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Noisy voter model: Explicit expressions for finite system size
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Urn models are classic stochastic models that have been used to describe a diverse kind of complex systems.
Voter and Ehrenfest’s models are very well-known urn models. An opinion model that combines these two
models is presented in this work and it is used to study a noisy voter model. In particular, at each temporal step,
an Ehrenfest’s model step is done with probability α or a voter step is done with probability 1 − α. The parameter
α plays the role of noise. By performing a spectral analysis, it is possible to obtain explicit expressions for the
order parameter, susceptibility, and Binder’s fourth-order cumulant. Recursive expressions in terms of the dual
Hahn polynomials are given for first passage and return distributions to consensus and the equal coexistence of
opinions. In the cases where they follow power-law distributions, their exponents are computed. This model has
a pseudocritical noise value that depends on the system size; a discussion about thermodynamic limits is given.
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I. INTRODUCTION

Voter and Ehrenfest’s models are very well-known urn
models. The classic versions of these models consider two
urns and N labeled balls. Ehrenfest’s model considers non-
interacting balls and it was originally proposed to explain the
second law of thermodynamics [1]. The voter model involves
interacting particles and it is used to describe the evolution
of opinions in a population [2]. Although these are simple
mathematical models, they have been inspiring research for
a long time.

There is an increasing interest in understanding some
opinion models on complex networks [3], considering the in-
clusion of strong opinions [4,5], external perturbations [6–8],
contrarians [9], active links [10], and persuasion in small
groups [11], among others. In general, most of the results are
compared with those from fully connected networks. How-
ever, there are only a few explicit solutions and sometimes
they are only known for N very large. Thus, in most cases,
comparisons are done by using numerical simulations and
they may be not accurate enough. Since urn models are equiv-
alent to the description of fully connected networks, explicit
expressions for finite system sizes could be very useful.
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In this work we consider an opinion model that com-
bines voter and Ehrenfest’s models. The proposed model
has an order-disorder transition and it is a particular case of
more general models, [8,12–14]. In particular, our model is
the noisy voter model that was proposed by Kirman with
δ = ε instead of δ = 2ε [12]. We are interested in the station-
ary distribution, magnetization, susceptibility, and Binder’s
fourth-order cumulant for finite system sizes as well as in the
behavior of the system after taking thermodynamic limit. To
find some relevant properties of opinion models, like the time
it takes for the system to reach consensus, we relate our urn
model to a random walk on a one-dimensional finite grid and
compute first passage and return distributions.

This work is organized in the following manner. In the
next section, the model is described, a spectral analysis of the
transition matrix is performed, and the stationary distribution
is given in terms of the Beta function. In Sec. III magneti-
zation, susceptibility, and Binder’s fourth-order cumulant are
computed. In Sec. IV first passage and return distributions
are analyzed. In the cases where they follow power-law dis-
tributions, their exponents are computed. Finally, we provide
a discussion of the main results.

II. MODEL

We consider two urns, A and B, and N labeled balls. Each
ball is located in one of the urns. Since the number of balls is
constant, the state of the system is described by the number
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of balls in one of the urns. We consider that balls in urn A
have opinion +1 and balls in urn B have opinion −1. The
number of balls or agents with opinion +1 is the number of
balls inside the urn A. We use this quantity to describe the
system dynamics.

In our model, at each time step, one of the following two
different actions can take place.

(1) A label is chosen randomly and the ball with that label
is removed from the urn where it is located and added to the
other urn.

(2) Two labels are chosen randomly, the ball with the first
chosen label stays in its urn. The ball with the second chosen
label goes to the same urn where the first one belongs.
Action 1 has a probability α and action 2 has a probability
1 − α, where α ∈ [0, 1]. In other words, at each time step, an
Ehrenfest’s step is done with probability α or a voter step is
done with probability 1 − α. If α = 0, the model is reduced
to the voter model and if α = 1 it becomes the Ehrenfest’s
model.

In terms of opinion, when the update is given by a voter
step, agents can change their opinions due to the interaction
with other agents. On the other hand, if the update is due
to an Ehrenfest’s step, agents change their opinions without
interaction. Since each ball has the same probability to be
chosen during a Ehrenfest’s step 1/N the probability to change
opinion spontaneously is larger from the current majority to
the current minority opinion than the other way around. The
parameter α plays the role of a noise and it is also referred to
as social temperature. In the next sections system behavior is
analyzed for different values of α.

