waves to emerge, with manageable characteristics such as low
propagation loss, ultraslow propagation velocity, and ultralow
generation power [28].

Albeit these advanced and sophisticated theoretical inves-
tigations, questions related to competing nonlinear effects,
due to their important role in creating stable multidimensional
solitons, remain debated. For example, combinations of self-
focusing cubic and, particularly, self-defocusing quintics have
been frequently reported in optical settings such as liquid
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waveguides [29–31], special kinds of glasses [29,32,33], fer-
roelectric films [34], and colloidal suspensions of metallic
nanoparticles [35,36], where the colloids offer remarkable
flexibility, making it possible to adjust parameters of the
cubic-quintic (CQ) nonlinearity (the signs and magnitudes
of both the cubic and quintic terms) through the selection
of the diameter of the nanoparticles and the filling factor of
the suspension. The realization of the CQ nonlinearity was
also theoretically elaborated in terms of the Gross-Pitaevskii
equation [37] for BECs, where the quintic term accounts
for three-body collisions, provided that inelastic effects may
be neglected [38–41]. In this context, the adjustment of the
nonlinearity may be provided by the Feshbach resonance,
which affects the sign and strength of the cubic term [42]. For
competing nonlinearities involving saturable nonlinearities, a
combination of Kerr nonlinearity and a saturable n-photon
resonance was shown to support bistable-soliton pulse propa-
gation [43]. In general, for low field intensities, the saturable
nonlinearities depict the usual Kerr response. However, for
very intense fields, the dependence of the refraction index
on the field intensity saturates. Let us recall that the inves-
tigation of saturable nonlinearity, which has been commonly
described by two-level atom or exponential models, has been
proposed by Maradudin [44]. Any real material has an upper
limit to the refractive-index change that can be induced op-
tically. The field strength at which saturation occurs depends
on the particular physical processes that cause the nonlinear
refractive-index change. In particular, contributions bringing
together nonlocal and saturable nonlinearities are still in their
infancy. Such a combination implies a nonlinear change of
the properties of the medium by the wave itself in a context
of very intense fields that cause the refraction index to satu-
rate with increasing field intensity. It is well-known that the
evolution of optical materials and laser systems are related.
For example, the propagation of picosecond optical pulse in
standard silica fibers is governed by the well-known cubic
(Kerr effect) NLS equation that includes the group velocity
dispersion and self-phase modulation [45,46]. In other words,
the nonlinear property we are principally concerned with is
the field dependence of the refractive index. Moreover, with
the advent of robust femtosecond laser systems, nonlinear
optical methods such as the optical Kerr effect technique
has been extensively used to clarify the nonlinear proper-
ties of many organic and inorganic solvents, namely, in a
polydiacetylene film, the vibrational dephasing in dimethyl-
sulfoxide, and the relaxation of optical Kerr effect in CS2

and nitrobenzene [47,48]. Interestingly, as one increases the
intensity of the incident light power to produce shorter (fem-
tosecond) pulses, additional nonlinear effects come into play,
changing the physical features and the stability of optical
soliton propagation essentially, and the dynamics of pulses
needs to be described in the frame of a generalized NLS
equation that includes higher-order nonlinear terms [49–52]
such as Kerr and non-Kerr nonlinearities. Based on particular
cases, the saturable nonlinearity can take several forms. In a
more generalized formulation, the nonlinear refractive index
that describes the nonlinearity saturation is characterized by
three independent parameters, mainly the saturation intensity
(Isat), the maximum change in the refractive index (n∞), and
the Kerr coefficient (n2) which appears for small intensities. It

is given by the phenomenological expression [53]

