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The Ising model is of prime importance in the field of statistical mechanics. Here we show that Ising-type
interactions can be realized in periodically driven circuits of stochastic binary resistors with memory. A key
feature of our realization is the simultaneous coexistence of ferromagnetic and antiferromagnetic interactions
between two neighboring spins—an extraordinary property not available in nature. We demonstrate that the
statistics of circuit states may perfectly match the ones found in the Ising model with ferromagnetic or
antiferromagnetic interactions, and, importantly, the corresponding Ising model parameters can be extracted
from the probabilities of circuit states. Using this finding, the Ising Hamiltonian is reconstructed in several model
cases, and it is shown that different types of interaction can be realized in circuits of stochastic memristors.
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I. INTRODUCTION

The utilization of electronic circuits as an analog to other
physical systems is becoming more and more prevalent. It has
been recently shown that certain circuits composed of only
capacitors and inductors [1,2] as well as circuits combining
passive resistive [3,4] or active [5] components with capaci-
tors and inductors can be used to realize the same states that
are found in topological phases in condensed matter [6–9],
forming a connection between two otherwise distinct systems.
For instance, in the topoelectric Su-Schrieffer-Heeger (SSH)
circuit [1] the boundary resonances in the impedance are rem-
iniscent of edge states in the SSH model. Here, we introduce
a circuit of stochastic memristors (resistors with memory)
exhibiting the same statistics of states as in the Ising model.

While the concept of constructing an electric analog to the
Ising model is not novel [10–18] and is gaining increasing
attention in the context of building Ising machines [11–18],
this paper provides an alternative approach. The basic idea
is as follows. We use a resistor and stochastic memristor
connected in series as a memristive spin [Fig. 1(a)] and cou-
ple memristive spins by resistors to induce their interactions
[see Fig. 1(b) for the circuit considered in this paper]. It is
assumed that the stochastic memristor can be found in one
of two states, RON and ROFF (such that RON < ROFF), and the
switching between these states occurs probabilistically and is
described by voltage-dependent switching rates (the details
of the model are given below). The circuit is subjected to
alternating polarity pulses that drive the memristive dynamics.
The states of memristors are read during each period of the
pulse sequence (say, at the end of the negative pulse), and
the probabilities of these states are determined. We note that
the circuit in Fig. 1(b) but with deterministic memristors was
introduced in Ref. [19], and a mean-field model of memris-
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tive interactions in a similar (but not the same) deterministic
circuit was developed in Ref. [20].

Using numerical simulations, we have found that our cir-
cuit is capable of exhibiting an analogous type of ordering
in memristor configurations to that found in magnetic ma-
terials. This means that there can exist a strong bias for a
specific circuit to exist in an antiferromagnetic (AFM) mem-
ristor configuration (-RON-ROFF-RON-ROFF-) or an ferromag-
netic (FM) memristor configuration (-RON-RON-RON-RON- or
-ROFF-ROFF-ROFF-ROFF-). In fact, a very important aspect of
our circuit is the simultaneous coexistence of AFM and FM
interactions between two neighboring spins. The goal of this
work is to demonstrate the possibility of the standard magnetic
orderings (AFM and FM) in the memristive Ising circuits.

This paper is organized as follows. In Sec. II we introduce
the Ising Hamiltonian and the stochastic model of memristors
and make the connection between the statistical properties of
the circuit and ones of the Ising Hamiltonian. In the same
section, we briefly discuss the numerical approach used in this
paper. The results of our simulations are presented in Sec. III
with the emphasis on the possibility of reaching FM and AFM
interactions in the circuit. The paper ends with conclusions in
Sec. IV.

