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Stochastic paths controlling speed and dissipation
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Natural processes occur in a finite amount of time and dissipate energy, entropy, and matter. Near equilibrium,
thermodynamic intuition suggests that fast irreversible processes will dissipate more energy and entropy than
slow quasistatic processes connecting the same initial and final states. For small systems, recently discovered
thermodynamic speed limits suggest that faster processes will dissipate more than slower processes. Here,
we test the hypothesis that this relationship between speed and dissipation holds for stochastic paths far
from equilibrium. To analyze stochastic paths on finite timescales, we derive an exact expression for the path
probabilities of continuous-time Markov chains from the path summation solution to the master equation. We
present a minimal model for a driven system in which relative energies of the initial and target states control the
speed, and the nonequilibrium currents of a cycle control the dissipation. Although the hypothesis holds near
equilibrium, we find that faster processes can dissipate less under far-from-equilibrium conditions because of
strong currents. This model serves as a minimal prototype for designing kinetics to sculpt the nonequilibrium
path space so that faster paths produce less dissipation.
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I. INTRODUCTION

Biological systems balance the timely formation of struc-
ture with the thermodynamic costs of dissipated heat, entropy
production, and wasted free energy [1,2]. For example,
cells regulate the speed at which microtubules assemble
and dynamically reorganize, which necessarily dissipates en-
ergy [3,4]. If the reorganization of these structures is too
slow, or driven by chemical reactions that are too dissipative,
the fluctuating dynamics of microtubules would inhibit, not
facilitate, cellular functions. A quantitative understanding of
the relationship between speed and dissipation is important
not only for biological functions, but also for implementing
these functions in synthetic dissipative materials. Particular
progress has been made controlling the transient formation
of structure in active materials with dissipative cycles of
chemical reaction networks [5–7] and accessing the richer set
of structures that can be formed outside of chemical, ther-
mal, and diffusive equilibria [8–11]. Despite this progress,
when open to external sources of energy and matter, kinetic
trapping [12,13] and dissipative cycles [14,15] are prevalent,
making it an open question how these systems use time and
energy in the formation of structure.

The relationship between speed and energy efficiency
is particularly challenging for nonstationary nonequilibrium
processes [16,17]. One expectation that might come from
equilibrium thermodynamics is that fast irreversible processes
will dissipate more energy and entropy than slow quasistatic
processes connecting the same initial and final states [18]. In-
cluded in near equilibrium processes is the constraint that the
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system has enough time at each step for local inhomogeneities
to relax. In this case, the dissipation, often quantified by the
entropy production rate, is roughly the inverse timescale of
the dominant nonequilibrium effects. However, intuition es-
tablished for large systems near equilibrium need not hold for
systems that are small, strongly driven, or undergo transient
or fluctuating nonequilibrium processes. Nevertheless, accu-
mulating evidence in stochastic thermodynamics [19] seems
to support this trade-off between speed and dissipation and
the idea that more time will be required for processes that are
less dissipative [20–25]. For example, some thermodynamic
speed limits suggest that rates of dissipation have an upper
bound set by the intrinsic timescale of the system, regardless
of its size or its “distance” from equilibrium. These results
might be taken to suggest that the more time required for a
process, the smaller the associated dissipation. However, these
global bounds on stochastic processes have not yet been fully
analyzed at the level of stochastic paths.

Here, we test the hypothesis that there is a positive corre-
lation between speed and dissipation away from equilibrium
by controlling the currents exchanged between a system and
its surroundings. Fluctuations in energy, entropy, and concen-
trations are important for testing this hypothesis for finite-size
systems, a regime where stochastic paths are known to pro-
vide useful quantitative information [26–28] about both the
internal timescales set by the kinetics and dissipation [29–32].
These observables can be extracted from Markov models
parametrized based on deterministic trajectories [33,34] or
kinetic theory [35]. However, an open technical challenge
is the probability of stochastic paths constrained by time in
continuous-time Markov chains [36–38]. We overcome this
challenge by deriving an explicit form for the path probability
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of any continuous-time Markov process. This closed form
expression provides a direct method for computing the av-
erage speed and dissipation of nonequilibrium paths over a
fixed period of time. Applying this formula, we quantitatively
analyze stochastic paths to determine when faster processes
dissipate more entropy.