�nsat(x, z) = n∞

[
1 − 1

(1 + I (x, z)/Isat )p

]
, (1)

where the corresponding Kerr coefficient is such that n2 =
n∞ p/Isat, with p being the saturation index related to the
light beam intensity power. Numerical solutions for the NLS
equation in the presence of the above term were discussed for
p = 1 [54]. Additionally, exact bright solitons were derived
for p = 2 [55–58] and, more recently, dark and bright soli-
tons were derived for p = 2 and p = 3 [59]. The nonlinear
dynamics of a periodically perturbed second-order ordinary
differential equation was also recently addressed through trav-
eling wave variables in a saturable NLS model for p = 2 [60].
Obviously, the generalized expression given by Eq. (1) offers
the possibility to tune the saturation index with the possible
generation of a broad range of nonlinear structures. That is
the main motivation of the present investigation since the
propagation of intense continuous waves in dielectric media
leads to several major nonlinear phenomena having funda-
mental interests and practical applications. A well-known
example of those phenomena is the modulational instabil-
ity (MI), which arises from the interplay between dispersive
and nonlinear effects and manifests itself in the exponen-
tial growth of weak perturbations [61,62]. The gain leads
to amplification of sidebands, which break up the otherwise
uniform wave and generate fine localized structures. Thus,
it may act as a precursor for the formation of solitons. The
phenomenon of MI has been identified and studied in various
physical systems, such as fluids [63], plasmas [64–66], nonlin-
ear optics [67–69], metamaterials [70,71], discrete nonlinear
systems [72–75], and BECs [76–79], to cite a few. It has been
shown that MI is strongly affected by mechanisms such as
saturation of nonlinearity [80], coherence properties of optical
beams [81], linear and nonlinear gratings [82], generation
of super-continuum spectra [83], and so on. Interestingly,
the first experimental studies of MI in a nonlocal medium
were reported by Peccianti et al. [84], where nematic liquid
crystals were used. They showed that due to their inherent
orientational nonlocal nonlinearity, the sign-definite exponen-
tial response can efficiently contribute to quenching the MI.
Albeit the same remark was made in other physical settings,
the question related to the coupled influence of nonlocal and
saturable nonlinearities remains unmarked, especially in the
context of MI, when there is a possibility of parametrically
playing on the index of saturation. Such a question is exclu-
sively addressed in the present paper. In this paper, we show
that the quenching effect of the nonlocal nonlinearity on the
MI is corrected by the presence of the saturable nonlinearity,
especially when the saturable index and the nonlocality range
are well-balanced.

The rest of the paper is outlined as follows: In Sec. II,
we first introduce the proposed model and thereafter proceed
to the linear stability analysis of MI. An expression for the
growth rate of MI is derived and used to discuss the mani-
festation of MI parametrically. Particular attention is given to
the impact of the saturation index, the nonlocality parameter,
the input power, and the nonlinearity strengths. Section III
presents full numerical results, where the link between the
analytical predictions and nonlinear pattern formation, and
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rogue waves (RWs), in particular, is established. The effect
of system parameters is explored, especially different combi-
nations of the saturation index and the nonlocality parameter
under various nonlinearity strengths. Section IV is devoted to
concluding remarks.

II. MODEL AND MODULATIONAL INSTABILITY
PROCESS

The dynamics of optical pulses in the regime of a slowly
varying envelope amplitude is usually described by an NLS
equation that includes both dispersion and nonlinearity. For
the case of instantaneous response, it is written in the form

iqz + qxx + �n(x, z)q(x, z) = 0, (2)

where q(x, z) is the complex envelope amplitude of the pulse,
with x and z representing transverse and longitudinal coor-
dinates, respectively. As is well-known, in nonlinear Kerr
media, the intensity-dependent refractive index change is
given by �n(x, z) = I (x, z), with the intensity of the beam
I = |q(x, z)|2. In the case of nonlinear media with competing
nonlocal and saturable nonlinearities, the nonlinear refractive
index change of the medium can be represented by the follow-
ing phenomenological model:

�n(x, I ) = �n1(x, z) + �n2(x, z)