II. METHODS

Mathematically, we utilize an effective Ising-type
Hamiltonian to describe the probabilities observed in
the circuit simulations. For the circuit in Fig. 1(b), the
Hamiltonian has the form

H = −J
∑

i

σiσi+1 − J2

∑
i

σiσi+2 − h
∑

i

σi, (1)

where J is the interaction coefficient for adjacent spins, J2 is
the next-to-adjacent interaction, h is the magnetic field, and
periodic coupling is assumed. Schematically, these interac-
tions are presented in Fig. 1(c). We consider the electronic
circuit as a physical system described by the Boltzmann
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FIG. 1. (a) Memristive spin subcircuit: the high- and low-
resistance states of a stochastic memristor correspond to spin-down
(0) and spin-up (1) states, respectively. (b) One-dimensional memris-
tive Ising circuit with a periodic boundary condition. Here, r’s denote
the resistance of coupling resistors. (c) The scheme of interactions in
the Ising Hamiltonian.

distribution

pi = 1

Z
e− Ei

kT . (2)

Here, Z = ∑
j e− E j

kT is the statistical sum, and Ej’s are the
“energies” of circuit states. We argue that for the circuit in
Fig. 1 and similar circuits these “energies” correspond to the
Ising Hamiltonian (1).

To explain the coexistence of AFM and FM interactions,
consider a set of identical memristors in ROFF subjected to a
positive voltage pulse driving the OFF-to-ON transition. Each
memristor will have an equivalent probability of being the
first to switch states. When one of these memristors swaps
states, it reduces the probability of its neighbors switching
(reducing the voltage across them). In this scenario, mem-
ristors with neighbors both in the ROFF state will have the
highest chance of switching. This leads to the tendency of
antiferromagnetic ordering in the memristors under a positive
voltage pulse. However, under a negative voltage pulse the
RON state memristors with neighboring ROFF state memristors
will be favored to change states. This means that the con-
figuration will tend towards ferromagnetic ordering under a
negative voltage pulse. The overall ordering of a memristive
circuit driven by an ac source will then be dependent on the
choice of model parameters for the memristors. Based on the
parameters, one type of ordering may be dominant.

Next, we introduce the model of stochastic memristors.
According to experiments with certain electrochemical met-
allization (ECM) cells [21,22] and valence change memory
(VCM) cells [23], the probability of switching between resis-
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FIG. 2. Dynamics of the states in a circuit with N = 4 memris-
tive spins. The circuit has 24 = 16 states that are labeled from 0 to 15.
The 0000 state (all memristors are in ROFF) is labeled by 0, the 0001
state is labeled by 1, and so on. This plot was obtained using the
following set of parameters: R = r = ROFF = 1 k�, RON = 100 �,
τ01 = 3 × 105 s, τ10 = 160 s, V01 = 0.05 V, V10 = 0.5 V, Vpeak = 1 V,
and T = 2 s.

tance states of these devices can be described by switching
rates of the form

γ0→1(V ) =
{

(τ01e−V/V01 )−1
for V > 0

0 otherwise,
(3)

γ1→0(V ) =
{

(τ10e−|V |/V10 )−1
for V < 0

0 otherwise,
(4)

where V is the voltage across the device and τ01(10) and
V01(10) are device-specific parameters. Here, 0 and 1 corre-
spond to the high-resistance (ROFF) and low-resistance (RON)
states, respectively. Under a constant voltage, the probability
of switching follows the distribution [21,22]

P(t ) = �t

τ (V )
e−t/τ (V ), (5)

where τ (V ) is the inverse of the switching rate given by
Eqs. (3) or (4) (depending on the sign of V ). Previously, we
have developed a master equation approach for the circuit of
stochastic memristors [24] and designed its implementation in
Simulation Program with Integrated Circuit Emphasis (SPICE)
[25].

Most of the results presented here are obtained through
numerical simulations of the circuit in Fig. 1(b) containing
N memristive spins. The set of parameters defining the circuit
and the simulations such as the model constants, voltage pe-
riod, duration, resistances, etc., are first set. The memristors
are then initialized to their starting states (typically all OFF).
The voltages across each memristor are calculated for the
current time step through Kirchhoff’s laws. The switching
time is then generated for each memristor randomly with the
Eq. (5) distribution. The fastest switching time is extracted
and compared with the remaining time in the current voltage
pulse. If there is sufficient time remaining in the pulse, that
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FIG. 3. Comparison of the probabilities and energies found through a N = 4 memristor circuit with the values found through the memristor-
Ising model for the cases of (a) and (b) a weaker coupling (r = 10 k�) and (c) and (d) a stronger coupling (r = 1 k�). Other simulation
parameters are the same as in Fig. 2. For (a), the weaker coupling, coefficient values of J/kT = −0.083 994 4, h/kT = 0.930 417, and J2/kT =
−0.001 566 5 were found and used. For (b) and (d), the stronger coupling, coefficient values of J/kT = −0.195 313, h/kT = 1.358 07, and
J2/kT = −0.024 651 were found and used.

memristor switches states, and the the time remaining in the
period is decreased. The switching times are generated again.
If not, the circuit remains in the same state, and the inter-
val of the opposite voltage polarity starts. The simultaneous
memristor switchings are not considered as their probability
is negligible.