II. CONTRACTED PATH PROBABILITY

Consider a small system with a discrete set of N states,
one designated as the initial state and one designated as
the final state. Take the transitions between these states to
be a Markov jump process [39]. These stochastic dynam-
ics have been used to describe various processes, including
self-assembly [40], quantum dots [41], and molecular mo-
tors [42]. Mathematically, they are represented by a collection
of time-homogeneous transition rates w(y|x) for a jump from
state x to state y with total escape rate wx = ∑

y �=x w(y|x)
from x. The dynamics of occupation probabilities for
each state are described by the master equation [39],
ṗ(x, t ) = ∑

y w(x|y)p(y, t ). Its path summation solution [43]
gives the marginal probability,

p(x f , t ) =
∞∑

n=0

∑
Cn

μ(Cn = x0, x1, . . . , x f , t ), (1)

in terms of the joint probability μ that the system takes a path
Cn = x0, x1, . . . , x f of n jumps that ends in x f after a time t .
Each path Cn is a time-ordered sequence of states.

Stochastic thermodynamics has measures of dissipa-
tion for these stochastic paths [44,45]. Assuming local
detailed balance [46], the entropy change in the equilib-
rium reservoirs mediating the fluctuating dynamics puts
a constraint on the asymmetry of the transition rates:
−se[Cn]/kB = ∑n−1

i=0 ln w(xi+1|xi )/w(xi|xi+1). This entropy
flow is interpreted as the amount of entropy dissipated from
the system to the surroundings in traversing a path [47–49].
When the transition rates are exponentially related to the
energy, −se[Cn]/kB is the energy exchanged as heat be-
tween the system and surroundings, kBT ln w(x, y)/w(y, x) =
q(x, y) [50] at a temperature T [19,44,45]. However, imposing
a fixed observation time t � tn for the process constrains the
possible paths included in the path summation [36,37] and, in
turn, the thermodynamic costs. That is, fixing the observation
time alters nonequilibrium ensemble averages over paths and
the associated dissipation.

To account for a time constraint on stochastic pro-
cesses, we need the probability that a path is traversed by
an ensemble of stochastic trajectories, defined by a time-
ordered sequence of states and stochastic transition times
Tn = x0, t0; x1, t1; . . . ; xn, tn [38,51–53]. This contracted path
probability μ(Cn, t ) depends on the path probability and the
probability of a stochastic time sequence through Bayes’ the-
orem,

μ(Cn, t ) = p(t |Cn)p(Cn). (2)

The probability of a path is relatively straightforward to com-
pute from the transition rates and the escape rates,

p(Cn) = p(x0)
n∏

i=1

w(xi|xi−1)

wxi−1

. (3)

However, given the path Cn occurs, the probability it com-
pletes in a certain amount of time t

p(t |Cn) = ρ0 ∗ (ρ1 ∗ {. . . ∗ (ρn−1 ∗ [e−wxn (t−tn )])}) (4)

is more difficult to determine analytically. The nested con-
volutions, represented by ∗ here, are of the exponential
distributions of waiting times along a path. The waiting time
�t = ti − ti−1 in each state xi along a trajectory is exponen-
tially distributed

ρ(�ti|xi ) = ρi = wxi e
−�tiwxi (5)

and independent of the other escape rates and states [54,55].
The last exponential factor in these convolutions is the sur-
vival probability of the final state. Because of the stochastic
transition times, some trajectories remain in the final state for
t − tn � 0, but others may not reach x f or may leave x f within
the chosen time t .