= α

∫ +∞

−∞
R(x − x′)I (x′, z)dx′

− m

[
q − q

(1 + aI (x, z))p

]
, (3)

where α represents the strength of the nonlocal cubic non-
linearity, m = n∞ is the nonlinear saturation coefficient, a =
1/Isat �= 0 is the saturation intensity, p is the power of the
intensity of the light beam or saturation index, and the minus
sign indicates self-defocusing interaction. Introducing Eq. (3)
into Eq. (2), one obtains the following nonlocal and saturable
NLS equation governing the evolution of the beam [9,59]:

iqz + qxx + αq
∫ +∞

−∞
R(x − x′)|q(x′, z)|2dx′

− m

[
q − q

(1 + a|q|2)p

]
= 0. (4)

The form of the convolution integral represents the nonlo-
cal nonlinear response. Typically, the response functions are
either exponential (as in liquid crystals) or Gaussians [10].
Below, we assume the latter by setting

R(x) = 1

σ
√

π
exp

[
− x2

σ 2

]
, (5)

where the coefficient σ determines the corresponding nonlo-
cality ranges of the cubic nonlinearity, while the coefficient in
front of the Gaussians follows from the normalization condi-
tion,

∫ +∞
−∞ R(x)dx = 1. In the case of the Gaussian nonlocal

response function, the Fourier transform is given by

R̂(k) = exp
[ − 1

4σ 2k2]. (6)

The saturable nonlocal NLS Eq. (4) permits exact plane-wave
solutions of the form

q(z, x) = √
P0ei(k0x−ω0z), (7)

where P0, k0, and ω0 are linked through the nonlinear disper-
sion relation

ω0 = k2
0 − αP0 + mapP0

(1 + aP0)p
. (8)

The stability of the steady state can be examined by introduc-
ing a perturbed field by assuming that

q(z, x) = [
√

P0 + u(z, x)]ei(k0x−ω0z), (9)

with u(z, x) being a small complex modulation. Substituting
Eq. (9) into Eq. (4) and linearizing about the plane wave (7),
we get a linear equation for u(z, x):

iuz + uxx + 2αP0

∫ +∞

−∞
R(x − x′)Re{u(z, x′)}dx′

− 2mapP0

(1 + aP0)p
Re{u(z, x)} = 0, (10)

where Re{u(z, x)} represents the real part of u(z, x).
Decomposing the perturbation u into real and imaginary

parts, u = ur + iui, we obtain two coupled equations:

∂ur

∂z
+ ∂2ui

∂x2
= 0, (11a)

∂ui

∂z
− ∂2ur

∂x2
− 2αP0

∫ +∞

−∞
R(x − x′)ur (z, x′)dx′

+ 2mapP0

(1 + aP0)p
ur (z, x) = 0. (11b)

By introducing the Fourier transforms

ûr =
∫ +∞

−∞
ur exp(ikx)dx,

ûi =
∫ +∞

−∞
ui exp(ikx)dx,

R̂(k) =
∫ +∞

−∞
R(x) exp(ikx)dx, (12)

where R̂(k) is the Fourier spectrum of R(x), ûr is the Fourier
transform of ur , and ûi is the Fourier transform of ui, re-
spectively. Exploiting the convolution theorem for Fourier
transforms, the linearized system is converted to a set of
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FIG. 1. The panels show the MI growth rate spectra under the competition between the nonlocal nonlinearity and the saturable nonlinearity
with α = 0.4 [panels (a1)-(a3)] and α = 1 [panels (b1)-(b3)]. The other parameter values are such that m = 0.8, P0 = 2 and a = 2, and the
saturation index taking the respective values p = 1, p = 2, and p = 3, corresponding to columns from left to right.

ordinary differential equations in k space,

∂ ûr

∂z
− k2ûi = 0,

∂ ûi

∂z
+ k2ûr − 2αP0R̂ûr + 2mapP0

(1 + aP0)p
ûr = 0, (13)

which can be written in the following compact matrix form:

∂zX = AX , (14)

where the vector X and the matrix A are defined as

X =
(

ûr

ûi

)
,

A =
(

0 k2

−k2 + 2αP0R̂(k) − 2mapP0

(1+aP0 )p 0

)
(15)

