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Quantum mechanical interpretation of the minimum viscosity of metallic liquids
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Possible fundamental quantum bounds for viscosity and many other physical properties have drawn serious
considerations recently from diverse communities encompassing those studying quantum gravity, high-energy
physics, condensed matter physics, strongly correlated electron systems, and “strange metals,” to name a few.
However, little attention has been paid by materials scientists and the fluid dynamics community, perhaps
because of the general belief that quantum mechanics is of little consequence for classical fluid dynamics.
Here, considering the extrapolated high-temperature viscosity of 32 metallic alloy liquids as representative of
minimum viscosity, experimental results are presented and evaluated in terms of a number of quantum- and
statistical-mechanics-based theories. The surprising result is that the experimental data are within one order
of magnitude of estimates from those theories. That quantum mechanics could be of importance at such high
temperatures in conventional classical fluids is quite interesting. Another surprise is that the minimum viscosities
of metallic alloy liquids are not too different from an archetypal quantum liquid, such as He.

DOI: 10.1103/PhysRevE.106.054150

I. INTRODUCTION

Among the hydrodynamic properties of a liquid, the shear
viscosity is of utmost importance for glass formation. It is a
property that reflects the timescale for momentum dissipation
and structural relaxation. In glass-forming systems, it changes
by 12−16 orders of magnitude between the liquidus (Tl ) and
the glass transition temperatures (Tg). An important question
that has attracted much attention in recent years is whether
a fundamental lower bound constrains the viscosity of all
materials. Interestingly, this has been strongly debated not
among the glass community, but among other communities
such as string theorists examining the viable consequence
of the powerful conjectured gauge/gravity duality [1], high-
energy and nuclear physicists probing quark-gluon plasmas
[2], and condensed matter physicists studying strongly corre-
lated electronic systems, especially high-Tc superconductors
[3]. Intriguingly, hydrodynamic models are finding increasing
applications for charge conduction and dissipation timescales
in strongly correlated electron systems [4], similar to mo-
mentum dissipation in liquids. Naturally, quantum gravity and
quantum field theories are the basic starting points of such
theories [1–4]. Although quantum mechanics provides the
foundation for all fundamental theories of material properties,
classical and statistical mechanics have remained the corner-
stone of fluid dynamics; quantum mechanics is considered to
be of little consequence. Therefore, it might appear a little
strange that such disparate exotic theories have a connection
with ordinary fluid flow properties. Here, we present experi-
mental results for the minimum viscosity of metallic liquids at
temperatures far above Tl and compare them with theoretical
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predictions. In general, the experimental results are roughly
within an order of magnitude agreement with different theo-
retical predictions. These results, therefore, are expected to be
of considerable interest to theorists active in many areas of
physics since the main focus of these theories is on the lower
bound of viscosity.

Motivated by notions from reaction rate theory, the tem-
perature dependence of liquid shear viscosity is generally
described by the simple relationship,

η = ηoexp[E (T )/kBT ], (1)

where ηo is a constant, E (T ) the temperature-dependent acti-
vation energy of a particular material, and kB the Boltzmann
constant. However, this simplicity is lost when the functional
form of E (T ) over the entire temperature range, encom-
passing the equilibrium and supercooled liquids (below Tl ),
becomes the subject of first principle theories or empirical
models. Predicting E (T ) over the entire temperature range,
particularly for supercooled liquids, is a challenging endeavor
for theorists [5–9]. In contrast, by assuming the activated
form of Eq. (1) it has been much easier to suggest a possible
material specific value for ηo [10]. Almost a century ago,
inspired by notions of reaction rate theory, Eyring proposed
a theory for the viscosity of liquids based on reaction kinet-
ics and propagation of “holes” of the size of the molecules
in the liquid [10]. After several approximations, he arrived
at a simple, but intriguing link between Planck’s constant h
(which appeared in the quantum attempt rate for overcoming
an energy barrier in the reaction rate theory), and the prefactor
in Eq. (1), ηo, via a geometric factor containing the atomic
or molecular volume number density n, as ηo = nh. Although
the century-old Eyring’s description of fluid dynamics under
shear as a sequence of reactions associated with “hole hop-
ping” between equilibrium states is rather simplistic, with
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hindsight, it appears to be quite illuminating in positing a
connection between a seemingly classical quantity such as the
viscosity of a fluid at noncryogenic temperatures and Planck’s
constant of quantum mechanics. Since the activation energy
in Eq. (1) is positive, Eyring’s expression for the viscosity
suggests that it cannot be smaller than nh. In a recent publi-
cation [11], rigorous proofs have been presented that, under
quite modest conditions, the product nh sets the scale for
a lower bound for the viscosity. By introducing the “local”
Heisenberg uncertainty principle in many-body systems and
invoking other considerations, various bounds (both upper and
lower) for many other dynamic and thermodynamic properties
were suggested [11].