What complicates (or simplifies) the formula for the
contracted path probability is the combinatorics of the es-
cape rates along the path: states along the path can have
degenerate escape rates that require accounting for their indis-
tinguishability. In Ref. [38], Sun derived the contracted path
probability,

μ(Cn, t ) = p(x0, t0)
n−1∏
i=0

w(xi+1|xi )

×
n′∑

j=1

ν j
∂mj−1

∂w
mj−1
x j

⎡
⎢⎣ e−wx j t∏n′

k=1,
k �= j

(wxk − wx j )mk

⎤
⎥⎦, (6)

where the sum is over the n′ unique escape rates. Preceding
the sum is the product of the path probability p(Cn) in Eq. (3)
and the prefactor

∏n−1
i=0 wxi in the convolutions of the waiting

time distributions, Eq. (4). The function ν j ,

ν j = (−1)mj−1

(mj − 1)!
, (7)

corrects for the indistinguishability of escape rates using the
degeneracy mj of the jth unique escape rate.

Our main analytical result is an exact expression for the
contracted path probability μ(Cn, t ) (the Appendix) [56],

μ(Cn, t ) = p(x0, t0)
n−1∏
i=0

w(xi+1|xi )

×
n′∑

j=1

ν j f (0)
j

m j∑
l=1

(
mj − 1

l − 1

)
(−t )mj−l d (l−1)

j , (8)

which consists of three functions. The first, ν j , in Eq. (7)
again accounts for the multiplicity mj of the jth of the n′
unique escape rates along a path. The second is a function
proportional to the exponential distribution of waiting times
in each state f (0)

j ∝ e−wx j t . The third, d (l−1)
j , is a combinatoric

function of the escape rate multiplicities that derives from the
nested convolutions of the waiting time distributions; these
combinatorics were previously pointed out as a particular
challenge in deriving the closed-form solution [38,57,58].
Equation (8) overcomes this challenge and has advantages
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for describing the stochastic thermodynamics of processes
constrained by time. It allows direct quantification of the
relative importance of paths with respect to their stochastic
time sequences, making it useful for extracting insights into
dynamical mechanisms. For example, the magnitude of the
probability can be used to assess the relative importance of
competing mechanisms.

To validate this contracted path probability formula, we
generated a sample of stochastic trajectories for an arbi-
trarily chosen path of length n = 1000 using kinetic Monte
Carlo [59,60]. From this sample, we found the histogram of
occurrence times agreed with the analytical distribution of
occurrence times for the trajectories. This theoretical distri-
bution is as follows:

p(t |Cn) =
n−1∏
i=0

wxi

n′∑
j=1

(−1)mj−1

(mj − 1)!

e−wx j t∏n′
k=1
k �= j

(wxk − wx j )mk

×
mj∑

l=1

(
mj − 1

l − 1

)
(−t )mj−l d (l−1)

j . (9)

Another point of comparison was the mean occurrence time,

〈τ 〉Cn =
∫ ∞

t0

t p(t |Cn)dt =
n∑

i=0

1

wxi

, (10)

which can be derived using the statistical independence of
the exponentially distributed waiting times along a path. We
found good agreement between the analytical and the numer-
ical mean path occurrence time.

To further validate the explicit contracted path probability
formula, we compared symbolic and numerical calculations
for paths with length n � 10. We evaluated the convolution
integrals in Eq. (4), the path probability p(Cn) in Eq. (3), the
nonexplicit contracted path probability formula in Ref. [38],
and the explicit contracted path probability in Eq. (8) for paths
of lengths n � 10. We also analyzed paths with n � 10 with
all possible combinations of degeneracies; for example, for
n = 3 we checked this formula for degeneracies of (1,1,2),
(1,3), and (2,2), the fully nondegenerate case (1,1,1,1), and
the fully degenerate case (4). Analytically, we confirmed that
this formula also simplifies to known expressions [36] when
the escape rates are distinct,

μ(Cn, t ) = p(x0, t0)
n∏

i=1

w(xi|xi−1)

×
n∑

j=0

e−wx j t∏n
k=1
k �= j

(wxk − wx j )mk
, (11)

and when the escape rates along a path are identical,

μ(Cn, t ) = p(x0, t0)
t n

n!
e−wt

n∏
i=1

w(xi|xi−1). (12)

In the former case, the sum is over the f (0)
j for each escape

rate j along the path, see the Appendix. This formula can be
evaluated for any path with known escape rates and a given
observation time, regardless of the path length n or the size of
the system.