A. Spectral analysis

As it has been expressed, the number of total balls N re-
mains constant; thus, the state of the system can be described
by the number of balls in the urn A, which will be denoted by
i = 0, 1, . . . , N . With the rules described above, the transition
probability matrix is a tridiagonal matrix given by

M =

⎛
⎜⎜⎜⎜⎝

b0 a0

c1 b1 a1
. . .

. . .
. . .

cN−1 bN−1 aN−1

cN bN

⎞
⎟⎟⎟⎟⎠,

where

ai = (1 − α)
i

N

N − i

N − 1
+ α

N − i

N
,

bi = (1 − α)

(
1 − 2

i

N

N − i

N − 1

)
,

ci = (1 − α)
i

N

N − i

N − 1
+ α

i

N
. (1)

The contributions due to the voter model are represented by
the first terms on the right-hand side of Eq. (1), while the
second terms correspond to the Ehrenfest’s model contribu-
tions. This model is the Kirman’s model with ε = δ = α [12],
it also corresponds to those of Refs. [8,14] (with parameters
{1, α, 1, α, 0, 0} and N0 = N1, respectively).

To find the eigenvalues and eigenvectors of the transi-
tion matrix M, we proceed as in the work of Karlin and

McGregor [15]. We define recursively a sequence of polyno-
mials p0, p1, . . . , pN by means of the three-term recurrence
relation

xpi(x) = ai pi+1(x) + bi pi(x) + ci pi−1(x),

p0 = 1, p−1 = 0, (2)

for i = 0, . . . , N − 1. Note that these are N equations which
involve the coefficients of the first N rows of M. If we denote
v = [p0(x), . . . , pN (x)]′, where ′ denotes transposed, then we
have

Mv = xv − [0, . . . , 0, xpN (x) − bN pN (x) − cN pN−1(x)]′.

The first N entries of the equation above are given by the
recurrence relation (2). The (N + 1)th entry, however, gives
an extra condition. The eigenvalues of M are precisely the
zeros of the polynomial of degree N + 1 given by xpN (x) −
bN pN (x) − cN pN−1(x) and the eigenvectors by evaluating
[p0(x), . . . , pN (x)]′ at those zeros. This procedure provides
the spectral decomposition of M explicitly, as long as we can
relate the polynomials {pi} to a known family of orthogonal
polynomials.

To determine the polynomials {pi}, we identify our model
with that from Ref. [13] whose parameters a, b, and ν are
related to α and N by

a = b = αN − 1

1 − α
, ν = αN + N − 2α

N − 1
, (3)

so the recurrence coefficients become

ai = ν(N − i)(a + 1 + i)

N (N + 2a + 2)
, bi = 1 − ai − ci,

ci = νi(N + a + 1 − i)

N (N + 2a + 2)
.

It follows from Eqs. (6) and (7) of Ref. [13] that the
polynomials

Ri(x, a, a, N ) = pi

(
− νx

N (N + 2a + 2)
+ 1

)
,

are the dual Hahn polynomials, which can be written in terms
of a 3F2 series as

Rn(λ(x), a, a, N ) = 3F2

[−x, x + 2a + 1,−n
a + 1,−N

; 1

]

=
n∑

j=0

(−n)(x + 2a + 1) j (−x) j

j!(a + 1) j (−N ) j
,

where λ(x) = x(x + 2a + 1) and (a) j = a(a + 1) . . . (a +
j − 1) is the standard Pochhammer symbol. The dual Hahn
polynomials Ri(x, a, a, N ) satisfy the following orthogonality
relations:

N∑
x=0

ωxR�[λ(x), a, a, N]Rk[λ(x), a, a, N] = δk,�

π (�)
,

where

ωx =
(

N

x

)
(2a + 1)x

(N + 2a + 2)x

2x + 2a + 1

2a + 1
,

π (�) =
(

N

�

)
β(a + 1 + �, N + a + 1 − �)

β(a + 1, a + 1)
, (4)
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FIG. 1. Stationary probability distributions considering N = 100
for the following values of α: 0.005 (solid grey line); 0.01 = 1/N
(solid black line); 0.15, (dashed grey line); 0.5 (dashed black line);
and 1 (dotted black line).

with x, � = 0, 1, . . . , N , β(x, y) = �(x)�(y)/�(x + y), the
beta function, and �(x) the gamma function. The eigenvalues
of the transition matrix M are given by

1 − νλ(x)

N (N + a + b + 2)
, x = 0, 1, . . . , N.