Originating from an entirely different perspective on the
hydrodynamic behavior of a special type of black hole, called
a black brane, it was suggested sometime back [1] that the
ratio of the shear viscosity and the entropy density (s) has a
universal lower bound, determined by the fundamental con-
stants h and kB.

η

s
� h

8π2kB
= 6.08 × 10−13˜K s. (2)

This will be referred to as the KSS prediction. It is
consistent with measurements of viscosity of relativistic
quark-gluon plasmas at extremely high temperatures in rel-
ativistic heavy-ion collider experiments at CERN [2]. It was
also argued that this limit may apply even in strongly inter-
acting Bose-Einstein condensates (BECs) at low temperatures
and nonrelativistic liquids such as water and He. After much
initial controversy, this conjecture has been largely accepted
[12], although the prefactor may differ from 1/8π2 in different
systems. It is quite noteworthy that fundamental constants
may determine properties such as the viscosity! If μ is the
entropy per atom, then s = nμ, and Eq. (2) becomes

η �
( μ

8kBπ2

)
nh, (3)

It should be noted that the lower bound on the viscosity
that Eyring’s relation suggests and the estimate from Eq. (3)
are very similar, although they originated from entirely differ-
ent theoretical perspectives. Since μ/kB is dimensionless, the
prefactor is just a numerical quantity differentiating the two
estimates.

In another recent development, Trachenko and Brazhkin
(hereafter referred to as TB) [13] argued for a minimum value
of the kinematic viscosity, νm = η/ρ (ρ is the mass density),
of liquids that can be expressed in terms of the electron (me)
and molecular or atomic (m) masses,

νm = h

8π2(mem)1/2 , (4)

Since the liquid viscosity decreases with increasing tem-
perature [following Eq. (1)] and the gas viscosity increases
with increasing temperature, at sufficiently high temperatures
the viscosity must pass through a minimum. Such a minimum
has been observed in many inert elemental liquids and vapor,
water, and CO2 [1,13,14]. For the liquid, the shear viscosity
is connected to the high-frequency shear modulus G∝ by
Maxwell’s relation, η = G∝τ = c2ρτ , where τ is the struc-
tural relaxation time and c is the transverse sound velocity.

Assuming that the minimum viscosity is attained when the
mean free path becomes comparable to the atomic separa-
tion a (the Mott-Ioffe-Regel limit [15]), and approximating
c = a/τ and τ = 2π/wD, where wD is the Debye frequency,
the kinematic minimum viscosity for the liquid is

νm = η/ρ = a2/τ = a2wD/2π, (5)

The kinetic theory of gases predicts that η = ρυL/3 for
the gas viscosity, where υ and L are, respectively, the average
velocity and the mean free path of the molecules. Then, tak-
ing L = a, and τ = a/v = 2π/wD, the kinematic minimum
viscosity for the gas is expressed as

νm = η/ρ = a2wD/6π. (6)

Equations (5) and (6) differ by a numerical factor of 1/3.
From the relation between the cohesive energy Ecoh and the
Debye frequency of solids, wD = (Ecoh/ma2)1/2, Eq. (5) takes
the final form

η/ρ = a/2π (Ecoh/m)1/2. (7)

Equation (4) was obtained when Ecoh was approximated
by the Rydberg energy. TB claimed fair agreement between
the experimental data and the theoretical predictions for many
elemental inert gas liquids, as well as water, CO2 and CH4.
To the best of our knowledge, we are not aware of any such
study on metallic liquids. The main focus of this investigation
is, therefore, to evaluate the experimental data for metallic
liquids in terms of the three theories mentioned previously
[1,10,13].

