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Vortex motion and nonlinear response in coupled noisy phase oscillator lattices under shear stress
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Vortex motion in coupled phase oscillator lattices is analogous to the dislocation motion in crystals. A single
vortex exhibits a glide motion by force at the boundaries. Thermal fluctuations induce the glide motion even
below the critical point corresponding to the Peierls stress. The random drift motion is approximated as a random
walk in a tilted potential. If the temperature is high, vortices are spontaneously generated. A nonlinear response
where the frequency profile is relatively flat in the central region and changes sharply near the boundaries is
observed when the vortex density becomes large and nonuniform.
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I. INTRODUCTION AND MODEL EQUATION

Coupled phase oscillators have been intensively studied by
many authors as a simple solvable model of coupled limit-
cycle oscillators since the original Kuramoto model [1–5]. In
the phase oscillator models, the limit-cycle oscillators are ex-
pressed with oscillation phase. The original Kuramoto model
has a global coupling, and the mean-field approximation can
be applied. Coupled phase oscillators on square or cubic lat-
tices called oscillator lattices are also important, since locally
coupled systems are more common [6,7]. For example, a sheet
of beating heart cells is produced in bioengineering.

On the other hand, strongly deformed solids exhibit various
nonlinear phenomena such as a fracture in brittle materials
and plastic flow in ductile materials. Plasticity mechanics is
one of the basic research fields of solid materials. In strongly
deformed materials, many dislocations are spontaneously gen-
erated. The screw and edge dislocations are typical line
defects in crystals. The dynamics of dislocations is a fun-
damental process in the mechanics of plasticity [8,9]. The
mobility of dislocations in crystals and the nonlinear plastic
flows in solids have been studied by many authors [10–12];
however, the understanding still needs to complete.

Suppose the phase in the oscillator lattice is interpreted
as the one-dimensional displacement from the equilibrium
position in crystals; the vortex in the phase oscillator lattice
corresponds to the dislocation. The shear stress in the dis-
location theory corresponds to the external force for phase
oscillators on the boundaries. The average velocity of plastic
flow corresponds to the average frequency of phase oscilla-
tors.

In a previous paper, we studied various deterministic dy-
namics of vortices and vortex lines in the phase oscillator
lattices with inertia [13]. The model equation is expressed as

d2φi, j

dt2
= K

∑
i′, j′

sin(φi′, j′ − φi, j ) − d
dφi, j

dt
+ fi, j, (1)

where (i′, j′)’s are the four nearest-neighbor sites of the (i, j)
site on the rectangular lattice of Lx × Ly, K is the coupling
constant, and d is the parameter of viscosity. If d = 0, fi, j =
0, and the phase difference φi′, j′ − φi, j is sufficiently small,
then the continuum approximation of Eq. (1) is expressed as

∂2φ

∂t2
= K

(
∂2φ

∂x2
+ ∂2φ

∂y2

)
. (2)

This equation is the equation of motion of the two-
dimensional elastic body if φ is assumed to be the displace-
ment in the z direction. The parameter K corresponds to μ/ρ,
where μ is the modulus of rigidity and ρ is the density of the
elastic body. As a model of the shear stress, the external force
fi, j is applied at the boundaries in the y direction as fi, j = F
at j = Ly and fi, j = −F at j = 1. The external force fi, j is
zero for the other lattice points.

We found that the vortex begins to move if the shear stress
is beyond a critical force, which corresponds to the Peierls
stress in the dislocation theory. We numerically found that the
vortex exhibits a stick-slip motion when the viscous friction
coefficient d is sufficiently small. The pair annihilation of
vortex and antivortex occurs for large d; however, the vortices
pass through each other when d is small. New vortices are
created when F is large, and chaotic behavior appears. The
time-average frequency jumps at the phase slip region where
the vortices move almost in the x direction. This corresponds
to the plastic flow via the dislocation motion in the theory of
plasticity.