The eigenvalues λ of the matrix A are given by

λ2 = −k2P0

[
θk2 − 2

(
αR̂(k) − map

(1 + aP0)p

)]
, (16)

where we have defined θ = 1/P0, with k denoting the wave
number. The general dispersion relation (16) constitutes the
basis of our study of MI. Therefore, plane-wave solutions are
stable if perturbations at any wave number k do not grow with
propagation. This is the case as long as λ is purely imaginary.
Physically, modulational stability means that small-amplitude
waves can propagate along with the background intense plane
wave, although their propagation parameter λ depends on the
plane-wave intensity P0. Since k2P0 > 0, plane-wave solu-
tions are unstable if

θk2 − 2

(
αR̂(k) − map

(1 + aP0)p

)
< 0. (17)

FIG. 2. The panels show the MI growth rate versus the wave number k and the nonlinear parameter m for (a) p = 1, (b) p = 2, and
(c) p = 3, with α = 0.4, a = 2, P0 = 2, and σ = 0.1.
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FIG. 3. The panels show the MI growth rate versus the wave number k and the nonlinear parameter a for: (a1)-(a3) m = −0.8, (b1)-(b3)
m = 0.8, from left to right, columns correspond to p = 1, p = 2, and p = 3, with α = 0.4, p0 = 2, and σ = 0.1.

The MI gain is defined as the positive real part of the eigen-
value λ, i.e.,

ζ (k) = |k|√P0

∣∣∣∣∣Re

{√
2

(
αR̂ − map

(1 + aP0)p

)
− θk2

}∣∣∣∣∣, (18)

where Re{u(z, x)} represents the real part of an expression.
The panels of Fig. 1 show, for example, the dependence of

the MI growth rate on the wave number k and the nonlocality
parameter σ . In general, the instability spectrum is manifested
by a set of symmetrical lobes, with a maximum growth rate for
small values of σ . When σ increases, the instability tends to
disappear. Another significant effect is related to the strength
of the nonlocal nonlinearity coefficient α, confronted with the
strength of the saturable nonlinearity coefficient m. In fact, for
m = 0.8, α takes the value 0.4 in Figs. 1(a1)–1(a3) and 1 in

Figs. 1(b1)–1(b3). With increasing the saturation index p, the
bandwidth of instability increases and covers large intervals
of the wave number k, especially when α > m. While the
defocusing case (α < 0) offers marginal modulation stabil-
ity [10,11], it is shown in Fig. 2 that the saturation strength
m takes both positive and negative values, with the possibility
of instability when the saturation index p changes. For p = 1,
negative values of m offer the maximum growth rate of insta-
bility that decreases with m and disappears. However, cases
p = 2 and p = 3 show a continuous MI growth rate for all val-
ues of m, even though the bandwidth and intensity decrease.
In the context where the advantage is given to the saturation
nonlinearity (α = 0.1), the saturation parameter a importantly
modifies the growth rate spectrum both when m = −0.8 [see
Figs. 3(a1)–3(a3)] and m = 0.8 [see Figs. 3(b1)–3(b3)]. In the
first case, increasing saturation index p reduces the growth

FIG. 4. The panels show the MI growth rate versus the wave number k and the input power P0. Panels (a1)-(a3) are obtained for m = −0.8
and panels (b1)-(b3) for m = 0.8, with columns from left to right corresponding to p = 1, p = 2, and p = 3, and α = 0.4, σ = 0.1.
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FIG. 5. Propagation of the perturbed plane-wave intensity and wave pattern formation under the strong influence of the nonlocal
nonlinearity, i.e., α > m, with p = 1, P0 = 1, k = 0.75, a = 0.2, m = 0.1, and σ = 0.5. (a)–(c) correspond, respectively, to values α = 0.8,
α = 1.2, and α = 2 of the cubic nonlinearity coefficient.