FIG. 1. Completing a nonequilibrium process more quickly can
result in more or less dissipated entropy on average. (a) Model
with three energy levels in which a potentially dissipative cycle is
intermediate between initial (high energy) and final (low energy)
states. Transition rates up the energy gradient (gray) are a function
exp(−βεb/2) of the effective binding energy βεb in units of kBT .
Those down the energy gradient (thin black) represent the concentra-
tion of monomers c. Transitions around the cycle can dominate the
entropy flow. Clockwise (thick black) transitions with rate constant d
can be tuned relative to counterclockwise (thin black) with rate con-
stant c to control the dissipation. (b) Dissipation −�eSn/kB versus
speed 〈τ−1〉n, both conditioned on path length n, for the model in
(a). When c = d (blue), dissipation increases with the average speed
of paths that connect unassembled and assembled states. However,
when c < d (gray), dissipation decreases with the average rate of
path completion.

Using the general expression for the path probability
μ(Cn, t ), we consider two ensemble average observables, one
for speed and one for dissipation, for the paths from an
initial state x0 to a target state x f . The amount of time it
takes a stochastic trajectory on average to follow a path Cn

is the path occurrence time 〈τ 〉Cn = ∑n
i=0 w−1

xi
, the cumula-

tive mean of the independent and exponentially distributed
waiting times along the path. Its inverse 1/〈τ 〉Cn is a measure
of the speed at which the system traverses a single path.
We first analyze paths of length n connecting two states,
measuring the speed with the ensemble average for a given
n: 〈1/τ 〉n := ∑

Cn
〈τ 〉−1

Cn
μ(Cn, 〈τ 〉Cn ) and evaluating the path

probability at the path occurrence time 〈τ 〉Cn . For the set of
paths with length n, we also analyze the average entropy
dissipated −�eSn/kB = −∑

Cn
(se[Cn]/kB)μ(Cn, 〈τ 〉Cn ).

III. MARKOV MODEL FOR RELATIONSHIP BETWEEN
PATH SPEED AND DISSIPATION

Equipped with the contracted path probability, we built
a minimal model to control these measures of speed and
dissipation and to test the hypothesis that faster paths will
dissipate more, Fig. 1(a). At small length and timescales, if
systems dissipate more to actuate structure formation on a
specified timescale [61–64], they must often evolve through a
set of intermediate states that separate the initial and the target
states [65,66]. To represent this physical scenario, we adapt
Onsager’s three-state cycle, which he used for illustrating
detailed balance (breaking) [67], by adding additional states.
This expanded model is a discrete state Markov model of
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FIG. 2. Model parameters control whether faster paths dissipate more or less entropy on average. (a) Diagram mapping the sign of the
slope from −�eSn/kB as a function of 〈1/τ 〉n for a cross section of the parameter space (βεb, d|c = 5). For βεb > 0, the dissipation increases
with speed when c ≈ d (blue). For βεb < 0, the width of this region grows with increasingly negative βεb. Arrows indicate the parameter
sweeps shown in (b)–(e). (b) When paths are resolved by the number of jumps between the initial and the final states (and averaged), the
entropy dissipated to the surroundings −�eSn/kB, can increase or decrease as a function of the mean rate of path completion 〈1/τ 〉n. The
slope is controlled by the current around the cycle, which we tune by sweeping d ∈ [0.5, 10] in increments of 0.5 at fixed c = 5 and βεb = 1.
Dissipation increases with the rate of path completion (blue) for c ≈ d but decreases sharply when |c − d| � 0 (grayscale). Solid lines
connecting the slowest paths for the parameter sweep show a parabolic trend (black). (c) Dissipation −�eSn/kB as a function of the mean rate
of path completion 〈1/τ 〉n resolved (averaged) by the path length n. The slope is controlled by sweeping βεb ∈ [−10, 10] in increments of 1
with fixed c = 5 and d = 8. (d) The yield

∑
Cn

μ(Cn, 〈τ 〉Cn ) has the same relationship to the dissipation −�eSn/kB as the speed 〈1/τ 〉n. (e)
Dissipation −�eSn/kB as a function of the yield

∑
Cn

μ(Cn, 〈τ 〉Cn ) resolved (averaged) by the path length n. The yield plateaus above βεb = 1.

dissipative self-assembly in which paths that lead downhill
when εb > 0 (or uphill if εb < 0) in energy connect an initial
state to a final state with an impeding dissipative cycle.