In this paper, we will study a coupled noisy phase oscillator
lattice under the shear-stress-type force. The external force is
applied at the boundaries in the y direction, and the boundaries
play the role of pacemaker for the coupled phase oscillators.
A two-dimensional coupled noisy phase oscillator lattice is
obtained by removing the inertia term d2φi, j/dt2 at d = 1 and
adding the noise term to Eq. (1):

dφi, j

dt
= K

∑
i′, j′

sin(φi′, j′ − φi, j ) + fi, j + ξi, j (t ), (3)
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where the Gaussian white noises satisfy 〈ξi, j (t )ξi′, j′ (t ′)〉 =
2T δi,i′δ j, j′δ(t − t ′). If fi, j takes a random number, then the
synchronization cluster expands with the increase of K in
Eq. (3) at T = 0; however, there is no Kuramoto-type phase
transition in two dimensions as we studied in Ref. [6]. If the
spatial dimension is higher, then the random oscillator lattices
can exhibit a transition similar to the Kuramoto-type phase
transition, as discussed in Refs. [6] and [7]. In this paper, the
external force is set to be fi, j = F at j = Ly, fi, j = −F at
j = 1, and fi, j = 0 for the other sites, which is interpreted as
the shear stress in this paper.

If fi, j = 0, then the stationary state of the Langevin
equation (3) is a thermal equilibrium state. The probability
distribution of φi, j is expressed as

P({φi, j}) ∝ exp

{
−K

∑
cos(φi′, j′ − φi, j )/(2T )

}
.

This equilibrium distribution is equivalent to that of the
two-dimensional XY spin system. The Kosterlitz-Thouless
transition occurs at TK = (π/4)K [14]. For T > TK , many free
vortices are generated by thermal fluctuations, and the spatial
correlation decays exponentially in contrast to the power-law
decay for T < TK . The external force F induces a nonequilib-
rium state. The external force might not be easily applied in
the XY spin system; however, a similar nonequilibrium state
might be realized by using counter-rotating magnetic fields at
the boundaries j = 1 and Ly in the XY spin systems.

In a solid, F corresponds to the shear stress, and the vor-
tex corresponds to the screw dislocation. The shear stress
generates the Peach-Koehler force, which induces the glide
motion of the dislocation in the x direction if the shear stress is
beyond the Peierls stress [8,9]. We confirmed the glide motion
using Eq. (1) in the previous paper. The vortex can move due
to thermal fluctuations even if the shear stress is below the
Peierls stress. The density and the motion of dislocations are
critical to determining the mechanical property of solids and
the electrical property of semiconductor devices. The dislo-
cation motion at a finite temperature has been experimentally
studied by many authors [15]. The dislocation velocity is often
approximated by v ∝ τm exp(−	E/T ), where τ is the shear
stress, m is a fitting parameter of the power law, and T is the
temperature, although the physical origin is not clear. We will
study the motion of a single vortex in the coupled noisy phase
oscillator lattice under the shear stress in Sec. III. We try to
approximate the vortex motion as the Brownian motion in a
tilted periodic potential explained in Sec. II.

When the noise strength is larger, many vortices are spon-
taneously generated. We will study the average frequency
profile in Sec. IV. The frequency profile is not a linear func-
tion of j, i.e., relatively flat in the central region and changes
sharply near the boundaries where the shear stress is applied.
Our model can be considered a typical problem of nonequi-
librium statistical mechanics.

II. BROWNIAN MOTION IN A TILTED POTENTIAL

In this section, we explain the Brownian motion under the
external force, which has been studied as a typical nonequi-
librium phenomenon, for the application to the vortex motion
in the subsequent section. An overdamped one-dimensional

Brownian motion in a tilted sinusoidal potential is described
with the Langevin equation:

η
dx

dt
= −a sin(2πx) + f + ξ (t ), (4)

where η denotes the viscous friction coefficient, a is the ampli-
tude of the periodic potential with spatial period 1, and f is the
external force. The Gaussian noise ξ (t ) is assumed to satisfy
〈ξ (t )ξ (t ′)〉 = 2Dδ(t − t ′). Here D satisfies D = ηT where T
is temperature owing to the fluctuation-dissipation theorem.
The average velocity of x is expressed as [16]〈

dx

dt

〉
= 1 − e− f /T∫ 1/2

−1/2 I+(x)dx
, (5)

where

I+(x) = η

T

∫ 1

0
e{V0(x)−V0(x−y)−y f }/T dy. (6)

Here the potential V0(x) is expressed as V0(x) =
−a cos(2πx)/(2π ).