rate intensity and creates humps of high growth rate for small
values of a. In the second case, the instability windows start
with a high growth rate that drops and expands more when
p increases. Following the same procedure as in Fig. 3, the
input power, combined with the wave number k, also offers
some windows of instability that are very sensitive to compe-
tition between the nonlocal and saturating nonlinearities via
the coefficients α and m, respectively, under the impact of

the saturation index p. Results corresponding to m = −0.8
and α = 0.4 are reported in Figs. 4(a1)–4(a3), where the
instability growth rate is an increasing function of the input
power P0, with the wave-number bandwidth being distributed
between two lobes of instability. Increasing saturation index
p, the instability bandwidth along the k − axis shrinks, while
the window of instability offered by small values of P0 tends
to close. The scenario offered by m = 0.8, with α keeping

FIG. 6. Propagation of the perturbed plane-wave intensity and development of MI under strong influence of the nonlocal nonlinearity,
i.e., α > m, with p = 1, P0 = 1, k = 0.75, a = 0.2, m = 0.1, and α = 1.2. (a)–(c) correspond, respectively, to values σ = 0.4, σ = 0.6, and
σ = 0.8 of the nonlocality parameter.
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the same value, rather shows symmetrical lobes that expand
the instability bandwidth when p increases, with the band gap
given by small values of P0 getting extended to P0 → 0. Even
in this particular case, ζ (k) is an increasing function of the
input power P0.

III. NUMERICAL EXPERIMENT

One of the previous section’s main objectives was de-
termining regions of parameters where combined nonlocal
and saturable nonlinearities can balance with dispersion and
give rise to modulated waves and nonlinear patterns. Ob-
viously, the linear stability analysis does not say anything
about the long-time evolution of the CW, which requires direct
numerical simulations to be validated. Therefore, for the com-
pleteness of our study, the set of Eqs. (4) has been integrated
using the split-step Fourier method. An initial signal input of
the form

q(x, z = 0) = √
P0 + ε cos(kx) (19)

has been injected, with k = 0.75, ε = 10−4, and P0 = 1, val-
ues that are supposed to support the development of MI.
Moreover, the results are extracted in terms of the signal
intensity I = |q(x, z)|2, where attention is mainly paid to the
competition between the nonlinear and saturable nonlineari-
ties in the generation of modulated waves.

As stressed so far, one of the advantages of the studied
system is the tunable saturable nonlinearity through index
p, which is given the values p = 1, 2, and 3 in the rest of
this paper. On the other hand, the originality of the present
contribution also lies in the inclusion of the nonlocal Kerr
nonlinearity that is manifested by the two parameters α and
σ . In a situation where the nonlocal nonlinearity is slightly
predominant, i.e., α > m, one obtains the features of Fig. 5,
where wave patterns and their corresponding density plots
highlight the impact of the cubic nonlinearity coefficient. Al-
though the value α = 0.8 supports the plane-wave stability,
decreasing α delays the occurrence of MI. Interestingly, the
chosen values of parameters support wave modulation for α =
1.2 and α = 2, which shows a good agreement between our
analytical predictions and the numerics. Beyond the described
features, one may notice an increase in wave intensity when
α increases. Under the same conditions where the nonlocal
nonlinearity is predominant, the effect of the nonlocality pa-
rameter σ is addressed in Fig. 6 for α = 1.6. From panels (a)
to (c), it is ostensible that increasing σ produces a contrary
effect, i.e., delayed formation of patterns under MI. In the pro-
cess, the solitonic objects are more localized; their intensity
drops for higher values of σ , which corroborates the finding
of Fig. 1, from which high values of σ drop the growth rate
and tend to quench instability. This latter aspect can be clearly
appreciated in Fig. 8, where increasing values of σ delay
MI and reduce the amplitude of the wave train with prop-
agation distance increasing. On exploring individual objects
closely, one notices their similarity with RWs, where a train
displayed against the space displays an Akhmediev breather
[see Fig. 7(a)]. Confirmation is further given in Fig. 7(b), in
which lower values of the nonlocality parameter support the
occurrence of RWs, showing their straightforward relation-
ship with the occurrence of MI. Additionally, from Fig. 8,

