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Driven particle in a one-dimensional periodic potential with feedback control:
Efficiency and power optimization
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A Brownian particle moving in a staircaselike potential with feedback control offers a way to implement
Maxwell’s demon. An experimental demonstration of such a system using sinusoidal periodic potential carried
out by Toyabe et al. [Nat. Phys. 6, 988 (2010)] has shown that information about the particle’s position can
be converted to useful work. In this paper, we carry out a numerical study of a similar system using Brownian
dynamics simulation. A Brownian particle moving in a periodic potential under the action of a constant driving
force is made to move against the drive by measuring the position of the particle and effecting feedback
control by altering potential. The work is extracted during the potential change and from the movement of
the particle against the external drive. These work extractions come at the cost of information gathered during
the measurement. Efficiency and work extracted per cycle of this information engine are optimized by varying
control parameters as well as feedback protocols. Both these quantities are found to crucially depend on the
amplitude of the periodic potential as well as the width of the region over which the particle is searched for during
the measurement phase. For the case when potential flip (i.e., changing the phase of the potential by 180◦) is
used as the feedback mechanism, we argue that the square potential offers a more efficient information-to-work
conversion. The control over the numerical parameters and averaging over large number of trial runs allow
one to study the nonequilibrium work relations with feedback for this process with precision. It is seen that
the generalized integral fluctuation theorem for error-free measurements holds to within the accuracy of the
simulation.
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I. INTRODUCTION

The feedback control associated with Maxwell’s demon
like setups allows one to extract heat from a thermal bath
and convert it into useful work [1,2]. In the Szilard engine
version of the Maxwell demon implementation, the demon
determines whether a single molecule present in a vessel
which is in contact with the thermal bath is on the left or right
half and uses that information to extract work via isothermal
expansion of one of the pistons at the ends of the vessel [3].
The engine apparently seems to violate the second law of
thermodynamics. After almost half a century of controver-
sies and discussions, the paradox has been resolved with the
understanding (for alternative views, see Refs. [4–8]) that it
is possible to extract work from such a system without con-
tradicting the second law of thermodynamics, provided one
has accounted for the cost of information processing carried
out by the demon [2,9–12]. In another words, it is possible to
convert information into free energy or extract work using the
available information. Though the problem itself is more than
a century old, experiments implementing the demon were only
achieved fairly recently both in classical [13–16] and quantum
systems [17–22].

One of the first experimental studies of a classical system
that converts information into free energy using feedback
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control was demonstrated by Toyabe et al. [13]. In this ex-
periment, a colloidal particle in contact with a thermal bath
undergoes rotational Brownian motion in a staircaselike po-
tential with the step height comparable to kBT . The staircase
like potential is created by a combination of a sinusoidal
potential and a linear one. The particle can take energy from
the thermal bath and make an upward jump or can slide down
in the direction of the negative gradient of the potential. In the
experiment, one selectively manipulates such fluctuations via
position measurement of the particle and subsequent feedback
control to extract work from the heat bath. The feedback con-
trol was carried out by changing the phase of the sinusoidal
potential by 180◦ (referred to as potential flip), depending on
the outcome of the measurement of particle’s angular position.
The feedback control helps to extract useful work from the
thermal bath via two routes: (i) the work done against the
linear potential (which the authors refer to as the free-energy
gain, �F ) and (ii) as work extracted during potential flip
(referred to as −W ). The work extracted is accounted for
by the energy equivalent of information obtained during the
measurement process and there is no violation of the second
law. The efficiency of conversion of information to work ex-
tracted of the engine is 28%. One of the motivations for the
present work is to use simulations to better understand the low
efficiency values and explore ways on optimizing this engine.