Next, we consider a simple system of linearly coupled two
Brownian particles [17] to understand the Brownian motion
of the center of mass. The model equations are assumed to be

dx1

dt
= −b sin(2πx1) + f + k(x2 − x1) + ξ1(t ),

dx2

dt
= −b sin(2πx2) + f + k(x1 − x2) + ξ2(t ), (7)

where the Gaussian noises satisfy 〈ξi(t )ξ j (t ′)〉 = 2D0δi, jδ(t −
t ′) and the viscous friction coefficient η is set to 1. The mass
center y = (x1 + x2)/2 and the relative coordinate z = (x2 −
x1)/2 obey

dy

dt
= −b cos(2πz) sin(2πy) + f + ξ ′

1(t ), (8)

dz

dt
= −b cos(2πy) sin(2πz) − 2kz + ξ ′

2(t ), (9)

where the Gaussian noises satisfy 〈ξ ′
i (t )ξ ′

j (t
′)〉 = D0δi, jδ(t −

t ′). The mass center y obeys the Langevin equation similar to
Eq. (4). The viscous friction coefficient for the mass center
y is 1, the amplitude of the sinusoidal potential changes in
time as b cos(2πz(t )), and the effective temperature decreases
to D = D0/2. The corresponding Fokker-Planck equation for
the probability density P(y, z) is described as

∂P

∂t
= − ∂

∂y

(
−∂V

∂y
P

)
− ∂

∂z

(
−∂V

∂z
P

)
+ D

(
∂2P

∂y2
+ ∂2P

∂z2

)
,

(10)

where the potential V is given by

V (y, z) =
[
− b

2π
cos(2πy) cos(2πz) − f y + kz2

]
. (11)

The periodic boundary condition P(y, z) = P(y + 1, z) is as-
sumed.

We have performed direct numerical simulations of the
coupled Langevin equations Eqs. (8) and (9) and the Fokker-
Planck equation Eq. (10) for b = 1, D0 = 0.2, and k = 2.5.
Figure 1 shows the average velocities (rhombi) for several f ’s
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FIG. 1. Comparison of the average velocities by the coupled
Langevin equations (rhombi), the Fokker-Planck equation (solid
line) at f = 0.01n (n = 1, 2, . . . , 20) for b = 1, D0 = 0.2, and k =
2.5. The dashed line is Eq. (5) at a = 0.674, η = 1, and T = D =
D0/2 = 0.1.

obtained by the coupled Langevin equations and 〈−∂V/∂y〉
(solid line) obtained by the direct numerical simulation of
the Fokker-Planck equation. The two kinds of velocities take
almost the same values. The average value of cos(2πz) for
b = 0 in Eq. (9) is given by

〈cos(2πz)〉 = e−Dπ2/k � 0.674.

Equation(8) can be approximated at Eq. (4) with a = e−Dπ2/kb
and D = 0.1. The dashed line in Fig. 1 denotes the average
velocity given by Eq. (5) at a = 0.674 and D = 0.1. Fig-
ure 1 shows that the approximation by the one-dimensional
Langevin equation Eq. (4) with modified parameters D =
D0/2 and a = e−Dπ2/kb is fairly good. This example demon-
strates the usefulness of modeling by the one-dimensional
Langevin equation Eq. (4) for the stochastic dynamics of the
mass center.

III. MOTION OF A SINGLE VORTEX IN NOISY PHASE
OSCILLATOR LATTICES

In this section, we study a vortex motion in the coupled
noisy phase oscillators on the square lattice:

dφi, j

dt
= K

∑
i′, j′

sin(φi′, j′ − φi, j ) + fi, j + ξi, j (t ).

No-flux boundary conditions are imposed at i = 1, i = Lx,
j = 1, and j = Ly. Initially, a vortex is set at the center by
assuming the phase profile to be

φi, j = φ0
i, j = cos−1(x/r). for y > 0, and

φi, j = φ0
i, j = 2π − cos−1(x/r). for y < 0, (12)

where x = i − (Lx + 1)/2, y = j − (Ly + 1)/2, and r =√
x2 + y2. There is a phase singularity or a vortex at x = y =

0. The external force fi, j is applied only at the boundaries in
the y direction, that is, fi, j = F at j = Ly and fi, j = −F at
j = 1. The external force is set to zero for the other lattice