After a sufficient period of time for the circuit to reach a
dynamical steady state has passed, the memristor configura-
tion will be tracked for each period of the applied voltage.
Once the simulation has been completed, probabilities for
every possible memristor configuration will be found using
the distribution of configurations from the simulation. These
probabilities can then be utilized to calculate “energies” cor-
responding to the circuit dynamics using Eq. (2).

III. RESULTS

A. FM and AFM couplings

Figure 2 presents an example of state dynamics in the
circuit with four memristive spins. One can notice that (on
average) the states with antiferromagnetic spin arrangements
(such as 5 = 0101b, 10 = 1010b, where b denotes base 2
notation) are more occupied compared with the ferromagnetic
states (e.g., 6 = 0110b, 3 = 0011b, etc.). Consequently, the
probability for the antiferromagnetic states is higher, and thus
one can make the qualitative conclusion that this specific
circuit (including the parameters of the driving sequence) is
described by the AFM model (J < 0).

The Ising model parameters, J , J2, and h, were found by
minimizing the squared difference between the Ising model
energies and circuit energies. The latter were obtained based
on Eq. (2), which was transformed to Ei = E0 − kT ln(pi/p0).
In the Supplemental Material (SI) [26] we provide explicit
relations that were used in the calculation of the constants in
the Ising Hamiltonian [Eq. (1)]. Figure 3 shows a comparison
between the probabilities and energies of the circuit states
(found numerically) and ones calculated based on the Ising
model. We observed an excellent agreement in the case of a
weaker coupling (r = 10 k�) and very good agreement in the
stronger-coupling case (r = 1 k�).

The main result of this paper can be seen in Fig. 4. The
figure shows how J , J2, and h vary in relation to the size
of the coupling resistance between memristive spins. Clear
ferromagnetic and antiferromagnetic ordering can be seen
depending on the choice of circuit parameters. These results
can be easily extended to circuits with distinct resistances and
memristor parameters. For instance, in Fig. 5 we present Ising
model parameters found for a circuit with distinct coupling
resistances r. Since a memristive spin has a stronger influ-
ence on its neighbors when the coupling resistance is smaller,
smaller coupling resistances result in larger Ising coefficient Ji

(in Fig. 5, ri and Ji are shifted by 0.5 to the right to emphasize
their role in the spin-spin interaction).

In general, circuits can be set to prefer a specific order-
ing through the selection of the model parameters V01 and
V10. These parameters, in a sense, set how susceptible a
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FIG. 4. Comparison of Ising coefficients using two different sets
of model parameters as the coupling resistance r is varied showing
(a) FM and (b) AFM interactions of memristive spins. The common
parameters are N = 10, R = 1 k�, RON = 500 �, ROFF = 2000 �,
Vpeak = 1 V, and T = 2 s. In (a) we used τ01 = 160 s, τ10 = 6 × 104 s,
V01 = 0.5 V, and V10 = 0.05 V. In (b) we used τ01 = 107 s, τ10 =
100 s, V01 = 0.05 V, and V10 = 0.5 V.

memristor is to the states of its neighbors. As memristors
switch between resistance states, they induce changes in not
only the voltage across themselves, but also the voltages
across (in principle) all memristors in the chain in accordance
with Kirchoff’s circuit laws. The strength of the induced
change, or the interaction, weakens as the distance increases
from the switching memristor. Through the interplay of the
induced changes in the voltages and the chosen set of model
parameters, there will be a bias towards a specific type of
ordering.