These solutions are valid for α ∈ (0, 1). For α = 0 hy-
potheses of Ref. [15] are not fulfilled, while for α = 1
a proper limit has to be taken to obtain the Krawtchouk
polynomials [13].

B. Stationary distribution

The model presented in this work can be seen as a discrete
random walk on a one-dimension finite grid. In this case the
position of the walker can be associated with the number of
balls in urn A. The boundary conditions depends on α being
absorbing for α = 0 and reflecting otherwise. According to
Karling and McGregor [15], the explicit expression for the
stationary distribution, which is related to the norm of the
orthogonal polynomials, is given by Eq. (4), πi = π (i), i =
0, 1, . . . , N .

In Fig. 1 we show the stationary distribution for different
values of α considering N = 100. Results are similar for
different values of N . For the particular case α = 1/N , i.e.,
a = 0, the stationary distribution is a uniform distribution for
all N . If α > 1/N the stationary distribution has a unique max-
imum at N/2, but if α < 1/N it has two maxima, one at zero,
and the second one at N . In other words, for α = 1/N there
is a balance between the voter and Ehrenfest’s models, while
for α > 1/N (α < 1/N), Ehrenfest’s (voter) model weighs
more than the voter (Ehrenfest’s) model. States 0 and N are
absorbing states if α = 0, i.e., when the model is reduced to

the voter model. If α ∈ (0, 1/N ), states zero and N are no
longer absorbing states although they can be considered sticky
states. In the following section we define an order parameter
and study its behavior as a function of a.

III. FINITE SIZE, ANALYTICAL RESULTS

Although for α ∈ (0, 1/N ) there is no absorbing state, the
states 0 and N are sticky and it is more probable to find
the system near those states. However, if α ∈ (1/N, 1) the
maximum of the stationary probability distribution is at N/2,
thus the likelihood to find the system around this state is
larger. Then, if α ∈ (0, 1/N ) the system tends to be neat
with most of the balls in one urn, which represents most of
the agent with the same opinion. However, if α ∈ (1/N, 1),
the system tends to be disordered, with around half of the
balls in each urn, which represents a polarized society. The
pseudocritical noise value is given by αc(N ) ≡ 1/N . When N
goes to infinity, the system has an order-disorder transition at
αc = 0. To study this transition, we define the opinion of the
system by m = (2i − N )/N . It is clear that m ∈ [−1, 1]. Due
to the symmetry of the problem 〈m〉 = 0, for all α, then we
define the average opinion of the system by 〈|m|〉, which can
be taken as an order parameter. Other magnitudes of inter-
est are the susceptibility, which is defined by χ = N (〈m2〉 −
〈|m|〉2) and the Binder’s fourth-order cumulant, which is
given by U = 1 − 〈m4〉/(3〈m2〉2). To give more elegant ex-
plicit expressions, we consider an even number of agents,
N = 2M.

We recall from (4) that the stationary distribution πi is the
multiplicative inverse of the norm of the dual Hahn poly-
nomials. Therefore it is precisely the orthogonality measure
of the Hahn polynomials, see, for instance, Sec. 9.5 and
9.6 of Ref. [16]. We can compute explicitly the first few
moments of the Hahn polynomials and obtain the explicit
expressions for 〈|m|〉, χ , and U . See Refs. [17,18] for a dis-
cussion on higher moments. Thus,

〈|m|〉 = (2M )!(a + M + 1)β(a + M + 1, a + M + 1)

(M!)2(a + 1)β(a + 1, a + 1)
,

χ = 2M

(
(a + M + 1)

(2a + 3)M
− 〈|m|〉2

)
,

U = 1 − (2a + 3)[(3M − 1)a + 3M2 + 3M − 1]

3M(2a + 5)(a + M + 1)
, (5)

where a is given in Eq. (3). When α = αc(N ), the parameter
a becomes zero for all N . Thus we define ac = 0.