FIG. 2. Energy difference 	E as a function of the vortex center
i0 from the energy at i0 = 0 for F = 0.08.

points. The Gaussian white noise ξi, j is applied for 1 < j <

Ly.
First, we have performed numerical simulation with the

Runge-Kutta method with timestep 	t = 0.005 in case of
T = 0. The system size is 1000 × 100. The vortex does not
move for F < Fc = 0.100165. The vortex is trapped by the
periodic potential of the oscillator lattice. The effective po-
tential corresponds to the Peierls potential in the dislocation
theory. We have calculated the total energy:

E = −K

2

∑
i′, j′,i, j

cos(φi′, j′ − φi, j ) − F
∑

i

φi,Ly + F
∑

i

φi,1

(13)
for the stationary state obtained from the initial conditions
φi, j = φ0

i−i0, j , where the vortex center is shifted by i0 in the
x direction. Figure 2 shows the difference 	E = E (i0) −
E (i0 = 0) for F = 0.08 < Fc. The dashed line is 	E =
−2πFi0. The energy linearly decreases in proportion to 2πF .
Here 2π corresponds to the magnitude of the Burgers vector,
F to the shear stress, and 2πF to the Peach-Koehler force in
the dislocation theory. The Peach-Koehler force 2πF drives
the glide motion of the vortex.

If F > Fc, then the vortex moves in the x direction. Fig-
ure 3(a) shows the average velocity of the vortex as a function
of F . This motion is similar to the particle motion in a tilted
spatially periodic potential expressed by Eq. (4) at D = 0. The
average velocity of the particle for Eq. (4) at D = 0 is given
by

v =
√

F 2 − F 2
c

η
,

for F > Fc = a. Figure 3(b) shows the relationship between
F − Fc and η = √

F 2 − F 2
c /v using the velocities v’s ob-

tained by the direct numerical simulation. The effective
viscous friction coefficient decreases with F − Fc. Figure 3(c)
shows a relationship between the average velocity v and the
effective viscous friction η in a semilogarithmic scale. A
logarithmic divergence is observed at F = Fc. The disloca-
tion motions in cellular structures for continuous dissipative
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FIG. 3. (a) Velocity of the vortex when F − Fc is changed. Fc is 0.100165. (b) Effective friction coefficient η as a function of F − Fc.
(c) Relationship between the average velocity v and the effective viscous friction η in a semilogarithmic scale.

systems were studied by several authors [18]. The friction
tensor corresponding to η is expressed as [19]

Dxx = Dyy =
∫

∂ψ

∂x

∂ψ

∂x
dxdy =

∫ r2

r1

∫ 2π

0

sin2 θ

r2
rdrdθ

= π ln(r2/r1), Dxy = Dyx = 0, (14)

where ψ expresses the phase of the stationary solution includ-
ing a dislocation and r2 (r1) is the upper (lower) limit of the
integral. The logarithmic divergence in Fig. 3(c) is related to
the logarithmic divergence of Dxx = Dyy = π ln(r2) for our
vortex solution in a discrete lattice with large r2, Here the
lower limit r1 is set to be 1 of the lattice constant. If the
vortex moves with velocity v, then the diffusion length of
the diffusion type equation: ∂φ/∂t = −v∂φ/∂x = ∂2φ/∂x2

is estimated as rD = 1/v. If r2 is replaced with the diffusion
length rD, then η ∼ log v is obtained, although this is a rough
estimate.

Next, we have performed numerical simulation with the
Heun method with timestep 	t = 0.005 in the case of T �= 0
for F < Fc = 0.100165. The system size is assumed to be
500 × 100. Figure 4(a) shows the time evolution of the X
(solid line) and Y (dashed line) coordinates of the vortex
center at T = 0.02π and F = 0.08. On average, the vortex

moves in the x direction even for F < Fc owing to the thermal
fluctuations. The vortex exhibits a random motion around the
average movement in the x and y directions. The rhombi
in Fig. 4(b) shows the average velocities in the x direction
for several values of T ′ ≡ T/(π/4) where π/4 is the crit-
ical temperature of the Kosterlitz-Thouless transition of the
two-dimensional XY model for K = 1. Here F is set to be
F = 0.08. The rhombi in Fig. 4(c) show the average velocities
in the x direction for several values of F at T ′ = 0.05.