Figure 6(a) shows the dependency of the Ising coefficients
on the amount of memristive spins included within a circuit.
Here we can see that at five units any major dependency
on the amount of units within a circuit disappears. In order
to demonstrate the importance of the J2 interaction in the
memristor-Ising Hamiltonian, Fig. 6(b) shows a comparison
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FIG. 5. Ising model parameters for an N = 4 circuit with distinct
coupling resistances ri: (a) r1 = r3 = 1 k�, r2 = r4 = 5 k�; (b) r1 =
r2 = 1 k�, r3 = r4 = 5 k�; and (c) r1 = r2 = r4 = 1 k�, r3 = 5 k�.
All other simulation parameters are the same as in Fig. 2.

of approximations with and without J2. It is clear that J2

improves the description only in the stronger-coupling case
(smaller r’s).

B. Comparison with other methods

As a means of verifying the results seen through numerical
simulations, a couple of different methods were employed.
For specific cases, meaning specific circuit configurations
(generally simplistic), exact solutions can be found for the
state probabilities in the master equation [24]. These results
were then compared with the output of the Monte Carlo
simulations to check for agreement. The first method used
was exactly solving the master equation analytically through
MATHEMATICA. The model parameters were set, the number
of memristors was defined, and all possible memristor volt-
ages for any possible configuration were listed. The switching
rates then were constructed for any potential circuit configu-
ration or transition. Using these rates, the master equation was
solved exactly for the steady state [27], and the probabilities
for each type of memristor configuration were found. The
second method used was implementing the master equation in
SPICE and using the SPICE environment to find the probabilities
for each type of memristor configuration. We have obtained an
excellent agreement between the results obtained with differ-
ent methods (see SI for details).

In order to show agreement, one of the specific con-
figurations considered and directly solved through various
means was the circuit in Fig. 1(b) containing specifically four
memristor-resistor units. This circuit was numerically solved,
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FIG. 6. (a) Change in the Ising coefficients, J , J2, and h, as the amount of memristive spins in the circuit is varied from N = 2 to N = 10.
The simulation parameters are the same as in Fig. 2. (b) Comparison of the accuracy of the memristor-Ising Hamiltonian with and without J2

using the dot product of the circuit and Ising model probabilities. This plot shows the angle between vectors of state probabilities. Performed
for the case of AFM calculations in Fig. 4 with N = 5.

and the master equation was utilized through two applications
in order to verify the results obtained by numerical means. In
general, the master equation is written as

d p�(t )

dt
=

N∑
m=1

(
γ m

�m
p�m (t ) − γ m

� p�(t )
)
, (6)

where p is the probability of being in a specific configuration
and γ is the transition rate between configurations. For the
specific case of a circuit with four memristor-resistor units
the master equation becomes a set of six differential equa-
tions with forms of (for a fully detailed application of the
master equation, see Ref. [24])

d p0000(t )

dt
= −4γ 1

0000 p0000 + 4γ 1
0001 p0001. (7)

These differential equations, in conjunction with specific
memristor voltages for each possible configuration, can be
fully solved in MATHEMATICA, and the resulting probabilities
for each configuration can be found. A secondary approach
is constructing these differential equations in SPICE using a
current-controlled voltage source and capacitor pair for each
probability along with the full circuit constructed for each
memristor configuration [25]. Supplemental Table S1 shows

the probability results for this circuit configuration utilizing
the same parameters for all three types of analysis.

IV. CONCLUSION

In conclusion, research into electronic systems that can
replicate the statistics of the Ising model or other statis-
tical systems is of increasing interest. In this paper, we
have demonstrated that circuits constructed with memristor-
resistors units are capable of serving as an analog for the
switching behavior exhibited by the Ising model. Our results
show an almost perfect match between the energies and prob-
abilities that one would expect from the Ising Hamiltonian
and those obtained from the numerical simulations performed
here. We show the small-to-negligible gain in accuracy for
including interaction terms beyond the first neighbor. The
results from these simulations were further verified by other
forms of analysis. Finally, it is shown that both types of order-
ings, ferromagnetic and antiferromagnetic, can be realized in
these circuits under the appropriate set of model parameters.
Experimental implementations of the circuits studied would
be useful, but they are beyond the scope of this paper. This
work further adds to the class of electronic circuits that are
capable of realizing the behavior of other physical systems.
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