Stochastic paths are often numerically sampled or explic-
itly enumerated [28,68–71]. Computationally, we evaluate
the path ensemble averages of speed and dissipation by
enumerating paths up to n = 15 that connect the high and
low energy states. Taking the initial marginal probability
p(x0 = 1) = 1, we compute the probability of each with our
exact expression, but we could also compute the probability
of preferred paths (e.g., high probability paths accounting
for specified percentage of probability flux) for larger net-
works using a depth-first search procedure with path-culling
criteria [37].

The model has three parameters representing common
experimental control variables: the relative stability of the
monomers and assembled structure (the binding energy εb),
the concentration of the monomeric units c, and a dissipation
parameter d . The relationship between c and d controls the
dissipation associated with traversal of a step of the cycle,
± ln c/d , which is zero when c = d . In a physical system,
the parameter d could be the concentration of a fuel con-
sumed to drive the process, the diffusion of matter in space,
or some energy input driving the system through the cycle
states.

By design, these parameters provide control over both the
speed of paths connecting the high (low) energy initial state

and the low (high) energy final state and the associated dissi-
pation. With increasing path length n, the entropy dissipated
−�eSn/kB can increase or decrease, depending on the exact
values of the parameters. However, the speed 〈1/τ 〉n decreases
with n because longer paths have more terms (1/wxi ) con-
tributing to the mean path occurrence time; a longer amount
of time to complete results in a slower speed, hence the de-
crease with n. (We note, however, that this correlation may
not hold in networks whose escape rates are not similar in
magnitude.) Varying these control parameters also modulates
the competition between the speed of path completion and the
associated entropy dissipated, showing that faster paths do not
necessarily dissipate more. Figure 1(b) shows that in kinetic
networks of this type, the dissipation −�eSn/kB can increase
with the speed 〈1/τ 〉n as one would expect from equilibrium
thermodynamics, when there is no preferred direction among
the intermediate states. However, when there are nonequilib-
rium currents and a strongly preferred direction among the
intermediate states, then faster paths dissipate less, Fig. 1(b)
(gray).

To understand this behavior, first suppose that the concen-
tration parameters are nearly equal c ≈ d . In this case, the
energy gradient determines the dependence of dissipation on
the timescale of path completion, Fig. 1(b) (blue). Only the
sequence of states down the energy gradient contribute to the
path entropy flow −se[C2]/kB = 2 ln(c) + βεb. (The behavior
is similar when cycle transitions are removed, Supplemental
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Material (SM) [72].) Longer paths, which necessarily include
additional jumps around the cycle, take longer but do not dis-
sipate more. Consequently, the ensemble averages −�eSn/kB

and 〈1/τ 〉n are positively correlated because they both de-
crease with path length n. Now, when c �= d and paths are
long enough that jumps around the cycle are significant, each
transition adds ± ln c/d to the entropy flow. Contributions
to the entropy flow in one direction of the cycle can be
negated by subsequent transitions in the reverse direction, so
only net transitions on the cycle contribute. Paths that make
K transitions around the cycle in a particular direction will
dissipate an additional ±K ln c/d . The average entropy dissi-
pated increases with path length n. As a result, it is negatively
correlated with the mean path occurrence time 〈τ 〉n, which
increases linearly with n, Fig. 1(b) (gray).