II. EXPERIMENTS

The temperature-dependent viscosities of 32 metallic alloy
liquids were measured over a few hundred degrees above
Tl in the equilibrium and deeply supercooled metastable liq-
uids below Tl , until crystallization. Measurements on levitated
(container-free) liquids under high vacuum (∼10−7 Torr)
using the electrostatic levitation technique [16,17] allow
the liquid to be probed into the supercooled state in a
contamination-free environment. For the present discussion,
however, only viscosities far above Tl are of interest for
the reasons already outlined. The viscosities were deter-
mined using the established oscillation technique [18], where
near-resonant frequency oscillations are induced in, typically
50−60 mg, levitated liquid droplets by applying a sinusoidal
electric field. The exponential decay time τdec of the induced
oscillations is related to the viscosity by [18]

η = ρR

(l − 1)(2l + 1)τdec
, (8)

where R is the sample radius and l the order of the harmonic,
which is 2 under the experimental conditions. The sample
radius and its temperature dependence were measured from
two-dimensional video images of the liquid drops to evaluate
density and viscosity.

III. RESULTS AND DISCUSSION

Before presenting the experimental data, it should be noted
that the minimum viscosity for the metallic liquids cannot be
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FIG. 1. Viscosities at high temperatures for a few representative
liquids. The lines are Arrhenius fits to the experimental data above
TA, which is the temperature at which deviation from Arrhenius fits
starts.

measured directly in most cases because such minima appear
at extremely high temperatures where measurements cannot
be performed due to excessive evaporative mass losses from
the liquids. In principle, such measurements may be possible
under high pressure, but difficult to do so because of the
reactivity of most metals with containers at such high tem-
peratures; containerless technique, such as the one used here,
has not been developed for such high pressures. Therefore,
the prefactor in viscosity, ηo, from the highest-temperature
experimental data is taken as an approximate measure of the
minimum viscosity.

To determine ηo from the experimental data over a fi-
nite temperature interval, a knowledge of the temperature-
and material-dependent parameter E (T ) is necessary. Interest-
ingly, above a characteristic crossover temperature TA, E (T )
becomes approximately temperature independent and Eq. (1)
becomes effectively Arrhenius. From both experimental and
molecular dynamics simulation studies, TA has been identified
as the temperature below which the liquid dynamics becomes
cooperative [19–22]. Therefore, ηo can be determined from
fits of the experimental data to Eq. (1) above TA, as shown in
Fig. 1; if Eq. (1) is not strictly Arrhenius even at such high
temperatures as reported in [23], the possible consequence of
this would be an underestimation of ηo. This, and the previous
approximation (taking η0 as a measure of minimum viscosity),
may make the present estimates smaller, but unlikely to be
larger than the minimum viscosity.

We have investigated possible consequences of those ap-
proximations to the present results using available kinematic
viscosity data over an extended temperature range from the
NIST database [14] for four representative liquids and gases
with different types of chemical interactions. Distinct minima
in the kinematic viscosity were observed for those liquids
under pressure in the supercritical states. We selected two
inert systems, helium and argon (van der Waals bond) under
100 MPa pressure, water (hydrogen bond) under 100 MPa

pressure, and methane (organic, covalent bond) under 20 MPa
pressure. The viscosity data were analyzed from Tl up to
temperatures where the temperature dependence of viscosity
deviated significantly from Arrhenius-type behavior. The up-
per limits for the Arrhenius-type relation were found to be
about 26 K (helium), 200 K (argon), 370 K (water), and 200 K
(methane). The minimum viscosities for the corresponding
liquids were observed near 56, 250, 710, and 250 K, respec-
tively. The ηo and ηmin for these liquids are 2.01 × 10−8 and
7.4 × 10−8 m2/s for He, 3.4 × 10−8 and 7.7 × 10−8 m2/s for
Ar, 0.58 × 10−8 and 12.1 × 10−8 m2/s for H2O, and 3.83 ×
10−8 and 11.0 × 10−8 m2/s for CH4. Therefore ηmin are larger
than ηo by factors of 3.7, 2.26, 21, and 2.9, respectively for
He, Ar, H2O, and CH4. The ratio for ηmin/ηo is anomalously
large for H2O, most likely because of its known anomalous
properties, such as a maximum in the density with tempera-
ture. Assuming similar behavior for the metallic liquids, ηmin

may, therefore, be larger than ηo by a factor of 2−4 if we
exclude H2O and about 7 if we take an average for all four
liquids. To keep the narrative simple, we will consider the
upper limit of 4 as the appropriate correction factor for all
metallic liquids studied in the present investigation.