-10 -5 0 5 10
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0
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2

3

4

5

|q
(x

,z
=

11
)|2

 = 0.4  = 0.8  = 1.2 (b)

FIG. 7. (a) A section of Fig. 6 confirming individual objects to be
RWs. This is further supported by the inset that displays the structure
of such individual objects whose train forms an Akhmediev breather.
(b) The impact of the nonlocality parameter σ on the characteristics
of the MI, along with the subsequent emergence of RWs for lower
values of σ .

0 5 10 15 20
z

0

0.5

1

1.5

2

2.5

3

3.5

|q
(x

 =
 5

,z
)|2

 = 0.2
 = 0.4
 = 0.6
  = 0.8

FIG. 8. The panel summarizes the effect of the nonlocality pa-
rameter σ on the development of MI under the strong effect of the
nonlocal nonlinearity(α > m), with parameter values p = 1, P0 = 1,
k = 0.75, a = 0.2, m = 0.1, and α = 1.2.
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FIG. 9. Propagation of the perturbed plane-wave intensity and MI development for α = 0.8 and m = −0.8, with a = 2, p = 1, P0 = 1,
k = 0.75, and σ = 2. (a)–(c) Wave propagation with corresponding density plots are obtained for the saturation index taking the respective
values p = 1, p = 2 and p = 3.

increasing the value of delays MI and reduces the amplitude
of the wave train with propagation distance increasing. This is
not, therefore, a surprise but instead reinforces the fact that
the exact solutions of the NLS equation that describes the
nonlinear mode of MI are the Akhmediev breathers. How-
ever, beyond the MI excitation, other linear and nonlinear
underlying physical processes can drive the emergence of
RWs, among which are the integrable turbulence [85,86],
supercontinuum generation [87], optical filamentation [88],
asymmetry, and inhomogeneity [89], supercontinuum genera-
tion [87]. Of course, the strong link between the occurrence of
MI and the regime of several recurrences of nonlinear optical
waves was experimentally addressed in the seminal work by
Pierangeli et al. [90], where it was additionally demonstrated
that the recurrent behavior vanishes as integrability is lost and
that the complex evolution of the exact initial condition can
be accurately predicted in experimental conditions leading to
its reconstruction after several return cycles. Along the same
line, a nondestructive technique was experimentally proposed
as a critical tool to characterize mixing processes, unique
RW formation regimes, and wave turbulence in the optical
fiber [91]. Besides, it was shown by Soto-Crespo et al. [92]
that there are two ways of adiabatic transformations of a
plane wave solution into a train of pulses, with the possibility
of explicitly differentiating the A-type Akhmediev breather
from the B-type one. Indubitably, from that nomenclature, the
Akhmediev breather constituting the patterns in Figs. 5 and 6
are of A type.

Before going further, let us mention that the effect of the
saturable nonlinear response is governed by three important
parameters: m, �, and p. In previous contributions, the effect
of the saturation index taking values 1 and 2 has been studied