The average opinion, susceptibility, and Binder’s fourth-
order cumulant are shown in Figs. 2–4 as a function of α for
different values of N . As we expected, the larger the value of
N , the smaller the values of 〈|m|〉 for α > 0. The susceptibility
shows a maximum for a value of α less than αc(N ) and its
amplitude is proportional to N . The maximum of χ is around
αm(N ) ∼ 1/(2N ) or, analogously, around am ∼ −1/2 for all
N . Binder’s fourth-order cumulant is independent of N at αc =
0, in particular, U (αc) = 2/3, as it was expected, since, at this
point, a phase transition takes place. Even more, the larger
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FIG. 2. Average order parameter 〈|m|〉 vs α for the following val-
ues of N : 1000 (dashed line); 10 000, (dashed-dotted line); 100 000
(dotted line).

N , the larger the absolute value of the Binder’s fourth-order
cumulant derivative at αc.

Considering the finite-size scaling relations

〈|m|〉 = N−βexp/νexp fm[N1/νexp (α − αc)],

χ = Nγexp/νexp fχ [N1/νexp (α − αc)],

dU

dα
= N1/νexp fU ′[N1/νexp (α − αc)],

FIG. 3. Ratio of susceptibility to system size χ/N vs α for the
following values of N : 1000 (dashed line); 10 000, (dashed-dotted
line); 100 000 (dotted line).

FIG. 4. Binder’s fourth-order cumulant, U vs α for the follow-
ing values of N : 1000 (dashed line); 10 000, (dashed-dotted line);
100 000 (dotted line).

the exponents νexp, βexp, and γexp, can be determined by eval-
uating Eq. (5) and the derivative of U at ac. It is easy to verify
that νexp = 1, βexp = 0, and γexp = 1. These scaling laws are
verified in Figs. 5–7 where a universal curve is obtained.
We have to notice that if we consider a d-dimensional fully

FIG. 5. Average order parameter 〈|m|〉Nβexp/νexp vs
(α − αc )N1/νexp for the following values of N : 1000 (dashed
line); 10 000, (dashed-dotted line); 100 000 (dotted line). The values
βexp = 0 and νexp = 1 give the collapse.
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FIG. 6. Ratio of susceptibility to system size χ/Nγexp/νexp vs (α −
αc )N1/νexp for the following values of N : 1000 (dashed line); 10 000,
(dashed-dotted line); 100 000 (dotted line). The values γexp = 1 and
νexp = 1 give the collapse.

connected lattice with linear dimension L, N would be equiv-
alent to Ld . Since the critical social temperature is zero, the
corresponding Rushbrooke relationship has to be used [19].
In this case, αexp + 2βexp + γexp � 1, where αexp is the heat
capacity critical exponent.

FIG. 7. Ratio of Binder’s fourth-order cumulant derivative to
system size dU

dα
/N1/νexp vs (α − αc )N1/νexp for the following values of

N : 1000 (dashed line); 10 000, (dashed-dotted line); 100 000 (dotted
line). The value νexp = 1 gives the collapse.

IV. CONSENSUS TIME AND FIRST RETURN
PROBABILITY DISTRIBUTIONS

Some properties of this opinion model can be computed
by using tools from the random walk theory. For instance, it
is possible to give an analytical expression for the expected
consensus time, i.e., the average time to reach consensus for
the first time. Of course, states zero and N represent consensus
states and state N/2 represents the state with equal coexistence
of opinions. From the point of view of random walk theory,
states zero, N , and N/2 are also particular states since the first
two are the boundary of the domain and the last is a state of
attraction for α �= 0, i.e., the mean first passage time from
state i to state N/2 is less than that from N/2 to i, for all
i �= N/2. This can be proved straightforwardly by identifying
the mean first passage time from state i to state i as 1/πi and
using the theorem of Ref. [20]. Thus, state N/2 is a particular
state even for a < 0.

Since states zero and N are equivalent states, in this sec-
tion we compute the expected first passage time from state
N/2 to state N and the first return probability distribution for
states N/2 and 0.