Many recent works, both in experiments [15,23,24] and in
theory [25–27], have looked at ways to improve efficiency
and power of information engines. In the domain of classical
information engines, the Brownian information engine based
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on a colloidal particle in a harmonic potential has been studied
extensively [28,29]. But similar detailed study on optimiza-
tion of the information engine based on particle moving in
a periodic potential is lacking. One way to improve the low
value of efficiency is by fine tuning the parameters and op-
timizing the control protocol of the feedback processes. A
general feedback scheme for extracting maximum work is
by changing the Hamiltonian of the system right after the
measurement in such a way that the post measurement state is
an equilibrium state of the new Hamiltonian [28,30–33]. Such
a protocol is completed by reversibly adjusting the external
parameters to the final values. In the present work, we vary
the shape of the periodic potential as well as the parameters
in the feedback protocol to achieve optimal conversion of
information to work based on this principle.

Advances in the area of stochastic thermodynamics in
the last few decades have augmented our understanding of
how irreversibility emerges from reversible dynamics [34,35].
Various fluctuation theorems have provided insights about
entropy production and statistical relationships between work
and free energy for systems driven far away from the
equilibrium [36–39]. The Jarzynski equality (JE) given by
〈e(�F−W )/kBT 〉 = 1 was one of the first work relations to
be derived and it relates the fluctuations in work during a
nonequilibrium process to the free-energy difference between
the final and initial equilibrium states [38]. This relation
breaks down in the presence of feedback process. For pro-
cesses involving error free measurement and feedback, one
can derive a generalized integral fluctuation theorem (GIFT)
given by 〈e(�F−W )/kBT −I+Iu〉 = 1, where I is the information
gained during the measurement process and Iu is the unavail-
able information measured using the time-reversed process
(see discussion in Sec. V for details) [40]. The JE itself takes
a modified form given by 〈e(�F−W )/kBT 〉 = γ , where γ (re-
ferred to as efficacy) measures the reversibility of the process.
Experimental verification of these relations have been done
for a few systems [13,41–43]. The simulations presented here
allow for checking the validity of these generalized fluctuation
theorems with precision for the studied system.

The paper is organized as follows. The following sec-
tion introduces the model. In Sec. III, we discuss the details
of the simulation and the results. Drift of the particle per cycle
and efficiency of information to work conversion for different
values of feedback delay are studied. Various optimization
studies of efficiency are presented in Sec. IV. These include
improvement of efficiency by optimizing the parameters of the
model and alteration of feedback protocol. The section ends
with the discussion of efficiency of a similar system but with a
square potential. In Sec. V, the generalized integral fluctuation
relation is discussed and verified for this system and in Sec. VI
we summarize and discuss the results.

II. THE MODEL

Consider a particle moving in a sinusoidal potential under
the influence of a constant driving force. The net potential in
which the particle moves is given by (see Fig. 1)

U (x) = ±U0 sin (2πx) − Fd x, (1)
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FIG. 1. Tilted sinusoidal potential with period equal to 1 unit.
The amplitude of the sinusoidal part and slope corresponding to the
uniform force are 1.5 (in units of kBT ) and 0.1 (in units of kBT
per period of the potential), respectively. The red and blue curves
correspond to the potential before and after switching of the phase of
the sinusoidal part of the potential.

where x is the position of the particle, 2U0 gives the depth of
the periodic potential, and Fd is the magnitude of the driving
force. The ± sign in the first term in the right-hand side is
present because the phase of the potential is changed during
the feedback process (see below). Additionally, the particle is
in contact with a thermal bath kept at temperature T . The
Lagenvin equation governing the motion of the particle is
given by

mẍ(t ) = −mξ ẋ(t ) ± 2πU0 cos[2πx(t )] + Fd + ζ (t ), (2)

where m is the mass of the particle and −mξ ẋ is the vis-
cous force. ζ (t ) is the thermal noise with zero average and
the correlation function is given by 〈ζ (t )ζ (t ′)〉 = �δ(t − t ′).
Fluctuation-dissipation relation connects the strength of the
noise, �, to the friction coefficient, ξ , by the relation: � =
2mξkBT . In the overdamped limit, one can ignore the inertial
term in Eq. (2) and this leads to the Brownian dynamics
equation,