both in the context of MI and exact soliton solutions [56,57].
Here, it appears to be a key parameter that can be used to
regulate the saturation effect as witnessed by the features of
Figs. 9 and 10. In Fig. 9, where m = −0.8, the instability is
characterized by a train of coupled modulated waves with a
solitonic shape. In general, for p = 1, the modulated impulses
identically travel along with distance z, forming a series of
wave packets that tend to lose intensity along with the prop-
agation distance. The latter behavior appears earlier when the
saturation index is set to p = 2, for which the erratic signal
takes over from z = 12. Noticeably, increasing p also causes
the signal intensity to decrease. Albeit the same behavior is
shared by Fig. 9(c), the strong nonlocality, confronted with
the negative value of m, changes the propagation features of
the signal, which, after z = 12, is described by two symmetric
trains of solitons and lateral waves at the boundaries. Of
course, such behaviors could not also be predicted by the
linear stability analysis but agree well with its predictions
based on the chosen parameters. Contrary to previous obser-
vations, the patterns of Fig. 10, corresponding to m = 0.8,
do not display any significant intensity drop and keep the
same characteristics. However, for p = 3, the generated im-
pulses of solitonic waves are more separated into sequences
of wave molecules as depicted in Fig. 10(c). This occurs
at a distance z = 12 and justifies the spectrum of behaviors
already displayed by Fig. 9(c). Obviously, the sign of the
saturation coefficient, when well balanced with the nonlocal
nonlinear coefficient, can regulate the spatial and distance
distribution of the generated patterns. Moreover, the tunability
of the saturating nonlinearity, through index p, gives a direct
way to produce richer behaviors of the optical signal, which
earlier calculations could not support, therefore showing the
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FIG. 10. Propagation of the perturbed plane-wave intensity and MI development for α = 0.8 and m = 0.8, with a = 2, p = 1, P0 = 1,
k = 0.75, and σ = 2. (a)–(c) Wave propagation with corresponding density plots obtained for the saturation index taking the respective values
p = 1, p = 2, and p = 3.

advantage of the proposed model, which under other non-
local response functions may support more exotic behaviors
and give more insights for experimental investigations. This
particular scenario is summarized in Fig. 11, where panel
(a) shows a section of the molecular structures forming the
trains. At propagation distance z = 9, the same structures vary
depending on the value of the saturation index p as depicted
in Fig. 11(b). For p = 1, the instability is characterized by a
train of extended bell-shaped solitons. The scenario changes
when index p takes respective values 2 and 3, where one
notices the emergence of two-humped soliton trains, with a
lower band in between. Over long-distance propagation, the
results displayed in Fig. 11(c) are obtained, where p takes
values as previously. Remarkably, for p = 2 and p = 3, there
is a persistence of RW train formation, which confirms their
robustness in the studied model. To proceed further, we should
also indicate that such Akhmediev breathers were classified as
B type in Ref. [92], where their occurrence was also related
to the development of MI. The investigation of the tools to
control the shape and the characteristics of such structures
has been debated recently, where it was shown that the fre-
quency of the modulation could play a significant role under
conditions where coefficients are periodically varying [93].
This could lead to wave compression in some contexts, re-
quiring additional bifurcation theory tools to be predicted and
controlled [93]. However, in the present case, combining the
nonlocality and controllable saturation also offers the possi-
bility to generate trains of solitons that include several modes,
the only requirement being a judicable choice of wave and
system parameters. For example, fixing the saturation index
p = 3, with m = 2 and α = 1.2, the variation of the nonlo-
cality parameter σ gives rise to the features of Fig. 12, where
wave modulation adopts different behaviors as σ increases.

FIG. 11. (a) A section of the density plot of the wave patterns of
Fig. 10, where a train of solitonic molecules is displayed. For differ-
ent values of the saturation index p, the spatial section, at a distance
z = 9, of (a) is shown in (b), where p is revealed to influence the
shape of the train at that specific position. For a longer propagation
distance, still with p changing, one gets the features of (c), where
values 2 and 3 of the saturation index lead to RWs at distance z = 3,
with the other parameter values being α = 0.8 and m = 0.8, with
a = 2, P0 = 1, k = 0.75, and σ = 2.
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FIG. 12. The panels show the output signal intensity versus space for different values of the nonlocality parameter σ . The dynamical
features shows the emergence of different modes corresponding to the value of σ in the context of Fig. 9, with other parameter values being
α = 0.8 and m = 0.8, with a = 2, p = 3, P0 = 1, and k = 0.75.

