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Semi-Markov processes in open quantum systems: Connections and applications
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Using the age-structure formalism, we definitely establish connections between semi-Markov processes and
the dynamics of open quantum systems that satisfy the Markov quantum master equations. A generalized
Feynman-Kac formula of the semi-Markov processes is also proposed. In addition to inheriting all statistical
properties possessed by the piecewise deterministic processes of wave functions, the semi-Markov processes
show their unique advantages in quantum counting statistics. Compared with the conventional method of the
tilted quantum master equation, they can be applied to more general counting quantities. In particular, the
terms involved in the method have precise probability meanings. We use a driven two-level quantum system
to exemplify these results.
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I. INTRODUCTION

Stochastic systems, the evolutions of which consist of a
mixture of deterministic motion and random jumps, can be
modeled as piecewise-deterministic Markov processes (PDPs)
[1,2]. The PDPs have a variety of applications in engineering
and modeling, e.g., in operations research [2] and in model-
ing biological processes in cells [3]. In physics, a significant
example exists in open quantum systems: it is found that the
Markov quantum master equations (MQMEs), which describe
the dynamics of the reduced density matrices of the open
quantum systems, can be unraveled to the PDPs of the wave
functions; the individual realizations of these processes are
called quantum jump trajectories [4]. From this perspective, a
reduced density matrix is equal to a mean of the pure states
of the individual quantum systems; the wave functions of
these systems deterministically evolve in a nonunitary way
and are randomly interrupted by collapses. The physical ba-
sis behind this approach is quantum measurement theory, in
which quantum systems are continuously measured by exter-
nal detectors [4–11]. Sophisticated experiments have verified
quantum jump trajectories [12–21]. Unless otherwise stated,
the PDPs mentioned in the remainder of this paper always
pertain to the wave functions of the open quantum systems.

As a well-established notion and useful technique in quan-
tum optics [10,22,23], in the past two decades, PDPs and
quantum jump trajectories have also been widely used in the
stochastic thermodynamics of open quantum systems [21,24–
40]. There are two plausible causes. First, these processes
provide a clear picture of measurable trajectories. Hence,
extending the classical results based on trajectories [41] to
the quantum cases becomes feasible. Second, collapses of the
wave functions along the quantum jump trajectories enable
precise interpretations of energy quanta [31,32,42,43]. This
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is the key to define thermodynamic quantities and explore
thermodynamic laws in the quantum regime.

Among recent applications of the PDPs to the quantum ver-
sions [35–37,44] of the thermodynamic uncertainty relations
[45–47], the work of Carollo et al. [35] attracts our attention.
They called a certain type of PDPs quantum rest processes,
in which the wave functions before and immediately after
the collapses are independent, and the collapsed wave func-
tions consist of a fixed set. Carollo et al. argued that these
special PDPs are semi-Markov processes (sMPs), since the
times between collapses are in general nonexponential ran-
dom variables and are independent of previous history before
the last collapses. We note that such PDPs are universal in
quantum optics and stochastic thermodynamics, e.g., in the
spontaneous fluorescence of two-level atoms [7,23]. Similar
ideas have also existed in the literature for quite a long time
[4,7,48,49].

Conventional sMPs are mainly concerned with the proba-
bilities of stochastic systems remaining in discrete states and
how these quantities evolve with time [50–52]. In contrast, the
states or wave functions of open quantum systems are con-
stantly changing. To be consistent with quantum dynamics,
auxiliary mathematical formalism must be combined into the
sMPs. Carollo et al. have solved this problem in special steady
states [35]. In this paper, we attempt to advance this effort
and definitely establish connections between sMPs and PDPs
in general situations. The other intention of this work is to
study the application of sMPs in the counting statistics of open
quantum systems [6,7,28,53–57]. The latter is a deepening
of the former motivation. We will show that the sMPs are
not only an alternative mathematic language of the PDPs, but
also confer unique advantages in analyzing and computing the
counting statistics.

This paper is organized as follows. The first part pertains
to the sMPs of classical systems. In Sec. II we briefly review
the age structure formalism of the sMPs. Essential nota-
tions and formulas are introduced. In Sec. III we propose a

2470-0045/2022/106(5)/054152(13) 054152-1 ©2022 American Physical Society

https://orcid.org/0000-0002-4396-2977
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.054152&domain=pdf&date_stamp=2022-11-23
https://doi.org/10.1103/PhysRevE.106.054152


FEI LIU PHYSICAL REVIEW E 106, 054152 (2022)

generalized Feynman-Kac (FK) formula of the sMPs. Based
on the formula, in Sec. IV an equation that can calculate the
moment generating functions (MGFs) of counting quantities
is derived. The second part is fully devoted to the quantum
case. In Sec. V, after arguing that sMPs exist in open quantum
systems, we apply the age structure formalism to reconstruct
the dynamics of open quantum systems. In the same section,
we prove that the sMPs provide an alternative method to the
counting statistics. In Sec. VI a driven two-level quantum
system exemplifies the previous results. Section VII concludes
the paper.

II. SEMI-MARKOV PROCESSES

We start with the conventional sMPs of the classical
systems. The descriptions follow an intuitive age-structure
formalism [50–52]. In Sec. V we will show that this theory
is able to reconstruct the dynamics of open quantum systems.
Let pα|β (τ ) be the waiting time density of a sMP, i.e., the prob-
ability density of jumping out of state α to β at age τ since the
system arrival to state α. The states of the classical system
are thought to be discrete and finite. The survival distribution
function Sα (τ ) is the probability of the system remaining in
state α without jumps until age τ . These probabilities are
connected by

Sα (τ ) =
∫ ∞

τ

[∑
β �=α

pα|β (τ ′)

]
dτ ′. (1)

It is very useful to introduce the hazard function kαβ (τ ), which
satisfies

dSα (τ ) = −Sα (τ )

[∑
β �=α

kα|β (τ )

]
dτ ≡ −Sα (τ )�α (τ ) dτ. (2)