If the motion of the vortex core is approximated by Eq. (4),
then the external force f corresponds to 2πF and a = 2πFc.
The effective viscous friction η and D are unknown, but we
can evaluate the values by fitting numerically obtained values
to Eq. (5). The + marks in Fig. 4(b) show the velocities at
η = 20.66 and D = 22.3T ′ for f = 2πF and a = 2πFc. The
effective temperature for the Brownian motion of the vortex
center is valuated as D/η = (22.3/20.66) · T/(π/4) � 1.37T
using the fluctuation-dissipation relation. The effective tem-
perature is slightly deviated from the temperature T for each
phase oscillator but takes a value close to T . Similarly, +
marks in Fig. 4(c) shows the velocities at η = 22.04 and
D = 26.9T ′ for f = 2πF and a = 2πFc. These numerical
results suggest that the approximation (+) by Eq. (4) is fairly
good.

FIG. 4. (a) Time evolutions of X (solid line) and Y (dashed line) coordinates of the vortex center at T = 0.02π and F = 0.08. (b) Average
velocities (rhombi) in the x direction for several values of T ′ at F = 0.08. The + marks denote the velocities by Eq. (5) at η = 20.66 and
D = 22.3T ′. (c) Average velocities (rhombi) in the x direction for several values of F at T ′ = 0.05. The + marks denote the velocities by
Eq. (5) at η = 22.04 and D = 26.9T ′.
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FIG. 5. (a) A guideline for the transition above which vortices are spontaneously generated. (b) Average frequency profile ω̄ j at T ′ = 0.55,
0.6, and 0.65 for F = 0.3 and Ly = 100. (c) Number density of vortices at T ′ = 0.55, 0.6, and 0.65 for F = 0.3. (d) Average frequency profile
ω̄ j at T ′ = 0.15, 0.2, and 0.25 for F = 0.7.

IV. FREQUENCY PROFILES IN NOISY PHASE
OSCILLATOR LATTICES UNDER THE SHEAR FORCE

Figure 4 was the numerical results for relatively small
T ′. The vortex number is one during a finite time of the
numerical simulation. However, thermal fluctuation generates
vortex pairs spontaneously for higher temperature. We have
performed numerical simulations in a system of Lx × Ly =
100 × 100 starting from the initial condition

φi, j = sin−1(F/K ){ j − (Ly + 1)/2}.
This phase configuration is a stable stationary solution in
the case of T = 0, which represents a synchronized state for
F < K in a system with inhomogeneous natural frequencies:
fi, j = −F at j = 1, fi, j = 0 for 1 < j < Ly, and fi, j = F at
j = Ly. The no-flux boundary conditions are imposed at j = 1
and j = Ly, and the periodic boundary conditions are set at
i = 1 and i = Lx. The completely synchronized state does not
exist for F > K , and a desynchronization occurs at the critical
value F = K for the deterministic system of T = 0.

Figure 5(a) shows a transition line above which vortices
are spontaneously generated. The transition line is only a
guide, since there is no definite transition line in a stochastic
system. We have performed numerical simulation until t =
t f = 5 × 105 and calculated the frequency ωi, j = {φi, j (t f ) −
φi, j (t f /2)}/(t f /2) for each lattice point (i, j). Figure 5(b)
shows an average frequency profile ω̄ j = ∑Lx

i=1 ωi, j/Lx at
T ′ = 0.55, 0.6, and 0.65 for F = 0.3. The frequency profile is
approximately a linear function of j at T ′ = 0.55 and 0.6. The
behavior is analogous to the Newtonian fluid. As T ′ is larger,
the slope of the frequency profile becomes larger. Besides, the
frequency profile is not a linear function of j at T ′ = 0.65.
The slope of the frequency profile increases with the distance
from the center j = (Ly + 1)/2 except for j � 1 and j � Ly.
Figure 5(c) is the number density of vortices at T ′ = 0.55,
0.6, and 0.65 for F = 0.3. The vortex number increases with
T ′. The vortex number density fluctuates but is rather flat at
T ′ = 0.55. However, the vortex density takes the maximum
near the boundaries j = 1 and Ly at T ′ = 0.65. The vortex
number density is closely related to the nonlinearity of the
frequency profile shown in Fig. 5(b). When the number den-
sity is flat, the frequency profile is almost a linear function of
j. The inhomogeneous vortex density induces the nonlinear
frequency profile. Figure 5(d) shows the average frequency
profile at T ′ = 0.15, 0.2, and 0.25 for F = 0.7. The nonlinear-

ity appears slightly above the transition line shown in Fig. 5(a)
at the larger value of F .