It is well-known that the current manufacturing material
of fiber optic strands is made from plastic or glass (silica),
depending on the requirement. Due to the advancement of
fiber optic technology, several research teams have concen-
trated their efforts on designing optical fibers with nonsilica
glasses, including tellurite [94] or chalcogenide glasses [95]
to name a few. The interest in such glasses relies on their
specific properties that are significantly different from those
of silica. Their particularity is due to their high nonlinear
indices that originate from high refractive indices, leading to
nonlinear coefficients higher than that of silica. Complex non-
linear expressions mathematically give this for the refractive
index that can be polynomial or saturable. In doing so, models
including saturable nonlinearity provide a good description of
the features of optical glass materials far from resonance. In
the context where pump powers are high, leading to large non-
linear absorption with complicated practical applications, a
relatively moderate nonlinear absorption [96,97] may be pro-
vided by a saturation of the cubic nonlinearity of sulfide and
heavy-metal oxide glasses. It has, in fact, been demonstrated
experimentally that sulfide and heavy-metal oxide glasses
could satisfactorily replace semiconductor-doped glasses for
effective practical applications when absorption constitutes a
serious drawback [98,99]. Such enhanced properties of suit-
able nonlinearly saturable materials require improved models
that picture their tunability, conditioned by an adjustable
absorption capacity while pumped by photons that are in reso-
nance with no energy level of the core materials. Intrinsically,
the nonlinear response of the materials is a more complex
function of the light intensity. Interestingly, from the nonlocal
z-scan theory, when such optical materials are placed in a
certain medium, their nonlinear response can be significantly
affected due to the nonlocal properties of the medium [100].
In our case, the materials and the nonlocal medium may then
constitute a composite material with specific properties. Ex-
amples of such include the incorporation of Au nanoparticles
that can significantly enhance the nonlinear optical properties
of graphene oxide [100]. More recently, castor oil was also
listed as a promising nonlinear medium due to its interest-
ing nonlocal properties that can boost the optical features of
materials, such as absorptive properties of nanoparticles for
optical applications [101]. Moreover, it is a well-known fact
that the range of nonlocality is naturally adjusted by saturation
effects, like in photorefractives where the Debye length tunes

the strength of nonlocality [102] and liquid crystals where
the orientation molecules angle has a maximum value [103].
Our paper, therefore, suggests the experimental realization of
the MI process on glass with combined inherent optical, and
thermal nonlinearity in which the absorption of the incident
perturbed CW is relatively moderated, providing a favorable
ground for the manifestation of saturation, where increasing
the power P0, after adjusting the saturation index p and the
range of nonlocality σ , can cause the CW to disintegrate
into structures of any types depending on the nonlinearity
strengths α and m.

IV. CONCLUDING REMARKS

This paper’s primary purpose was to analyze MI’s prop-
erties in an extended nonlinear medium with controllable
saturation and nonlocal cubic nonlinearity. Using the linear
stability analysis, an expression for the MI growth rate has
been derived, and we have investigated the competitive ef-
fects between the nonlocal cubic nonlinearity and saturation
using tools like nonlinearity coefficients α and m, saturation
index p, and nonlocality parameter σ under Gaussian nonlo-
cal response. The MI growth rate is sensitive to changes in
such parameters, interchangeably under saturation and non-
locality domination. Moreover, it has been found that high
values of the nonlocality parameter tend to quench instabil-
ity. In contrast, when the saturation index increases, high
input power values tend to amplify the instability through
enlarged wave-number bandwidth. The analytical predictions
have been assessed via direct numerical simulations, where
the activation of MI has been confirmed to trigger pattern
formation through the emergence of RWs, namely, A- and B-
type Akhmediev breathers, and other exotic types of solitonic
molecules. The robustness of such in the proposed model has
been tested using parameter variations, especially the nonlo-
cality parameter, the saturation coefficient, and the saturation
index. We have also demonstrated that in the context where
the saturation parameter is well-tuned, increasing the nonlo-
cality parameter does not quench instability but rather gives
rise to a broad range of modes whose characterization and ap-
plication may be a starting point for experimental control and
manipulation of soliton dynamics in the proposed saturable
model.
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