This equation indicates the probability mean of these func-
tions: they include the conditional probability density of
jumping out of state α to β at age τ , while �α (τ ) is the
total conditional probability density of jumping out of state
α. Comparing Eq. (1) with (2), we see that the waiting time
density and survival distribution can be rewritten by the haz-
ard functions as

pα|β (τ ) = Sα (τ )kα|β (τ ) (3)

and

Sα (τ ) = e− ∫ τ

0 �α (τ ′ )dτ ′
, (4)

respectively.
Let pα (t, τ ) be the probability density of the system in state

α at time t with age τ . The evolution equation of the density
is [50–52]

∂t pα (t, τ ) + ∂τ pα (t, τ ) = −�α (τ )pα (t, τ ). (5)

Equation (5) is obtained by expanding pα (t + h, τ + h) =
[1 − �α (τ )h]pα (t, τ ) until the first order of the small time
interval h. Note that at age 0,

pα (t, 0) =
∑
β �=α

∫ t

0
pβ (t, τ )kβ|α (τ ) dτ + δαγ δ(t ). (6)

Here, for simplicity, we have stipulated that at time t = 0, the
system always departs from state γ with age 0. With Eqs. (5)
and (6), the probability density of the system in state α at time
t , is

pα (t ) =
∫ t

0
pα (t, τ ) dτ, (7)

which satisfies the generalized master equation (GME)

d

dt
pα (t ) =

∑
β �=α

[pβ (t ) ∗ Kβ|α (t ) − pα (t ) ∗ Kα|β (t )], (8)

and the initial density pα (0) equals δαγ . In Eq. (8) the asterisks
represent convolutions, and the memory kernel Kα|β (t ) is an
inverse Laplace transform of

K̂α|β (v) = p̂α|β (v)

Ŝα (v)
. (9)

Unless otherwise stated, the “hat” marks or circumflexes
placed over symbols denote Laplace transforms, e.g.,

p̂α|β (v) ≡ L[pα|β (τ )] =
∫ ∞

0
e−vs pα|β (s) ds. (10)

Here we do not explain the details of the GME [51,52].

III. GENERALIZED FEYNMAN-KAC FORMULA
OF SEMI-MARKOV PROCESS

Individual realizations of the sMPs are called trajectories.
Using the waiting time densities and survival distributions, we
write the probability density of observing a trajectory X as

P[X ] = pα0|α1 (τ1)pα1|α2 (τ2) · · · pαN−1|αN (τN )SαN (τN+1).

(11)

In the trajectory, we have assumed that there are a total of
N jumps of the state of the system occurring at times ti. The
age τi is equal to ti − ti−1, and τN+1 = t − tN . The duration
of the process is set to t . In addition, the states before and
immediately after the ith jump are αi−1 and αi, respectively,
i = 0, 1, . . . , N .

Consider a random functional of the trajectory X :

A[X ] =
∫ τ1

0
Vα0 (τ ′) dτ ′ + · · · +

∫ τN

0
VαN−1 (τ ′) dτ ′

+
∫ τN+1

0
VαN (τ ′) dτ ′, (12)

where Vα (τ ) is an arbitrary function of state α and age τ .
These functions are thought to be continuous with respect to
the age variable. We are interested in the probability density
pA(u) of the random variable (12). A conventional routine is
to compute the MGF and to then conduct an inverse Laplace
transform. The former is

	(η, t ) =
∫

e−ηu pA(u) du = 〈e−ηA[X ]〉, (13)

where the angular brackets denote an average over all possible
trajectories of the sMP.
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At first sight, the MGF (13) seems useless due to the
unknown pA(u). Nevertheless, we follow Kac’s idea [58] to
prove that this quantity can be solved by a differential equa-
tion such as the GME (8). To this end, let pα (u, t, τ ) be the
joint probability density of the system in state α with age τ ,
where the random variable A equals u at time t simultaneously.
The evolution equation of this density is derived by carrying
out a similar argument as in Eqs. (5) and (6):

∂t pα (u, t, τ ) + ∂τ pα (u, t, τ )

= −�α (τ )pα (u, t, τ ) − Vα (τ )∂u pα (u, t, τ ), (14)

pα (u, t, 0) =
∑
β �=α

∫ t

0
pβ (u, t, τ )kβ|α (τ ) dτ + δαγ δ(t )δ(u).

(15)

With the joint probability density, Eq. (13) is rewritten as

	(η, t ) =
∫ t

0

∫
e−ηu

∑
α

pα (u, t, τ ) du dτ

≡
∫ t

0

∑
α

qα (η, t, τ ) dτ ≡
∑

α

Pα (η, t ). (16)

In the second and third equations, qα (η, t, τ ) and Pα (η, t ) are
defined. Equations (14) and (15) lead to two equations:

∂t qα (η, t, τ ) + ∂τ qα (η, t, τ )

= −�α (τ )qα (η, t, τ ) − ηVα (τ )qα (η, t, τ ), (17)

qα (η, t, 0) =
∑
β �=α

∫ t

0
qβ (η, t, τ )kβ|α (τ ) dτ + δαγ δ(t ).

(18)

For Eq. (17), there is a formally exact solution:

qα (η, t, τ ) = Sα (τ )e−η
∫ τ

0 Vα (τ ′ ) dτ ′
qα (η, t − τ, 0). (19)

Integrating it over time τ and substituting the result into
Eq. (18), we have

Pα (η, t ) = Sα (η, t ) ∗ qα (η, t, 0), (20)

qα (η, t, 0) =
∑
β �=α

pβ|α (η, t ) ∗ qβ (η, t, 0) + δαγ δ(t ),

(21)

where

Sα (η, τ ) = Sα (τ )e−η
∫ τ

0 Vα (τ ′ ) dτ ′
, (22)

pα|β (η, τ ) = pα|β (τ )e−η
∫ τ

0 Vα (τ ′ ) dτ ′ = Sα (η, τ )kα|β (τ ).

(23)

The final step is to apply the Laplace transform of time t in
Eqs. (20) and (21) and eliminate q̂α (η, v) ≡ L[qα (η, t, 0)].