The number density n is required to make a comparison
with Eyring’s relation, which can be determined from the
experimental density data. While, to be precise, the number
density at very high temperature is needed, a useful ap-
proximation is the value at Tl . Since the thermal expansion
coefficient of these liquids is of the order of 10−5 [24], if
the minimum appears at a temperature that is 1000 K above
Tl , this may introduce an error of a few percent in n, which
is much smaller compared to the effects of other approxima-
tions to the experimental data, as mentioned above. Figure 2
shows the ratios of the experimentally determined values
of ηo and estimates from Eyring’s relation as a function of
fragility, where the fragility is defined as TA/Tg [19,21]. It
should be noted that this measure of fragility differs from the
conventional fragility parameter introduced by Angell [25],
m = dlogη/d (Tg/T ) at Tg, which measures how fast or slow
the viscosity changes with temperature as Tg is approached.
Liquids with smaller m values are termed strong and larger
ones as fragile. Instead, the present measure of fragility was
used since many of the liquids examined are marginal or poor
glass formers; making measurements of traditional fragility
parameters is difficult because of rapid crystallization near
T � Tg. According to this scheme, TA/Tg is larger for stronger
liquids and smaller for fragile liquids, just the opposite of
m. It has been demonstrated [19,22] that the two measures
of fragility are equivalent, especially when relative changes
in fragilities are being considered. It is relevant to add that
deviation from Arrhenius-type behavior is much stronger for
the fragile liquids. Therefore, the difference between ηo and
ηmin is expected to be different for different liquids, with larger
differences for the more fragile liquids.

All relevant data used here and later for comparison with
other theories are presented in Table I. Important points to
note from comparison with Eyring’s estimate and experimen-
tal data (Fig. 2 and Table I) are (a) most of the experimental
values of ηo are larger (ratio is larger) or smaller (ratio
is smaller) than Eyring’s estimate (nh), up to an order of
magnitude, with only a few in agreement; (b) the value
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FIG. 2. The ratio of the experimental minimum viscosity and the
estimated viscosity following Eyring’s relationship for 32 metallic
liquids as a function of fragility parameter (see text). The numbers
corresponding to different alloy liquids are (see Table I), Cu64Zr36

(1), Vit101 (2), Cu47Zr47Al6 (3), Cu60Zr20Ti20 (4), Cu50Zr50 (5),
Cu50Zr45Al5 (6), Cu50Zr42.5Ti7.5 (7), Cu46Zr54 (8), Ti40Zr10Cu30Pd20

(9), Cu50Zr40Ti10 (10), Cu43Zr45Al12 (11), Zr64Ni25Al11 (12),
Zr56Co28Al16 (13), Vit105 (14), Ti40Zr10Cu36Pd14 (15), Vit106a
(16), Zr60Ni25Al15 (17), Zr65Ni10Cu17.5Al7.5 (18), Cu47Zr45Al8 (19),
Zr70Pd30 (20), Vit106 (21), Zr59Ti3Ni8Cu20Al10 (22), Zr75.5Pd24.5

(23), LM601 (24), Zr76Rh24 (25), Zr76Ni24 (26), Zr62Ni8Cu20Al10

(27), Zr64Ni36 (28), Ti39.5Zr39.5Ni21 (29), Y68.9Co31.1 (30), Zr82Ir18

(31), and Zr80Pt20 (32).

of ηo qualitatively tracks the fragility. Considering that the
minimum viscosities may be 4 (or 7 in the extreme case)
times larger than experimental ηo, all experimental data would
become larger than Eyring’s ηo by factors of 2–30. There
may be other corrections necessary to Eyring’s estimate as
suggested recently [11], which will be discussed later.