The average frequency profile ω̄ j = ∑Lx
i=1 ωi, j/Lx is ap-

proximated at a cubic function ay + by3, where y = j −
(Ly + 1)/2. The parameters a and b are estimated from the
numerically obtained data ω̄ j . Figure 6(a) compares numeri-
cally obtained frequency difference 	ω̄ = (ω̄97 − ω̄4)/2 with
ay + by3 at y = 46.5 for several values of T ′ at F = 0.5.
The approximation by the cubic function is rather good for
the parameter range 0.2 < T ′ < 0.5. Figure 6(b) shows a and
b × 103 as a function of T ′ for F = 0.5. The linear coefficient
a increases rapidly from T ′ = 0.325 and the nonlinear coef-
ficient b increases from T ′ = 0.375. That is, the shear flow
owing to the vortex generation develops from T ′ = 0.325, and
the nonlinearity shows up from T ′ = 0.375 for F = 0.5.

The nonlinear profile of the average frequency is observed
even for different boundary conditions. As an example, we
consider fixed boundary conditions of phase velocity. That
is, the phase φi, j is assumed to be φi, j = ω0t at j = Ly and
φi, j = −ω0t at j = 1 like the Couette flow in fluid mechanics.
Figure 7(a) shows the average frequency profiles at ω0 =
0.0005, 0.002, and 0.004 for T ′ = 0.4. For ω0 < 0.0005, the
frequency profile is almost linear. However, the nonlinear
frequency profiles become obvious for ω0 � 0.002, where
the frequency profile changes rapidly near the two bound-
aries. Figure 7(b) shows the number density of vortices at
ω0 = 0.0005 (dashed line) and 0.004 (solid line). The vortex
density is roughly homogeneous at ω0 = 0.0005. However,

FIG. 6. (a) Numerically obtained frequency difference 	ω̄ =
(ω̄97 − ω̄4)/2 and ay + by3 for y = 46.5 for several T ′ at F = 0.5.
(b) The fitting parameters a (rhombi) and b × 103 (+) as a function
of T ′ at F = 0.5.
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FIG. 7. (a) Average frequency profiles at ω0 = 0.0005, 0.002, and 0.004 for T ′ = 0.4. (b) Number density of vortices at ω0 = 0.0005
(dashed line) and 0.004 (solid line). (c) The fitting parameters a (rhombi) and b × 103 (+) as a function of ω0 at T ′ = 0.4.

there are two peaks of the vortex density near the boundaries at
ω0 = 0.004. The nonlinear frequency profile is closely related
to the inhomogeneous number density of vortices. Figure 7(c)
shows the parameters a and b of the fitting curve ay + by3,
where y = j − (Ly + 1)/2 as a function of ω0. When ω0 is
small, the parameter b is nearly 0, and the linear fitting is a
good approximation. The parameter b increases with ω0 and
a decreases for ω0 > 0.0025. That is, the nonlinear response
of the frequency profile appears even for these fixed boundary
conditions of phase velocity.

We have studied the nonlinear response in larger systems.
The system size is assumed to be Lx × Ly = 100 × Ly. The
external force corresponding to the shear stress is fixed as
fi,Ly = F and fi,1 = −F . We have calculated the frequency
profiles and vortex density for Ly = 200, 400, and 600. Fig-
ure 8(a) shows the frequency profiles at Ly = 200, 400, and
600 at T ′ = 0.65 and F = 0.3. Notably, the frequency pro-
files overlap fairly well near the boundaries. The frequency
slope increases with the distance from j = (Ly + 1)/2. The
frequency profile tends to be flat near the center j = Ly/2 as
Ly is larger. We do not understand the frequency profile the-
oretically; however, the nonlinear response might be related
to the so-called boundary layer in fluid mechanics [20]. It
is known that many vortices are generated in the turbulent