We have

vP̂α (η, v) − δαγ =
∑
β �=α

[
P̂β (η, v)

p̂β|α (η, v)

Ŝβ (η, v)

− P̂α (η, v)
p̂α|β (η, v)

Ŝα (η, v)

]

− η

2π i

V̂α (v) ∗ Ŝα (η, t )

Ŝα (η, v)
P̂α (η, v). (24)

Hence, if these algebraic equations are solved, we will obtain
the MGF 	(η, t ) by taking an inverse Laplace transform of
	̂(η, v) = ∑

α P̂α (η, v).
We call Eq. (24) the generalized FK formula of the sMPs.

The cause is as follows. If Vα (τ ) is independent of age τ , and
the memory kernels are proportional to the Dirac functions,
i.e., Kα|β (t ) = 2kα|βδ(t ), the inverse Laplace transform of the
generalized FK formula is

d

dt
Pα (η, t ) =

∑
β �=α

[Pβ (η, t )kβ|α − Pα (η, t )kα|β ] − ηVαPα (η, t ).

(25)

This is nothing but the canonical FK formula of Markov jump
processes [59,60]. It is worth pointing out that Eqs. (17)–(24)
also account for the derivation of the GME: we set the pa-
rameter η to zero; then Sα (η, τ ) → Sα (τ ) and pα|β (η, τ ) →
pα|β (τ ), and the inverse Laplace transform of Eq. (24) leads
to Eq. (8).

IV. COUNTING STATISTICS OF SEMI-MARKOV
PROCESSES

It is of interest to study the counting statistics of random
quantities such as

Q[X ] =
N∑

i=1

ωαi−1αi , (26)

ωαi−1αi denotes an arbitrary weight specified by the states
immediately before and immediately after the ith jump. The
simplest case is that all the weights are equal to 1. Then Q[X ]
is equal to the total number of jumps along the trajectory
X . Earlier work has studied the counting statistics of sMPs,
e.g., the fluctuation theorems [61,62]. In particular, an equa-
tion analogous to Eq. (8) was obtained to calculate the MGF
of the random variable (26) [62,63]. Here, we show that the
previous result is a special case of the generalized FK formula
(24). We must emphasize that our goal is not only to propose
an alternative way of deriving the same equation; what truly
matters is the age-structure formalisms behind Eqs. (14) and
(15).

Let the MGF of the random variable (26) be

M(λ, t ) = 〈
e−λQ[X ]〉. (27)

Equations (26) and (12) appear different. To this end, we write
Eq. (27) as an explicit expression by substituting Eqs. (11)
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and (26):

M(λ, t ) =
∑

X

kα0|α1 (τ1)e−λωα0 |α1 Sα0 (τ1) · · · kαN−1|αN (τN )e−λωαN−1 |αN SαN−1 (τN )SαN (t − tN )

=
∑

X

k′
α0|α1

(τ1)S′
α0

(τ1) · · · kαN−1|αN (τN )S′
αN−1

(τN )S′
αN

(t − tN )e
∑N+1

i=1

∫ τi
0 [�i−1(τ ′ )−�′

i−1(τ ′ )] dτ ′

≡ 〈
e
∑N+1

i=1

∫ τi
0 Vαi−1 (τ ′ )] dτ ′ 〉′

. (28)

In the third equation, we use the prime symbol to denote
another sMP with modified hazard functions

k′
α|β (τ ) = kα|β (τ )e−λωαβ . (29)

Accordingly, the survival distribution S′
α (τ ) is similar to

Eq. (4), except that �(τ ) therein is replaced by �′
α (τ ) =∑

β �=α k′
α|β (τ ). Obviously,

Vα (τ ) = �′
α (τ ) − �α (τ ). (30)

When we compare Eqs. (28) with (13), we see that the gen-
eralized FK formula is available at this point. The former is
equal to the latter, with η = −1 and Vα (τ ) defined in Eq. (30).
The reader is reminded that now the hazard functions of the
new sMP are Eq. (29). In this situation, Eqs. (22) and (23) are
simply

Sα (η = −1, τ ) = Sα (τ ), (31)

pα|β (η = −1, τ ) = pα|β (τ )e−λωαβ . (32)

Substituting all the results into Eq. (24), we immediately have

vP̂α (v) − δαγ =
∑
β �=α

[
P̂β (v)

p̂β|α (v)

Ŝβ (v)
e−λωβα − P̂α (v)

p̂α|β (v)

Ŝα (v)

]
.

(33)

Note that the parameter η is abandoned because it is equal
to −1. After solving the algebraic equations, we can cal-
culate Eq. (28) by taking an inverse Laplace transform of
M̂(λ, η) = ∑

α P̂α (v). Before closing the discussions about
the sMPs of the classical systems, let us mention that if tak-
ing inverse Laplace transforms on both sides of Eq. (33), an
equation analogous to the GME will be obtained; the only
difference is that in the former, there is an additional term
exp(−λωαβ ) in front of the first term on the right-hand side
of Eq. (8).

V. SEMI-MARKOV PROCESSES IN OPEN
QUANTUM SYSTEMS

Before we expound the sMPs in the open quantum systems,
we first sketch the MQME and its unraveling of the PDPs [4].
Let ρ(t ) be the reduced density matrix of an open quantum
system. Under appropriate assumptions and conditions, the
dynamics of the system is described by MQME [64–66]:

∂tρ(t ) = −i[H, ρ(t )] +
M∑

α=1

rα

(
Aαρ(t )A†

α − 1

2
{A†

αAα, ρ(t )}
)

,

(34)

where the Planck constant h̄ is set to 1, H denotes the Hamil-
tonian of the quantum system, Aα is the Lindblad operator,
and the nonnegative rα , α = 1, . . . , M, represent the corre-
lation functions of the environment surrounding the system.
Eq. (34) can be unraveled into the PDP [4], and the individual
realizations of the process are the quantum jump trajectories
[4,8–11]. These trajectories, which pertain to the evolutions
of the wave functions of the single quantum systems, are
composed of deterministic pieces and random collapses of the
wave functions. The former are the solutions of the nonlinear
Schrödinger equation,

d

dτ
ψ (τ ) = −iG[ψ (τ )], (35)

where τ is set to zero immediately after the last collapse, and
the operator G is

G[ψ] =
(

Ĥ + i

2

M∑
α=1

rα ‖ Aαψ ‖2

)
ψ, (36)

and the non-Hermitian Hamiltonian Ĥ is equal to H −
(i/2)

∑M
α=1 rαA†

αAα . The latter collapses are

ψ (τ ) → φα = Aαψ (τ )

‖ Aαψ (τ ) ‖ , (37)

and the rates of the collapses are

w[ψ (τ )|φα] = rα ‖ Aα|ψ (τ )〉 ‖2, (38)

α = 1, . . . , M. Quantum jump trajectories are present if the
quantum systems are continuously measured or monitored
[4,11].