For a consistent comparison with TB’s theory, the kine-
matic viscosities are considered here instead of ηo. Focusing
on the predictions by TB [13], Fig. 3(a) shows the ratios of the
experimental data and estimates (TB1 in Table I) made using
Eq. (4), where the Rydberg energy of atoms was chosen as the
defining energy scale. Alternatively, the cohesive energy was
used for theoretical estimates (TB2 in Table I) in Fig. 3(b),
following Eq. (7). Interestingly, a rigorous estimate of the
lower bound of viscosity from local uncertainty relations in
Ref. [11] involves the variance of the local energy density.
If the local energy density is bounded by the cohesive en-
ergy, it provides more theoretical justification for this choice.
The cohesive energies were estimated from those of the el-
emental solids [26] using proper weighting factors [21,24]
reflecting the compositions and the heats of mixing of the
constituents from the binary alloys [27]. Since the cohesive
energies of elemental liquids are usually smaller by about
10% − 20% from the corresponding solids [28], assuming
similar differences for these alloys, the theoretical estimates
of minimum viscosities may be smaller by only about 5%
[square root of Ecoh in Eq. (7)] than the data presented here.
This is not significant considering that the other approxi-
mations made for the experimental data make much larger
contributions.

Without applying any correction to ηo, there are some
differences between the experimental data and the two the-
oretical estimates TB1 and TB2 (Fig. 3 and the last three
columns of Table I). However, if a correction factor of 4 (or

FIG. 3. The ratio of the experimental minimum viscosity and the estimated viscosity in (a) following Eq. (4) and (b) following Eq. (7) for 32
metallic liquids as a function of fragility parameter (see text). The numbers corresponding to different alloy liquid are (see Table I), Cu64Zr36

(1), Vit101 (2), Cu47Zr47Al6 (3), Cu60Zr20Ti20 (4), Cu50Zr50 (5), Cu50Zr45Al5 (6), Cu50Zr42.5Ti7.5 (7), Cu46Zr54 (8), Ti40Zr10Cu30Pd20 (9),
Cu50Zr40Ti10 (10), Cu43Zr45Al12 (11), Zr64Ni25Al11 (12), Zr56Co28Al16 (13), Vit105 (14), Ti40Zr10Cu36Pd14 (15), Vit106a (16), Zr60Ni25Al15

(17), Zr65Ni10Cu17.5Al7.5 (18), Cu47Zr45Al8 (19), Zr70Pd30 (20), Vit106 (21), Zr59Ti3Ni8Cu20Al10 (22), Zr75.5Pd24.5 (23), LM601 (24), Zr76Rh24

(25), Zr76Ni24 (26), Zr62Ni8Cu20Al10 (27), Zr64Ni36 (28), Ti39.5Zr39.5Ni21 (29), Y68.9Co31.1 (30), Zr82Ir18 (31), and Zr80Pt20 (32).

054150-5



GANGOPADHYAY, NUSSINOV, AND KELTON PHYSICAL REVIEW E 106, 054150 (2022)

7 in the extreme case) is applied to increase experimental ηo,
they would be closer to estimates from TB1, which considers
the Rydberg energy as the appropriate energy scale [13]. The
TB1 estimates would lie within factors of 0.2 (Cu64Zr36) to
5 (Zr80Pt20, two extreme cases) to the corrected experimental
data. Interestingly, the experimental minimum viscosities of
a few elemental and molecular liquids in Ref. [13] are also
larger than the theoretical estimates (TB1) by factors of 1.3–3;
however, for He, the experimental values are about 2 times
smaller under 20 MPa and 1.4 times smaller under 100 MPa
pressure than TB1. Instead, if cohesive energies are used in the
TB theory (TB2), the theoretical estimates would lie within
factors of 0.1 and 1.7 to the corrected experimental ηo for the
various liquids.

To make a comparison between the experimental data and
the KSS estimate [Eq. (2)], the entropy density of the liquid
is required. We have calculated the entropy density of two liq-
uids, Vit 106 (Zr57Nb5Cu15.4Ni12.6Al10) and Ti39.5Zr39.5Ni21

from the measured specific heat. The former alloy is a
bulk metallic glass former [29], and the latter crystallizes
into an icosahedral quasicrystal [30]. It is to be noted that
Ti39.5Zr39.5Ni21 cannot be quenched into a glass even by fast
cooling (∼ 106 K/s) melt-quench technique. The quoted Tg in
Table I for this alloy is an estimated value [31] if it were at
all possible to quench it into a glass. The specific heat was
measured from 2 to 1500 K for Vit106 and from 2 to 1600 K
for Ti39.5Zr39.5Ni21 using three different techniques. The solid
specific heat was measured below 373 K by a commercial
Physical Properties Measurement System (Quantum Design,
San Diego, USA), and by a commercial differential scan-
ning calorimeter (DSC, PerkinElmer, USA, model 7) for the
higher temperatures. Data for the equilibrium and supercooled
liquids were obtained using the modulation calorimetry tech-
nique [32] on electromagnetically levitated liquid droplets on
the International Space Station. In both cases, no experimental
data could be obtained in the supercooled liquids over about
200 K due to rapid crystallizations.