Because of this balance between dissipation (traversal of
the cycle) and speed (traversal of the energy gradient), there
are regions of parameter space where the dissipation is an in-
creasing or decreasing function of the rate of path completion,
Fig. 2. Transitions between these regimes where equilibrium
thermodynamic intuition does and does not hold are con-
trolled by the relative magnitudes of the cycle transition rates
c/d and the relative binding energy βεb. Dissipation and speed
are positively correlated for c/d ≈ 1 when jumps around the
cycle do not significantly increase dissipation. Overall, in-
creasing the speed only increases the dissipation when the
cycle is weakly dissipative c ≈ d .

Further, the thermodynamic stability of the assembled
state (determined by the binding energy βεb) has an ef-
fect on where exactly this border between dissipative and
weakly/nondissipative cycles lies in parameter space. Widen-
ing the energy-level gap when βεb < 0 increases the width
of the area in | ln c/d| parameter space where the hypoth-
esis holds, Fig. 2(a) (blue). Under these conditions, paths
are uphill in energy (βεb < 0), so an increasing amount of
energy is required to force the system into the energetically
unfavorable assembled state. These paths are then generally
lower in probability with less entropy dissipation than their
counterparts with higher βεb, Fig. 2(e). Furthermore, the prob-
ability decays (exponentially with n) more quickly than the
entropy dissipation increases (linearly with n). Therefore, the
average dissipation decreases with n and, as a result, speed and
dissipation are positively correlated for sufficiently negative
βεb, Fig. 2(b). We see the same correlation when the cycle
transitions are removed and the binding energy is negative
(SM) [72].

These observations for paths conditioned on their
length translate into the average speed 〈1/τ 〉 and dis-
sipation −�eS/kB over the entire ensemble of paths,
Fig. 3. For example, the dissipation can be averaged
over paths of various lengths 0 � n � nmax, −�eS/kB =
−∑

n=0

∑
Cn

(se[Cn]/kB)μ(Cn, 〈τ 〉Cn ). We systematically var-
ied the model parameters and identified conditions where
speed is maximal and this measure of dissipation is minimal.
Scanning values of βεb with fixed c and d , there is a maximum
average speed located at c = e−βεb when jumps up and down
the energy gradient have the same transition rate, Fig. 3(a).
Scanning d with fixed values of βεb and c, there is a minimum
average entropy dissipation located at c = d , Fig. 3(b). These
extrema are also apparent in Figs. 2(b)–2(e). Their locations

FIG. 3. Speed and dissipation extrema in the parameter space.
(a) Entropy dissipated −�eS/kB versus speed 〈1/τ 〉 averaged
over all paths varying βεb ∈ [−10, 10] with fixed c = 5 and d =
{0.5, 0.6, 1, 1.5, 4}. Darker gray indicates larger values of d . Dashed
horizontal lines indicate c = e−βεb for each d . Solid black line con-
nects vertices for different d values. (b) Ensemble level dissipation
−�eS/kB versus speed 〈1/τ 〉 for d ∈ [1.5, 10] in increments of 0.5
and other parameters fixed at c = 5 and βεb ∈ [1, 4] in increments
of 1 (darker gray indicates lower value of βεb). Dashed vertical
lines indicate c = d for each fixed βεb value. Solid black line con-
nects vertices for different βεb values. (c) Maximum average speed
(bottom) and associated average entropy dissipated −�eS∗/kB :=
−�eS/kB|max〈1/τ 〉 (top) for d ∈ [0.5, 10] and fixed c = 5. (d) Mini-
mum entropy dissipated on average (bottom) and associated speed
〈1/τ 〉∗ := 〈1/τ 〉|min(−�eS/kB ) (top) for βεb ∈ [−10, 10] for fixed c =
5. Dashed lines are exponential trends for βεb > − ln c (blue) and
βεb < − ln c (gray).

mark the transition of ensemble averages between regimes of
positive and negative correlation between speed and dissipa-
tion.