When we compare the PDP with the sMP in Sec. II, we
observe that there is a sMP embedded in the former only if
the instantaneous collapses of the wave functions are con-
cerned; time τ in Eq. (35) plays the role of age in the sMPs.
This observation becomes more obvious if the collapsed wave
functions φα are age-independent and come from a fixed set
with finite elements. Carollo et al. [35] called these special
PDPs stochastic reset processes. These processes cannot cover
all cases, but they are adequate in the most physically interest-
ing situations [4]. Hence, we still refer to them as the PDPs for
simplicity. Figure 1 presents schematic diagrams of a quantum
jump trajectory and a trajectory of the embedded sMP in an
open quantum system.
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FIG. 1. Schematic diagrams of a quantum jump trajectory of the
PDP and a trajectory of the sMP in an open quantum system. The
curves represent the former. If we are concerned about only the wave
functions after collapses, φαi , which are represented by the gray dots,
we imagine them as trajectories of the sMP embedded in the PDP. As
a comparison, we also plot a trajectory of a conventional sMP; see
the dotted horizontal lines. Before any jumps occur, the system will
remain in the state at the time of departure.

Now, let us collect the key quantities of the sMPs of the
open quantum systems. The first is the hazard function,

kα|β (τ ) = rβ ‖ AβU (τ )[φα] ‖2, (39)

where α, β = 1, . . . , M, and U (τ ) is the nonlinear time-
evolution operator of Eq. (35). The cause is simple: the initial
condition of Eq. (35) is also the collapsed wave function,
which we consider as one of the wave functions of the set.
In addition, the survival distribution and waiting time density
are

Sα (τ ) =‖ e−iτ Ĥφα ‖2, (40)

and

pα|β (τ ) = rβ ‖ Aβe−iτ Ĥφα ‖2, (41)

respectively. These three formulas are known in the Monte
Carlo simulations of the quantum jump trajectories [4]. Recall
that the indices α and β in Eqs. (39) and (41) may be the same.
This point is significant in contrast to the conventional sMPs
in the classical regime.

A. Reconstruction of the Markov quantum master equation

As we mentioned in Sec. I, the sMPs alone cannot recon-
struct the quantum dynamics of the open quantum systems;
an auxiliary mathematical structure is needed. To this end, we
propose a relation:

P[ψ, t] =
M∑

α=1

∫ t

0
pα (t, τ )δ[ψ − U (τ )[φα]]dτ, (42)

where P[ψ, t] is the probability distribution functional of the
random wave function ψ at time t , and δ[ ] is the Dirac func-
tional. The probability mean of Eq. (42) is intuitive. Taking
the time partial derivative of P[ψ, t] and substituting Eq. (5),

we have

∂t P[ψ, t] =
M∑

α=1

pα (t, 0)δ[ψ − φα]

+
M∑

α=1

∫ t

0
pα (t, τ )∂τ δ[ψ − U (τ )[φα]] dτ

−
M∑

α=1

∫ t

0
�α (τ )pα (t, τ )δ[ψ − U (τ )[φα]] dτ.

(43)

Here integration of parts has been employed. The next step
is to substitute Eq. (6) and to take the time derivative of the
Dirac functional. A calculation shows that

∂t P[ψ, t] = i
∫

dz

(
δ

δψ (z)
G[ψ](z)

− δ

δψ∗(z)
G[ψ]∗(z)

)
P[ψ, t]

+
∫

DφDφ∗(P[φ, t]W [φ|ψ]

− P[ψ, t]W [ψ |φ]), (44)

where δ/δψ (z) and δ/δ∗ψ (z) are functional derivatives, z
denotes the positional coordinate,

W [φ|ψ] =
M∑

α=1

w[φ|φα]δ[φα − ψ], (45)

and the rate w[ψ |φα] is given in Eq. (38). Because the cal-
culation is simple, we do not show it here. Equation (44)
is the Liouville-master equation of the PDPs in the Hilbert
space [4]. In principle, this equation completely describes the
quantum dynamics of open quantum systems. On the other
hand, in practice, the MQME (34) will be more familiar and
useful. These equations can be connected by the following
equation [4,67–70]:

ρ(t ) =
∫

DψDψ∗P[ψ, t]|ψ〉〈ψ |, (46)

where DψDψ∗ represents the Hilbert space volume element.
We do not explain the details of this connection. However,
we find that a combination of Eqs. (42) and (46) suggests an
alternative form of the reduced density matrix:

ρ(t ) =
M∑

α=1

∫ t

0
pα (t, τ )|U (τ )[φα]〉〈U (τ )[φα]|. (47)

Taking its time derivative and using Eqs. (5) and (6), we can
derive MQME (44) in a direct and efficient way. The details
are presented in Appendix A.

Equation (47) implies an intriguing consequence. Assum-
ing that Eq. (5) has a stationary solution, that is, when the
duration t is long, the probability density [50,52]

pα (t = ∞, τ ) = cαSα (τ ), (48)

where the coefficient

cα = πα∑M
β=1 πβτβ

, (49)
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time τβ is the average age of the system starting from the wave
function φα ,

τβ =
∫ ∞

0
dτSβ (τ ), (50)

and

πα =
M∑

β=1

πβ

[∫ ∞

0
dτ pβ|α (τ )

]
≡

M∑
β=1

πβPβ|α. (51)

Equation (51) indicates that πα is the stationary distribution
of a Markov chain with transition probability Pα|β , α, β =
1, . . . , M. It is not difficult to deduce that cα is the stationary
rate of the quantum system collapsed to or departing from the
wave function φα . Substituting Eq. (48) into (47), we have the
steady-state solution of MQME [44]:

ρ(t = ∞) =
M∑

α=1

cα

∫ ∞

0
e−iτ Ĥ |φα〉〈φα|eiτ Ĥ†

dτ. (52)

Equation (52) clearly indicates that the reduced density matrix
is an incoherent superposition of various pure states.