As shown in Fig. 4, the total entropy is 113 J mol−1 K−1

for Vit 106 up to the highest temperature of 1500 K and
89 J mol−1 K−1 for Ti39.5Zr39.5Ni21 to 1600 K. Using the ex-
perimentally measured values for ηo (5.28 × 10−5 Pa s for
Vit 106 and 7.4 × 10−5 Pa s for Ti39.5Zr39.5Ni21) and the ex-
perimental molar volumes at Tl (11.7 × 10−6 for Vit106 and
11.4 × 10−6 m3 for Ti39.5Zr39.5Ni21), the ratio of the viscosity
to entropy density is 5.4 × 10−12˜K s for Vit106 and 9.5 ×
10−12˜K s for Ti39.5Zr39.5Ni21. These values are, respectively, 9
and 16 times larger than the minimum estimates from Eq. (2);
the data for Vit 106 are surprisingly close to those of liquid
He [1]. However, if a correction factor of 4 is applied to ηo to
bring it closer to ηmin and the entropy density is extrapolated
to even higher temperatures, the experimental data for the two
liquids would likely exceed the KSS limit by about two orders
of magnitude, but still remain smaller than that for water (340
times larger [1]).

IV. CONCLUSIONS

After a factor of 4 correction applied to the experimental
data, they are larger than Eyring’s estimate for the viscosity

FIG. 4. Calculated entropies of Vit 106
(Zr57Nb5Cu15.4Ni12.6Al10) and Ti39.5Zr39.5Ni21 solids and liquids
from the specific heat data.

prefactor ηo by factors of 2–30. The important point to note,
however, is that Eyring’s estimate for ηo (= nh) nonetheless
continues to be a lower bound on the viscosity. This bound
is indeed anticipated if, at the point where the viscosity min-
imum occurs, the ionic mean free path is larger than its de
Broglie wavelength [11], which is empirically expected to
hold for conventional fluids. More general rigorous bounds
require further incorporation of the thermal equilibrium mo-
ments involving the system interactions and other additional
numerical factors (including those associated with the replace-
ment of h by quantum uncertainty derived inequalities) that
render the value of the resulting lower bound smaller than
nh [11]. With those considerations, the estimates are about
one to two orders of magnitude (see Table I) smaller than the
experimental data. This may suggest that a material specific
correction factor is needed to reconcile theory with exper-
iment. However, what that factor would be is not clear at
the moment. TB’s estimates appear to be much better when
possible corrections (about a factor of 4) are applied to the
experimental ηo. With this correction, TB1 estimates are, at
the most, a factor of 0.2−5 times larger than the experimental
data. TB2 estimates are slightly better; they are in agreement
with the experimental data within a factor of 0.1 − 1.7.

For the two liquids where specific heat and entropy data
are available, the KSS prediction appears reasonable. While
data for more metallic liquids are required to make a critical
assessment, since the molar entropy and molar volumes are
unlikely to change much among metallic liquids (a factor of 2
at most), they will likely be similar to what is reported here for
these two liquids. It then appears that the minimum viscosities
of classical metallic liquids are about one to two orders of
magnitude larger than the KSS estimates [1], but smaller than
that of water.

When the limitations of the experimental data are kept
in mind, the estimates from all three disparate theories ap-
pear to be roughly in agreement with the experimental data
within one to two orders of magnitude. Implications of these
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results will remain under future considerations. A connection
between minimum viscosity and cohesive energy appears to
be consistent with some theoretical [11] and experimental [21]
reports. Since a semiquantitative relation between cohesive
energy and fragility was reported earlier [21], the relation
between minimum viscosity and cohesive energy is consistent
with those results. Although not a central point of discus-
sion, the observed qualitative correlation between fragility and
minimum viscosity is still somewhat surprising since ηo is
an extreme high-temperature property and fragility is usually

defined near Tg, or in this case near Tl (TA is usually close to
Tl [19,22]).
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