There are two very interesting regions, one characterized
by −1 < a < 0 and the other one for a large enough. The
region for negative values of a is associated with an ordered
system. On the other hand, if a is large enough, α is near one,
i.e., our model is near to Ehrenfest’s model. In this case, the
diagonal elements of the transition matrix are near zero, see
Eq. (1). In other words, in the limit α = 1 the first return prob-
ability distribution only has positive values for even numbers
of steps, i.e., it is not allowed to go back at the initial state
after an odd number of steps. Thus, for α ≈ 1 or, equivalently
a large enough, a difference between the values of the first
return probability distribution for an even and odd numbers
of steps should be appreciated with a coalescent point as it
happens in the random walk of Ref. [21].

To compute numerically some of these quantities,
we first simplify the notation. We will denote R�(x) =
R�[λ(x), a, a, N], so that the n-step transition probabilities are
given in terms of the dual Hahn polynomials by

P(n)
k,�

= ρ(�)
N∑

x=0

ωxR�(x)Rk (x)

(
1 − vλ(x)

N (N + 2a + 2)

)n

.

We denote by f (n)
i, j the probability of reaching the state j for

the first time in n steps given that the process started at state i:

f (n)
i, j = P(Xn = j, Xm �= j for 1 � m � n − 1| X0 = i).

In particular, for each integer n ∈ N, we let f (n)
i be the prob-

ability that, starting from state i, the first return to state i
occurs in the nth step. This can be computed recursively by
the well-known formula [15]

f (n)
i = P(n)

i,i −
n−1∑
k=0

f (k)
i P(n−k)

i,i . (6)

Here we define f (0)
i = 0 for all i.
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FIG. 8. Expected time to from polarization to consensus EN/2,N

in function of α for the following values of N : 100 (solid line); 1000
(dashed line); 10 000, (dashed-dotted line); 100 000 (dotted line).

We also introduce the expected first passage time Ei, j from
state i to state j:

Ei, j =
∞∑

n=1

n f (n)
i, j .

In the following subsections we analyze EN/2,N , f (n)
N/2,N , f (n)

0 ,

and f (n)
N/2 for different values of α.

A. Expected first passage time from N/2 to N

It follows from Refs. [13, (16)] that the expected first
passage time Ei j is given by

Ei j = N (N + 2a + 2)

ν(2a + 1)

j∑
k=1

(2a + 1)k[(− j)k − (−i)k]

k(−N )k (a + 1)k
.

This sum can be computed numerically for a given i and
j. In Fig. 8 we show these expected times with i = N/2
and j = N as a function of α for different values of N . All
these curves have a minimum value around α ∼ 1/(2N ) or
a ∼ −1/2. One may have expected a strictly increasing func-
tion since, for a ∈ (−1, 0), the smaller a, the more sticky the
boundaries. However, the boundaries are not fully absorbent,
thus, there is a probability to stay near the opposite boundary
and it becomes more difficult to leave this if a ∈ (−1,−1/2).
It means, the expected time to go from N/2 to N is affected
by those trajectories that pass by some close neighborhood
of state 0. Those trajectories tend to stay longer near state
0 if a ∈ (−1,−1/2). The minimum expected time from a
completely polarized state to consensus is located at the same
value of a that gives the maximum susceptibility value, as it
is expected since, at this point, the fluctuations are maximum.
In this model consensus is a nonabsorbing state and since N/2

FIG. 9. First return distribution f (n)
0 for the following values of

a, 0, (dashes line); −1/4, (dotted line); −1/2, (solid line), and −3/4,
(dashed-dotted line).

is a state of attraction the time to reach the state N/2 after
visiting a consensus state is even less on average.

B. First return distribution for a consensus sate

We now compute the first return distribution for a consen-
sus sate. In this subsection we consider a < 0. If a > 0, the
stationary distribution has a maximum in N/2 and consensus
states are no longer sticky states. Thus, once the walker leaves
a consensus state, the larger a, the longer it takes to go back
at the initial state (on average). We can compute numerically
the first return distribution for a consensus sate by using the
recursive form that was shown in Eq. (6). In Fig. 9 we show a
log-log plot for these distributions for N = 100 and consider
the following values of a, 0 (dashes line): −1/4, (dotted line);
−1/2, (solid line), and −3/4, (dashed-dotted line). For an
intermediate number of steps, all these curves also behave as
power-law distributions. For a number of steps large enough,
finite system size effects are present.