B. Reconstruction of the tilted quantum master equation

The counting statistics of the collapses of the wave func-
tions serve important roles in quantum optics and quantum
stochastic thermodynamics [7,28]. A foundational example of
the former is that a photon counter continuously detects the
fluorescence photons emitted by a two-level atom [5–7,49,71].
In the latter, the random collapses along the quantum jump
trajectories indicate that discrete amounts of energy quanta are
released to or absorbed from the environment [21,26,27,30–
32,34–36,38–40,42]. Although these quantities still follow the
general Eq. (26), they usually have a more unique form in the
quantum regime:

Q[X ] =
N∑

i=1

ωαi . (53)

In other words, the arbitrary weight ωαi is solely deter-
mined by the collapsed wave function φαi instead of both
φαi−1 and φαi . Of course, this form includes the case of
constant weights. Undoubtedly, the counting statistics of the
sMPs in Sec. IV also holds in the quantum case. On the
other hand, a very influential method of studying count-
ing statistics is the tilted quantum master equation (TQME)
[5,25,28,29,34,48,49,53,54,57,72]. We naturally conclude
that these two methods are equivalent for the quantum count-
ing statistics.

Here, we make use of the age structure formalism to
prove this expected equivalence. Let the MGF of Eq. (53) be
M(λ, t ). In the current situation, Eqs. (27) and (33) are valid,
and ωβα in the latter is replaced by ωα . Accordingly, Eqs. (17)
and (18) are simplified to

∂t qα (t, τ ) + ∂τ qα (t, τ ) = −�α (τ )qα (t, τ ), (54)

qα (t, 0) =
∑

β

∫ t

0
qβ (t, τ )k′

β|α (τ ) dτ + δαγ δ(t ), (55)

and k′
α|β = kα|β exp(−λωβ ). We have abandoned the parame-

ter η = −1. Motivated by Eq. (42), we propose a functional

P̃[ψ, t] =
M∑

α=1

∫ t

0
qα (t, τ )δ[ψ − U (τ )[φα]] dτ. (56)

Taking the time partial derivative of P[ψ, t], substituting
Eqs. (54) and (55), and carrying out similar calculations as
in Eq. (43), we have

∂t P̃[ψ, t] = i
∫

dx

(
δ

δψ (x)
G[ψ](x)

− δ

δψ∗(x)
G[ψ]∗(x)

)
P̃[ψ, t]

+
∫

DφDφ∗(P̃[φ, t]W ′[φ|ψ]

− P̃[ψ, t]W [ψ |φ]), (57)

where

W ′[φ|ψ] =
M∑

α=1

e−λωαw[φ|φα]δ[φα − ψ]. (58)

Equation (57), which has been derived by us with another
method [73], is called the tilted Liouville-master equation in
Hilbert space. Further defining an operator

ρ̃(t ) =
∫

DψDψ∗P̃[ψ, t]|ψ〉〈ψ |, (59)

in the previous work, we have shown that ρ̃(t ) satisfies TQME
[73]:

∂t ρ̃(t ) = −i[H, ρ̃(t )] +
M∑

α=1

rα

(
e−λωα Aαρ̃(t )A†

α

− 1

2
{A†

αAα, ρ̃(t )}
)

. (60)

The last step of proving the equivalence is to substitute
Eq. (56) into (59):

ρ̃(t ) =
M∑

α=1

∫ t

0
qα (t, τ )|U (τ )[φα]〉〈U (τ )[φα]| dτ. (61)

We immediately find that the MGF of Eq. (53) achieves an
alternative expression,

M(λ, t ) = Tr[̃ρ(t )], (62)

In fact, Eq. (61) also provides a more efficient way to derive
TQME. The whole process is very similar to that of the
MQME; see Appendix A.

Now we are in a position to explain the cause of sepa-
rating Eq. (53) from the general Eq. (26): the proof of the
equivalence definitely indicates that a closed equation such as
the TQME does not exist for the general counting quantities.
From this perspective, Eq. (33) instead of TQME (60) has
more potential in the general counting statistics. However, we
admit that, thus far, such general statistics are not demanded
in the communities of quantum optics and stochastic thermo-
dynamics.

054152-6



SEMI-MARKOV PROCESSES IN OPEN QUANTUM … PHYSICAL REVIEW E 106, 054152 (2022)

Let us close the theoretical discussions by rewriting
Eq. (33) to a concise matrix equation:

GP̂ = 1δ, (63)

where M × 1 matrix P̂ = (P̂1(v), . . . , P̂M (v))T , 1δ =
(δ1γ , . . . , δMγ )T , δαγ is the kronecker symbol, the upper letter
(T ) denotes transpose, and the diagonal and nondiagonal
elements of the matrix G are

(G)αα = 1 − p̂α|α (v)e−λωαα

Ŝα (v)
(64)

and

(G)αβ = − p̂β|α (v)

Ŝβ (v)
e−λωβα , (65)

α �= β, respectively. We have used the Laplace transform of
Eq. (1):

vŜα (v) +
M∑

β=1

p̂α|β (v) = 1. (66)

Note that in the quantum case, the waiting time densities
pα|α (τ ) are no longer forbidden. Using the inverse matrix of
G, we can solve the Laplace transform of the MGF:

M̂(λ, v) = 1G−11δ, (67)

where the 1 × M matrix 1 = (1, . . . , 1). We must emphasize
that the size of the matrix G is M × M, where M is the number
of collapsed wave functions and is usually equal to or less than
dimension of a quantum system.