boundary layer [21]. Our numerical result might also be re-
lated to the plug flow in the Bingham plastic fluid [22] and the
shear banding [23,24] in some complex fluids, in which the
velocity profile is not a linear function of j but the slope of the
velocity profile changes sharply at some points. Figure 8(b)
shows the vortex density at Ly = 600 (solid line), 400 (dashed
line), and 200 (dotted line) at T ′ = 0.65 and F = 0.3. The
profiles of the vortex density also overlap fairly well near the
boundaries. The vortex density is rather flat for large Ly near
j = (Ly + 1)/2. Figure 8(c) shows a relationship between T ′
and the frequency at the boundary: (ω̄Ly − ω̄1)/2. Figure 8(c)
shows that the shear flow appears for T ′ � 0.55 at F = 0.3.

We have furthermore studied the frequency profile and vor-
tex number density in three-dimensional coupled noisy phase
oscillator lattices. The model equation is expressed as

dφi, j,k

dt
= K

∑
i′, j′,k′

sin(φi′, j′,k′ − φi, j,k ) + fi, j,k + ξi, j,k (t ),

(15)
where ξi, j,k (t ) is the Gaussian white noise satisfying
〈ξi, j,k (t )ξi′, j′,k′ (t ′)〉 = 2T δi,i′δ j, j′δk,k′δ(t − t ′). The external
force satisfies fi, j,k = 0 for 2 � j � Ly, fi, j,k = −F for
j = 1, and fi, j,k = F for j = Ly. The system size is

FIG. 8. (a) Average frequency profile ω̄ j at Ly = 200, 400, and 600 at T ′ = 0.65 and F = 0.3. (b) Vortex density at Ly = 600 (solid green
line), 400 (dashed blue line), and 200 (dotted red line) at T ′ = 0.65 and F = 0.3. (c) Frequency at the boundary as a function of T ′.
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FIG. 9. (a) Average frequency profile ω̄ j at Ly = 50 (solid green line), 100 (dotted red line), and 150 (dashed blue line) at T = 1.7
and F = 0.3. (b) Vortex density at Ly = 50 (solid green line), 100 (dotted red line), and 150 (dashed blue line) at T = 1.7 and F = 0.3.
(c) Frequency ωb at the boundary as a function of T .

60 × Ly × 60. Figure 9(a) shows the frequency profiles
for Ly = 50, 100, and 150 at T = 1.7, K = 1, and F = 0.3.
The frequency profiles overlap with each other near the
boundaries. The average frequency becomes almost zero
near the center j � Ly/2. Figure 9(b) shows the vortex
number density for Ly = 50, 100, and 150 at the same
parameter values. The vortex number was calculated by the
summation of absolute vorticity along all the elemental square
loops such as (i, j, k) → (i + 1, j, k) → (i + 1, j + 1, k) →
(i, j + 1, k) → (i, j, k). The vortex number density also
overlaps with each other near the boundaries. The number
density takes a constant value near the center and increases
near the boundaries. Figure 9(c) shows the relationship
between T and the frequency ωb = (ωLy − ω1)/2. The
nonzero frequency profile appears around T � 1.4 for
F = 0.3.

We have confirmed similar behaviors even in one-
dimensional coupled noisy phase oscillator lattices. We have
performed a numerical simulation of the model equation:

dφ j

dt
= K

∑
j′= j±1

sin(φ j′ − φ j ) + ξ j (t ), (16)

where ξ j (t ) is the Gaussian white noise satisfying
〈ξ j (t )ξ j′ (t ′)〉 = 2T δ j, j′δ(t − t ′). The system size is Ly.
We show numerical results for the fixed-frequency boundary
conditions: φ1 = −Ft and φLy = Ft , although similar

numerical results were obtained in case that the external
forces ±F are applied at j = 1 and Ly. The corresponding
Fokker-Planck equation is written as

∂P

∂t
= −

Ly−1∑
j=2

∂

∂φ j

(
− ∂V

∂φ j
P

)
+ T

Ly−1∑
j=2

∂2P

∂φ2
j

. (17)

The potential V is given by

V = −
Ly−1∑
j=1

K cos(φ j − φ j+1), (18)

where φ1 = −Ft and φLy = Ft . The thermal equilibrium
state cannot be attained owing to the boundary conditions,
but a nonequilibrium stationary state satisfying ∂P/∂t = 0
is realized after a transient time. Since we cannot get the
nonequilibrium stationary state analytically, we show the nu-
merical results of the Langevin equation Eq. (16).