Although they behave as a power law, they do not share the
exponent λexp. We numerically compute these distributions for
many values of a and estimate their exponent by fitting the
power-law interval. In Fig. 10 these exponents are shown as a
function of a. For the particular value a = −1/2, we can find
analytically the exponent for large N .

When the total number of balls N is large enough, the
density xρ = i/N can be regarded as continuous. Thus the
probability density p(xρ, t ) satisfies a Fokker-Planck equa-
tion given by

∂ p

∂t
= − [A(xρ )p]

∂xρ

+ 1

2

∂2[B(xρ )p]

∂x2
ρ

,

where A(xρ ) and B(xρ ) are time-independent drift and diffu-
sion coefficients. By writing the master equation of our model
and taking the proper approximations for large N [22], we
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FIG. 10. Exponents of power-law distributions associated with
f (n)
0 vs a. Vertical and horizontal lines indicate the values a = −1/2

and λ = −3/2, respectively.

obtain

A(xρ ) = a + 1

N + a
(1 − 2xρ ),

B(xρ ) = 1

N + a

(
a + 1

N
+ 2xρ (1 − xρ )

)
.

These expressions are different to those in Ref. [23] because
Kirman’s model with δ = 2ε is used in that article. In the
same work, Artime and coworkers showed that first pas-
sage distribution f (x f , t |x0), i.e., the probability density for
the stochastic variable to take a value in a small environment
of x f for the first time at time t , provided that it was x0 at
time zero, can be obtained by solving the eigenvalue problem
of the Fokker-Planck equation. In particular, by introducing
the so-called Liouville-Green transformation, the eigenvalue
problem

[A(xρ )Xn]

∂xρ

− 1

2

∂2[B(xρ )Xn]

∂x2
ρ

= λnXn,

becomes

d2Yn(y)

dy
+ [λn − �(y)]Yn(y) = 0,

where

y(xρ ) =
∣∣∣∣∣
∫ xρ

x f

√
2

B(x′)
dx′

∣∣∣∣∣,
Yn = B1/4(xρ )w1/2(xρ )Xn(xρ ),

w(xρ ) = B(xρ ) exp

[
−2

∫ xρ A(x′)
B(x′)

dx′
]
,

� = 16(A2 + A′B − AB′) + 3B′2 − 4BB′′

32B
,

FIG. 11. First return distribution f (n)
N/2 for the following values of

a: 10, (grey solid line); 0, (black solid line); −3/4, (dashed-dotted
line); −1/2, (dotted line); and −1/4, (dashed line).

and n = 0, 1, 2, . . .. The first passage distribution is related to
the eigenfunctions Xn by

f (x f , t |x0) = 1

2
B(x f )w(x0)

∣∣∣∣∣
∞∑

n=0

Xn(x0)X ′
n(x f )e−λnt

∣∣∣∣∣,
see Ref. [23]. For our model,

� = (2a + 1)

8(N + a)

×
(

4N (1 + 2a)xρ (xρ − 1) + N (2a − 1) − 4(a + 1)

2Nxρ (1 − xρ ) + (a + 1)

)
,

and it vanishes for all xρ , only for a = −1/2. For this
particular case, it is very easy to solve the eigenvalue prob-
lem and f (x f , t |x0) follows a power-law distribution with
exponent −3/2 as in the case of the so-called Wentzel-
Kramers-Brillouin (WKB) approximation (see Ref. [23]).
This is indicated in Fig. 10 by the intersection between the
vertical and horizontal lines. This value is slightly different to
our numerical value. We attribute this difference to the fact
that the numerical computation was performed with N = 100
and the value λexp = −3/2 is valid for very large N .