VI. RESONANT TWO-LEVEL QUANTUM SYSTEM

We use a simple open quantum system to illustrate the
results obtained in the previous sections: a two-level atom is
surrounded by an environment with finite inverse temperature
β and is driven by a resonant field. The MQME of the system
in the interaction picture is

∂tρ(t ) = −i[H, ρ(t )] + r−
[
σ−ρ(t )σ+ − 1

2 {σ+σ−, ρ(t )}]
+ r + [

σ+ρ(t )σ− − 1
2 {σ−σ+, ρ(t )}]. (68)

Here H = −�(σ− + σ+)/2 represents the interaction Hamil-
tonian between the system and the resonant field, σ± are the
raising and lowering Pauli operators, � is the Rabi frequency,
and r± are the pumping and damping rates, respectively. Note
that these two rates satisfy the detailed balance condition:
r− = r+ exp (βω0), and ω0 is the energy level difference of the
two-level system. We set the two-level system to start with the
ground state |g〉. The model is widely used in quantum optics
[5,7,23] and quantum thermodynamics [74,75].

There are two collapsed wave functions in the set: {φ1 =
|g〉, φ2 = |e〉}. First, we verify Eq. (52). To this end, we solve
for the stationary rate cα , α = 1, 2. The core of the calcula-
tions is the waiting time densities of the sMP embedded in
the two-level quantum system, pα|β (τ ), α, β = 1, 2, in which
Eq. (41) and the non-Hermitian Hamiltonian

Ĥ = −�

2
(σ− + σ+) − i

2
r+σ−σ+ − i

2
r−σ+σ−. (69)

are used. This is a direct but tedious process. Hence, some
relevant formulas remain in Appendix B. The final result is

ρ(t = ∞) = P2|1
∫ ∞

0 e−iĤτ |φ1〉〈φ1|eiĤ†τ dτ + P1|2
∫ ∞

0 e−iĤτ |φ2〉〈φ2

∣∣eiĤ†τ dτ

P2|1τ1 + P1|2τ2

= 1

2
I − rδ

2�2 + r2

1

2
σz + i

�δ

2�2 + r2
σ+ − i

�δ

2�2 + r2
σ−, (70)

where we define r = r− + r+ and δ = r− − r+. Eq. (70) is consistent with the steady state solution of Eq. (68). Compared with
the conventional method, which simply sets the left-hand side of the MQME to zero and solves a matrix equation in the σz

representation, the utility of Eq. (52) appears to be slightly more complex.
Second, we apply the sMP to investigate the general counting statistics of the two-level quantum system. We write Eq. (63)

in an explicit form: [ 1−p̂1|1(v)e−λω11

Ŝ1(v)
− p̂2|1(v)e−λω21

Ŝ2(v)

− p̂1|2(v)e−λω12

Ŝ1(v)
1−p̂2|2(v)e−λω22

Ŝ2(v)

][
P̂1(v)
P̂2(v)

]
=

[
1
0

]
. (71)

Solving this 2 × 2 matrix equation is trivial, and we obtain the Laplace transform of the MGF:

M̂(λ, v) = Ŝ1(v)[1 − p̂2|2(v)e−λω22 ] + Ŝ2(v) p̂1|2(v)e−λω12

[1 − p̂1|1(v)e−λω11 ][1 − p̂2|2(v)e−λω22 ] − [ p̂2|1(v)e−λω21 ][p̂1|2(v)e−λω12 ]
. (72)

We observe that all terms involved in Eq. (72) have clear prob-
ability means. If quantum counting quantities are concerned
with, e.g., heat with weights in Eq. (74) below, Eq. (72) will
agree with that solved by Laplace transform of the TQME.
More detailed explanations of a special case are provided in
Appendix C.

Equation (72) is enlightening in studying the fluctuation
theorems [28,34,60,76]. Because of the detailed balance con-
dition, we easily find that

p2|2(τ ) = p1|1(τ )eβω0 . (73)
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Selecting physically relevant weights:

{ω11, ω12, ω21, ω22} → {−ω0, ω0,−ω0, ω0}. (74)

Then Eq. (53) is the net energy released to the environment
along quantum jump trajectories. From a thermodynamic
viewpoint, this is the heat [31,34,42]. We can verify that
the denominator of Eq. (72) is invariant under a transform
λ → β − λ:

[1 − p̂1|1(v)eλω0 ][1 − p̂2|2(v)e−λω0 ] − p̂2|1(v) p̂1|2(v)

→ [1 − p̂1|1(v)e(β−λ)ω0 ][1 − p̂2|2(v)e−(β−λ)ω0 ]

− p̂2|1(v) p̂1|2(v)

= [1 − p̂2|2(v)e−λω0 ][1 − p̂1|1(v)eλω0 ] − p̂2|1(v) p̂1|2(v).
(75)

Therefore, the poles of M̂(λ, v) are also invariant. Accord-
ing to the large deviation theory [76], the largest pole is the
scaled cumulant-generating function (SCGF) of the current
j = Q[X ]/t in the long-time limit [61],

ϕ(λ) = lim
t→∞

1

t
ln M(λ). (76)

Then the following relationship holds:

ϕ(λ) = ϕ(β − λ). (77)

This indicates that the probability density of the current j
satisfies the fluctuation theorem in the steady state [60].

The largest pole is obtained by vanishing the denominator
of Eq. (72). In the case of heat, this implies

ζ 3 + ζ (4μ2 − r−r+) − �2

2
(r−e−λω0 + r+eλω0 ) = 0 (78)

with ζ = v + r/2. This is a cubic equation and has an analyt-
ical solution:

ϕ(λ) = − r

2
+

[
−x(λ)

2
+

√
�(λ)

]1/3

− y

3

[
−x(λ)

2
+

√
�(λ)

]−1/3

, (79)

where �(λ) = x2(λ)/4 + y3/27, x(λ) = �2(r−e−λω0

+ r+eλω0 )/2, and y = 4μ2 − r−r+. The data are shown
in Fig. 2 and are compared with those calculated by solving
the largest eigenvalues of the TQME. We see that these two
methods indeed present consistent data.