Figure 10(a) shows the average frequency profiles ω j for
Ly = 50, 100, and 150 at T = 1, K = 2, and F = 0.2. The
frequency profiles overlap with each other near the bound-
aries. The average frequency becomes almost zero near the
center j � Ly/2. Figure 10(b) shows the average value of
sin(φ j+1 − φ j ) for Ly = 50, 100, and 150 at the same pa-
rameter values, since there are no vortices in one-dimensional

FIG. 10. (a) Average frequency profile ω j at Ly = 50, 100, and 150 at T = 1, K = 2, and F = 0.2. (b) Average value of sin(φ j+1 − φ j )
for Ly = 50, 100, and 150. (c) Average frequency profiles at T = 0.5 (dotted red curve), 1 (solid green curve), and 1.5 (dashed blue curve) for
Ly = 100. (d) Relationship between the temperature T and the length scale R of the boundary layers.

054154-7



HIDETSUGU SAKAGUCHI PHYSICAL REVIEW E 106, 054154 (2022)

systems. The average value 〈sin(φ j+1 − φ j )〉 satisfies

〈sin(φ j+1 − φ j )〉 = 〈sin(φ j − φ j−1)〉 + ω j/K. (19)

Near the center j � Ly/2, 〈sin(φ j+1 − φ j )〉 and ω j are almost
zero. That is, an almost equilibrium state is attained in the
central region. The nonequilibrium state is realized only near
the boundaries. Figure 10(c) shows the frequency profile at
T = 0.5 (dotted red curve), 1 (solid green curve), and 1.5
(dashed blue curve) for Ly = 100. The spatial scale of the
nonequilibrium boundary layer is the largest at the intermedi-
ate value T = 1. The spatial scale of the nonequilibrium state
can be evaluated at

R = 2
∑Ly/2

j=1 |ω j |
F

(20)

from the approximation of the integral of |ω| from j = 1 to
j = Ly/2 by the triangular area RF/2. Figure 10(d) shows the
relationship between T and R. R takes a peak value near T =
0.9. Interestingly, the spatial scale of the boundary layer takes
the maximum at a finite temperature.

V. SUMMARY

We have studied a vortex motion in coupled noisy phase
oscillator lattice under shear stress. We have shown that the
vortex motion can be approximated as a random walk in a
tilted potential. When the temperature is high, many vortices
are spontaneously generated. Owing to the glide motion of
vortices, desynchronization is induced, and a nonzero fre-
quency profile appears. When the vortex density is relatively
small, the frequency profile is a linear function of j, which
corresponds to the linear shear flow in the Newtonian fluid.

When the vortex density increases, the vortex density be-
comes nonuniform, or the vortex density increases near the
boundaries where the shear stress is applied. The frequency
profile is rather flat in the central region, and the slope of the
frequency increases with the distance from j = (Ly + 1)/2.
The nonlinear frequency profiles are related to the increase
of the vortex density near the boundaries. A similar nonlin-
ear response of the average frequency was observed even if
the boundary conditions were changed to the conditions that
the phase velocities are fixed to ±ω0 at the top and bottom
boundaries. The nonlinear response might be interpreted as
the boundary layer effect, as shown in Fig. 7 for larger sys-
tems. The boundary layer effect was observed even in one-
and three-dimensional systems. Our numerical results suggest
that the nonequilibrium state is localized near the boundaries,
and an almost equilibrium state is realized in a bulk region
except for the boundary layers.

Our model is a simple model of coupled noisy oscillators
with nonzero natural frequencies fi, j only at the bound-
aries j = 1 and Ly. The boundary oscillators play the role
of pacemakers. Our model can also be interpreted as a
nonequilibrium XY model and a simple model of plastic
motion in solids. The nonlinear velocity profile is often
observed in plastic flows. Our simple model might help
us qualitatively understand the complex behavior of plastic
flows.

In this paper, we have studied the simplest case of coupled
noisy phase oscillator lattices; however, we would like to
study more general cases such as coupled noisy oscillators
with the inertia term in the future. We have shown only nu-
merical results in this paper, and the theoretical understanding
is left to future study.
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