C. First return distribution for N/2

We can study the first return time distribution for state N/2,
i.e., we can compute numerically the values of f (n)

N/2 by using
the recursive relation of Eq. (6). Figure 11 shows that the
first return distribution follows a power-law distribution with
exponent −3/2 for ac. For a > ac the effects of finite size are
present for a smaller number of steps n. For a < ac there is a
supercritical behavior for n large enough. For a > 0 there is a
subcritical regime. However, we know that if the parameter α

goes to 1, the Ehrenfest model should be obtained. In this case,
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FIG. 12. First return distribution f (n)
N/2 for even (solid line) an odd

(dashed line) number of steps. On the left a = 100 000, and on the
right a = 1 000 000. In both cases N = 1000.

the probability to stay in the same state at the next temporal
step bi, vanishes. Thus, the probability to return for the first
time to the site N/2 should be zero for an odd number of steps
and positive for an even number of steps. If α → 1, a → ∞,
thus for a large enough a difference between the first return
probability for an even or odd numbers of steps has to be
appreciated. Figure 12 shows this difference and it is possible
to appreciate that the coalescent point moves to the right when
a becomes larger. Although it could be possible to study this
behavior with a similar approach of the authors of Ref. [21],
to the best of our knowledge, there is no explicit expression of
the associated dual Hahn polynomials.

V. CONCLUSION

In this work we present a simple combination of two clas-
sical urn models to study a noisy voter model. In general,
the expression noisy voter model refers to the voter model
whose probability transitions are modified by noise. In this
work, the noise is present by Ehrenfest’s model steps. The
aims of this work were to study some properties of the tran-
sition order-disorder as well as the first passage and return
distributions. For the first aim we use the explicit expression
of the stationary distribution and the second aim is tackled
by knowing all the eigenvectors of the transition matrix in
terms of the dual Hahn orthogonal polynomials. Although
the spectral analysis was already performed in Ref. [13], we
determined the critical exponents, as well as the maximum of
the susceptibility, around α = 1/(2N ) or a = −1/2. We also
studied in detail the first return distributions f (n)

0 and analyzed
the behavior of their power-law exponents.

One of the first approaches to study a noisy voter model
was introduced by Kirman. Although his model had two pa-
rameters, ε and δ, his results were given for δ = 2ε and N
large [12]. If Kirman’s model, with the given relationship
between the parameters, is written in terms of Dette’s model,
the parameter a becomes

a = ε(N + 1) − 1

1 − 2ε
.

Thus, the critical point is at a = 0, and thus, ε = 1/(N + 1)
and the stationary distribution is given by Eq. (4) that is
equivalent to that presented in Ref. [8] for N0 = N1 and whose
expression for N large is as that in Ref. [12]. Other examples
of noisy voter models could be those models presented in
Refs. [3,24], where the interactions are with some neigh-
bors on the network and the noise is represented by constant
parameters.

In general, most of the works studied the behavior of the
system for N large by using the mean-field approximation or
Fokker-Planck formalism losing, in this way, some character-
istics that were present for finite system sizes. Even more, the
thermodynamic limit is always taken with α constant. Our
approach allows to study the thermodynamic limit N → ∞
and α → 0 while their product αN remains constant. In par-
ticular, we can write αN = a(1 − α) + 1; thus, if α goes to
zero at the same time N goes to infinity the product αN goes
to a + 1. This implies that the region a < 0 is that associ-
ated with the thermodynamic limit N → ∞ and α → 0 faster
than 1/N .

In this work, magnetization, susceptibility, Binder’s fourth-
order cumulant, and critical exponents could be determined by
using discrete random walks tools. Even more, this approach
is very useful to study the system behavior when a < 0, or
equivalently, where the system is at the voter regime or the
thermodynamic limit was taken as explained above. In that
case, a simulation approach would required a long computa-
tional time to obtain accurate curves. In particular, it is very
difficult to obtain Fig. 9 by numerical simulations and, even
worse, Fig. 10.

On the other hand, at the Ehrenfest regime, for a very large,
a difference for return probability behaviors is appreciated
for an odd and an even number of steps. This can be a very
important property to consider for some systems. For instance,
if it is considered a random walker that moves according
the transition probabilities given by Eq. (1) and that has a
light that is on after even steps or off otherwise, it could be
interesting to know the probability that the walker arrives to
the border with the light on.

It is worth mentioning that the maximum at susceptibility
is given when EN/2,N is minimum, as it was expected since
the fluctuations are maximum. This happens for a ≈ −1/2.
For a < −1/2 both boundaries become very sticky and it be-
comes very difficult for the walker to leave them. Thus, a = 0
indicates a change between the Ehrenfest and voter regimes,
while a = −1/2 indicates that the boundaries become very
sticky and difficult to leave. For a < −1/2, or equivalently
α < 1/(2N ), boundaries have a relevant role in the system
dynamics.
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