We mentioned that the TQME is inadequate if general
counting quantities are considered. To illustrate this point, we
define two random quantities, Qp[X ] and Qn[X ] with weights
{1, 0, 0, 1} and {0, 1, 1, 0}, respectively. Their meanings are
apparent: the former is a counting of two consecutive col-
lapses with the same wave functions, while the latter is a
counting of two consecutive collapses with the distinct wave
functions. Loosely speaking, current jp = Qp/t indicates a
frequency of resetting, while current jn = Qn/t will indicate
an activity of “jumps” if we naively think of the quantum
jump trajectories as a type of classical two-state jump process.
Similarly, their SCGFs can be solved by looking for the largest
poles of Eq. (72). Different from previous case of heat, six-
order algebraic equations are present. For instance, in Qn case

FIG. 2. The SCGFs data are solved by the sMP (curves) and
TQME (symbols). The solid curve and squares are for the envi-
ronment with finite temperatures, and the parameters are r− = 1,
r+ = 0.5, � = 0.8, and ω0 = 1. The dashed curve and circles are
for the vacuum field, and the corresponding parameters are r− = 1,
r+ = 0.0, � = 0.8, and ω0 = 1.

we have

ζ 2(ζ 2 + 4μ2)2 − ζ (ζ 2 + 4μ2)(r−r+e2λζ + r�2

2
)

+ r−r+
4

�2(1 − e2λ) = 0. (80)

Numerical schemes are needed and the data are shown in
Fig. 3. Now, because the TQME is unavailable, in order to
verify their correctness we have to simulate quantum jump

FIG. 3. SCGFs of the random quantities Qp[X ] (solid curve) and
Qn[X ] (dashed curve) solved by the sMP. Parameters are the same
with those in the finite temperature case of Fig. 2. Inset shows the
corresponding rate function of the current jl (l = p, n) obtained by
simulations (symbols) and performing Legendre transformations of
the SCGFs (curves), respectively. The number of trajectories is 1000
trajectories. Simulation time is 5000.
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trajectories. In inset of Fig. 3, we compare rate functions of
large deviations [76], which are obtained by the simulation
and doing Legendre transforms of the SCGFs, respectively.
Their consistence is satisfactory. We also see that the “jumps”
are more active than the resetting, and their fluctuations are
more significant.

VII. CONCLUSION

In this paper, we investigate the sMPs embedded in open
quantum systems which are described by the Markov quantum
master equations. With the assistance of the age-structure
formalism, we prove that these stochastic processes inherit all
statistical properties of the PDPs. Hence, the dynamics of the
open quantum systems can be exactly reconstructed. More-
over, these embedded sMPs provide an alternative method
to analyze and compute the counting statistics. This method
is not only equivalent to TQME, which is now dominant
in the literature, but also has more potential than TQME
when the general counting statistics are considered. This is
not surprising, since the foundation of the sMP is the PDPs,
which possess more statistical information than the “aver-
aged” MQME. It will be interesting to investigate the sMPs
embedded in more complex open quantum systems, e.g., elec-
tronic transport in nanosystems, in the near future.

Note added in proof. Recently, Prof. Barkai
informed us that they have derived a fractional

Feynman-Kac formula in the context of continuous time
random walks [77].
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APPENDIX A: DERIVING MQME BY EQ. (47)

Taking the partial time derivative of Eq. (47) and substitut-
ing Eq. (5), we have

∂tρ(t ) =
M∑

α=1

pα (t, 0)|φα〉〈φα|

−
M∑

α=1

∫ t

0
�α (τ )pα (t, τ )|U (τ )[φα]〉〈U (τ )[φα]|dτ

+
M∑

α=1

∫ t

0
pα (t, τ )∂τ [|U (τ )[φα]〉〈U (τ )[φα|]]dτ.

(A1)

The first term of the right-hand side of Eq. (A1) is a conse-
quence of the integration of parts. Substituting Eq. (6) into it,
we have

M∑
α=1

M∑
β=1

∫ t

0
pβ (t, τ )kβ|α (τ )|φα〉〈φα| dτ =

M∑
α=1

M∑
β=1

∫ t

0
pβ (t, τ )kβ|α (τ )

Aα|U (τ )[φβ]〉〈[U (τ )φβ]|A†
α

‖ AαU (τ )[φβ] ‖2
dτ

=
M∑

α=1

rαAαρ(t )A†
α, (A2)

where we have used Eqs. (37) and (39). Then, using Eq. (35), we rewrite the third term to

− i[H, ρ(t )] − 1

2

M∑
α=1

rα{A†
αAα, ρ(t )} +

∫ t

0

M∑
β=1

rβ ‖ Aβ |U (τ )[φα]〉 ‖2 pα (t, τ )|U (τ )[φα]〉〈U (τ )[φα]| dτ

= −i[H, ρ(t )] − 1

2

M∑
α=1

rα

{
A†

αAα, ρ(t )
} +

M∑
α=1

∫ t

0
�α (τ )pα (t, τ )|U (τ )[φα]〉〈U (τ )[φα]| dτ. (A3)

Substituting these two results into Eq. (A1), we obtain the
MQME, Eq. (34).

APPENDIX B: SOME USEFUL FORMULAS IN DERIVING
EQ. (70)

Consider the case of 2� > r. We apply Eq. (41) to calcu-
late the waiting time densities, pα|β (t ), α, β = 1, 2. However,
in fact, their Laplace transforms are more useful. Hence, here,
we list only the latter:

p̂1|1(v) = r+
�2

2(v + r/2)[(v + r/2)2 + 4μ2]
, (B1)

p̂1|2(v) = r−
(v + r/2)2 − δ(v + r/2)/2 + �2/2

(v + r/2)[(v + r/2)2 + 4μ2]
, (B2)

p̂2|1(v) = r+
(v + r/2)2 + δ(v + r/2)/2 + �2/2

(v + r/2)[(v + r/2)2 + 4μ2]
, (B3)

p̂2|2(v) = r−
�2

2(v + r/2)[(v + r/2)2 + 4μ2]
, (B4)

where the parameters satisfy 16μ2 + δ2 = 4�2. We find that
the two latter equations can be obtained from the former two
equations by exchanging r− and r+.