Extremizing with respect to the model parameters, we
find that minimizing dissipation does not simultaneously
maximize speed or vice versa in this model. Hence, dissi-
pation cannot be at its global minimum when speed is at
its global maximum. The maximal speed is dictated by the
thermodynamic stability of the final state controlled by the
binding energy βεb, Fig. 3(a). The minimal dissipation is
largely dictated by the nonequilibrium currents around the
intermediate states controlled by the kinetic coefficients d/c,
Fig. 3(b). To simultaneously minimize dissipation and max-
imize speed, we use the fact that the parameters provide
independent control and extremize each observable in se-
quence. Figure 3(d) bottom shows that the minimum average
entropy dissipated increases exponentially with βεb and with
different growth rates on either side of βεb = − ln c. We see
in Fig. 3(b) that this minimum entropy dissipated occurs for
a given value of βεb at c = d . At approximately the same
relative binding energy, the associated average rate has a
maximum, Fig. 3(d) top. This maximum suggests that the
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most optimal combination of extremizing both the entropy
dissipated and the rate is obtained with a homogeneous kinetic
network c = d = e−βεb . Similarly, the maximal average rate
occurs for ln d/c < 0.4, Fig. 3(c) bottom. We see from
Fig. 3(a) that the maximum average rate for a given d occurs at
c = e−βεb . Within this range the associated entropy dissipated
has a minimum at c ≈ d , Fig. 3(c) top. So, for this model, the
minimization of the mean entropy dissipated and maximiza-
tion of the mean speed at this level commute.

IV. CONCLUSIONS

Natural and synthetic systems often balance the speed of
transitioning between states and the associated cost of dissi-
pation. Understanding this balance has the potential to benefit
the rational design of synthetic systems that are adaptive and
responsive to their environment. As a step in this direction, we
derived an analytical formula for the occurrence probability
of stochastic paths through the path summation solution of
the master equation. This formula provides a means to iden-
tify and assess the kinetic relevance of paths for stochastic
processes over a specified time frame and without necessarily
constraining end points. This contracted path probability is
necessary to directly calculate ensemble-level observables,
such as entropy production and flow, from a set of paths
explicitly constrained to complete the process in a fixed time.
Applying this formula to a model for self-assembly showed

that increasing speed need not be accompanied by increasing
dissipation and, in some cases, dissipation cannot be min-
imized when speed is maximized. Based on these results,
networks governing the dynamics of other physical and chem-
ical systems, such as biochemical reaction cycles and the
dissipative cycles of chemically active materials, might be
tuned to control whether faster paths dissipate less than slower
paths on average, counter to the equilibrium thermodynamic
intuition that “more haste” brings “more waste.”
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APPENDIX

We derived an explicit closed form expression for the con-
tracted path probability,

μ(Cn, t ) = p(x0, t0)
n−1∏
i=0

w(xi+1|xi )
n′∑

j=1

(
(−1)mj−1

(mj − 1)!

)⎛
⎜⎝ e−wx j t∏n′

k=1
k �= j

(wxk − wx j )mk

⎞
⎟⎠

mj∑
l=1

(
mj − 1

l − 1

)
(−t )mj−l d (l−1)

j . (A1)

One way to derive this result is to explicitly evaluate the
successive derivatives in Eq. (6). These are derivatives of the
function,

f (0)
j = e−wx j t∏n′

k=1
k �= j

(wxk − wx j )mk
, (A2)

with respect to the jth unique escape rate wx j . Here, f (l )

indicates the lth derivative of f . These derivatives can be
evaluated using the product rule, where f (0)

j = g(wx j )h(wx j )

is composed of the functions g(wx j ) = e−wx j t and

h(wx j ) = [
∏n′

k=1,k �= j (wxk − wx j )
mk ]−1. Because of the product

in h(wx j ), each derivative of f j results in a series of terms,
all of which have a factor of f (0)

j . Each successive derivative
(with respect to the same chosen unique escape rate) also
accumulates a series of terms t0 to tmj−1. These terms
have an alternating sign from the qth derivative of g(wx j ):
(−t )qe−wx j t . The terms of order t0 and tmj−1 correspond to
the pure derivatives of the h and g, respectively.