For the two-level quantum system, the stationary distribu-
tions of the Markov chain are simple:

π1 = P2|1
P1|2 + P2|1

, π2 = P1|2
P1|2 + P2|1

; (B5)
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see Eq. (51). The transition rates therein are P1|2 = p̂1|2(0),
P2|1 = p̂2|1(0), respectively. On the other hand, we can also
make use of Eqs. (B1)–(B4) to calculate the mean times as
follows:

τα = − d

dv
( p̂α|1 + p̂α|2)(0), (B6)

α = 1, 2. Finally, we solve∫ ∞

0
e−iĤτ |φ1〉〈φ1|eiĤ†τ dτ

= 2

r(r2 + 16μ2)

(
2�2 − rδ + r2 i�(δ − r)
−i�(δ − r) 2�2

)
(B7)

and∫ ∞

0
e−iĤτ |φ2〉〈φ2|eiĤ†τ dτ

= 2

r(r2 + 16μ2)

(
2�2 i�(δ + r)

−i�(δ + r) 2�2 + rδ + r2

)
. (B8)

Substituting Eqs. (B5)–(B8) into Eq. (52) and carrying out a
careful simplification, we arrive at Eq. (70).

APPENDIX C: SOLVING THE MGF AND SCGF
BY THE TQME

We briefly describe the process of solving the MGF and
SCGF by the TQME. The quantum counting is the heat and
its weights are given in Eq. (74). On one hand, this is for the
convenience of the reader. On the other hand, through this pro-
cess, we will acquire a direct understanding of the advantages
and disadvantages of the embedded sMP and TQME.

First, we decompose the abstract operator ρ̃(t ) as

ρ̃(t ) = I

2
�(t ) + σz

2
�(t ) + σ+σ̄−(t ) + σ−σ̄+(t ). (C1)

Define a 4 × 1 matrix q(t ) = (�,�, σ̄−, σ̄+)T . In the σz rep-
resentation, the TQME, Eq. (60), has a matrix form:

∂t q(t ) = [M + B(λ)]q(t ), (C2)

where

M =

⎡⎢⎢⎣
0 0 0 0

−r− + r+ −r− − r+ i� −i�
0 i �

2 − r−+r+
2 0

0 −i �
2 0 − r−+r+

2

⎤⎥⎥⎦ (C3)

and

B(λ) =

⎡⎢⎢⎣
r−
2 (eλω0 − 1) + r+

2 (e−λω0 − 1) r−
2 (eλω0 − 1) − r+

2 (e−λω0 − 1) 0 0
− r−

2 (eλω0 − 1) + r+
2 (e−λω0 − 1) − r−

2 (eλω0 − 1) − r+
2 (e−λω0 − 1) 0 0

0 0 0 0
0 0 0 0

⎤⎥⎥⎦, (C4)

respectively. Obviously, the matrix B(0) is zero. In this situation, Eq. (C2) is nothing but the matrix equation of the MQME of
the two-level quantum system, and the steady-state solution is Eq. (70).

According to our theory, TQME (C2) leads to the same MGF and SCGF as those of the sMP, Eqs. (72) and (79). At first
glance, this is not obvious. In addition, although the size of the matrix equation (4 × 4) is not too large, solving it by a manual
way is a very tedious task and some software is resorted to. Therefore, we address only the simplest case that we can tolerate by
a manual way, in which the atom is in a vacuum: that is, the pumping rate r+ is zero. Taking the Laplace transform of Eq. (C2)
and solving the equation, we have

M̂(λ, v) = Tr[̂̃ρ(v)] = 2v2 + 3r−v + r2
− + 2�2

2[2v3 + 3r−v2 + (2�2 + r2−)v − (e−λω0 − 1)r−�2]
. (C5)

If the sMP method is used, Eq. (67) provides

M̂(λ, v) = Ŝ2(v)

1 − e−λω0 p̂2|2(v)

= 1 − p̂2|2(v)

v

1

1 − e−λω0 p̂2|2(v)
. (C6)

The second equation is due to Eq. (66). The reader is reminded
that in this case only one collapsed wave function is present,
that is, the size of matrix G is 1 × 1. The differences between
Eqs. (C5) and (C6) are superficial: substitution of Eq. (B4)
into Eq. (C6) can verify their equivalence.

TQME calculates the SCGF by solving the largest
eigenvalue of the matrix M + B(λ); that is, we do not
solve Eq. (C1). For the vacuum case, we find that the
eigenvalues problem is equivalent to solving an algebraic

equation:

2ξ 3 + 3r−ξ 2 + (2�2 + r2
−)ξ − (e−λω0 − 1)r−�2 = 0,

(C7)

where we set ξ to the eigenvalue we are looking for. This
is nothing but the pole of the denominator of Eq. (C5).
Equation (C7) becomes simpler if we change variable ξ to
ζ = ξ + r−/2. Then we have

ζ 3 + 4μ2ζ − r−�2

2
e−λω0 = 0. (C8)

This is a depressed cubic equation and its real root is given by
Cardano’s formula. If the sMP method is used, the SCGF is
obtained by setting the denominator of Eq. (C6) to zero:

p̂2|2(v) = eλω0 . (C9)
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Of course, Eqs. (C7) and (C9) are the same, but the probability
meaning is not revealed until we obtain the latter.

The above discussions have highlighted the respective
advantages of the embedded sMPs and TQME. From a
computational perspective, TQME is far superior to the sMP
method. The former does not require any waiting time den-
sities at all. In general, solving the matrix equation of the
TQME or diagonalizing the equation for SCGFs are very
simple when numerical schemes are used. Even so, we need

emphasize that, if dimension of a quantum system is D, the
size of the involved matrix is D2 × D2. In contrast, the size
of the matrix G of the sMP method is M × M and M is
less than or equal to D. From a statistical and/or formal
perspective, the sMP is more attractive, since all terms in-
volved have clear probability means. In contrast, the TQME
is abstract, and its matrix equation depends on the concrete
quantum representations; its probability relevance is usually
ambiguous.
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