The pure derivative of the denominator h has a form that
is harder to evaluate; each factor the product within h(wx j )
requires application of the product rule and chain rule. The
lth derivative for the kth factor is as follows:

∂ l

∂wl
x j

1

(wxk − wx j )mk
= (−1)l

∏l−1
u=0(mk + u)

(wxk − wx j )mk+l
. (A3)

This formula is sufficient to determine the first derivative of
h(wx j ),

h(1)(wx j ) = −1∏
k=1
k �= j

(wxk − wx j )mk

n′∑
l=1
l �= j

ml

wxl − wx j

, (A4)

where the sum accounts for the derivative of each factor in the
product.

For higher order derivatives of h(wx j ) with respect to a
unique escape rate, we must take into account all combina-
tions of orders of derivatives among the terms in the product.
In each combination, the order of the derivatives of each term
in the product must sum to the total order of the derivative
of h(wx j ). The original function h(wx j ) is an eigenfunction
with respect to the derivative operator, just as every derivative
of g(wx j ) contains g(wx j ): ∂k/∂wk

x j
(e−wx j t ) = (−t )ke−wx j t . So,

f (0)
j is also an eigenfunction of ∂k/∂wk

x j
with eigenvalues that

account for the multiplicities of the unique escape rates. The
eigenvalues have mj terms, where mj is the degeneracy of
the unique escape rate chosen. One of the terms is the pure
kth derivative of h (multiplied by g) and another is the pure
kth derivative of g (multiplied by h). The remaining mj − 2
terms of index l account for mixed derivatives of h and g.
The number of occurrences of each of these mixed terms is
represented by the binomial coefficient

(mj−1
l−1

)
appearing in

Eq. (A1). Each mixed term is the product of the (l − 1)th
derivative of g(wx j ) and the (mj − l )th derivative of h(wx j ).
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The closed form expression of the contracted path proba-
bility in Eq. (A1) has one remaining term d (l−1)

j . This term has
the form of the h(wx j ) portion of the eigenvalue of f j (i.e., the

portion of f
(mj−1)
j / f (0)

j corresponding to the derivative(s) of
the denominator in Eq. (A2). For the first derivative l − 1 = 1,
this function is as follows:

d (1)
j =

n′∑
α=1
α �= j

mα

wxα
− wx j

, (A5)

which is what we expect from the first derivative of h(wx j ) in
Eq. (A4). The key to finding the explicit expression for the
function d (l−1)

j is recognizing that their structure is related to
the unrestricted partitions Ul−1 of l − 1. The number of terms
in d (l−1)

j is the number of unrestricted partitions |Ul−1| of
l − 1. For example, if l − 1 = 2 then,

d (2)
j =

n′∑
α=1
α �= j

mα (mα+1)

(wxα
− wx j )2

+
n′∑

β=1
β �= j

n′∑
γ=1

γ �= j,β

mβmγ

(wxβ
− wx j )(wxγ

− wx j )
, (A6)

with two terms corresponding to the two partitions |U2| = 2 of
l − 1 = 2. The sums are over the n′ unique escape rates where
wxα

�= wx j ; the multiplicity of the unique escape rate α is mα .
We can recognize that each term is related to an unrestricted
partition: the first term corresponds to partition (2) and the
second term corresponds to partition (1,1). More generally,
we can label each term as the kth partition U k

l−1.
Also noteworthy is that each term has numerical coeffi-

cients. In the examples above, these coefficients are all one.
However, for the kth partition, the number of coefficients χ ,
in the partition |U q

l−1| is the number of sums for that term.

The coefficient of the kth term in d (l−1)
j is also related to the

unrestricted partitions of l − 1 by

C(l − 1, k) = (l − 1)!∏|U k
l−1|

v=1 (χv )!
∏|U k

l−1|′
w=1 (λw )!

, (A7)

where there are |U k
l−1|′ unique values in the kth partition of

l − 1. The vth unique coefficient χv in the kth partition of
l − 1 has a multiplicity of λv . With these observations, we
can construct any d (l−1)

j . For example, in Eq. (A6) we can
recognize that the first term corresponds to partition (2) and
has coefficient C(2, 2) = 1, whereas the second term corre-
sponds to partition (1,1) and has coefficient C(2, 1) = 1. We
confirmed these coefficients for l − 1 � 12.
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