ẋ = ±2πU0 cos(2πx) + Fd

mξ
+ ζ

mξ
. (3)

The feedback process that is designed to help the particle
move in the direction opposite to that of the externally applied
driving force, Fd x̂, and gain free energy in the process is as
follows: At times given by t = nτ , a measurement of particle’s
position is carried out. If the particle is located in the region
S (see Fig. 2), then the phase of the potential is changed by
π instantaneously (henceforth called potential flip) at a time
t = nτ + ε, where ε is the feedback delay time. If the particle
is not spotted in the region S, then no feedback process is
initiated. We shall later alter this feedback procedure in order
to improve information to free-energy conversion efficiency.
These alterations would involve, in addition to the potential
flips, the raising of the potential barrier when the particle is
not spotted in S.
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A B

FIG. 2. For measurements carried out at time t = nτ , the particle
can be either spotted in region S or outside of S. The feedback pro-
tocol is initiated according to the outcome of the measurement. The
sinusoidal potential is flipped with a time delay of ε, if the particle
is spotted in S. The solid blue and dashed red curves correspond to
the potential before and after the flip. The S regions are indicated for
both the potential configurations before and after flip, with the colors
respect to the sinusoidal curves. s is the width of the region S. R is
the region to the right of the potential minimum.

III. RESULTS FROM THE SIMULATION

The over-damped equation of motion, Eq. (3), has been
integrated numerically using the discretized version [44],

x(t + δt ) = x(t ) + ±2πU0 cos(2πx) + Fd

mξ
δt + fg, (4)

where δt is the time step and fg is a Gaussian distributed
random variable with zero mean and variance equal to 2kBT

mξ
δt .

We work with a system of units defined by ξ = 1, m = 1, and
kBT = 1. Length scale in the problem is set by the period of
the potential, which is 1 and the timescale is ξ−1, which is
also 1. The integration time step of the simulation is taken
to be δt = 0.0001 and has been checked for convergence by
carrying out simulations at one order less than this value.
For the results quoted in this section, the amplitude of the
sinusoidal potential is taken to be U0 = 1.5 and the magnitude
of the driving force is Fd = 0.1. All the feedback processes
in our study involve a single cycle and the duration of the
cycle is τ = 0.05. Before each cycle starts, we ensure that a
long enough equilibration run is carried out so that correlation
effects do not affect the results. The region S starts from the
maxima of the potential (point A in Fig. 2) and ends at the
point where the force is maximum (point B in Fig. 2), encom-
passing a total length of s = 0.25. The feedback delay time,
ε is varied from the minimum value possible of 0.0001 (since
δt = 0.0001) to 0.047. The mean values of various quantities
of interest are determined by averaging over 106 cycles.

A. Particle drift and efficiency

The physical quantities of relevance to study the stochastic
thermodynamics of the system are (i) the drift velocity of
the particle (which is related to the rate at which the system
gains free energy), (ii) the work done by the external agent in

flipping the potential, and (iii) the information gained during
the measurement. The average drift velocity of the particle is
given by

vd = 〈D〉
τ

, (5)

where D = x(τ ) − x(0) is the distance between the initial
and final equilibrium locations of the particle. The angular
brackets indicate average over the trials. Note that in the
absence of the feedback process, the particle will drift in the
direction of the drive and the average speed in the steady state
can be exactly evaluated [45,46]. But with feedback, the drift
in the direction of drive can be reduced and even reversed,
depending on how effective the feedback process is. The free
energy gained per cycle, which is the work done against the
external force in one cycle, is given by

�F = −Fd D, (6)

which is positive if the particle has drifted against the direction
of the drive. The work done by the external agent is given by
change in the potential energy of the particle in the sinusoidal
field at the instant the potential flip is carried out. That is,

W = ±2 cos[2πx(ε)], (7)

where the + sign is for the case when the potential after the
flip is greater than its value before the flip, implying that the
work is done by the external agent. If otherwise, then the work
is being extracted out of the heat bath. The work done in a
given cycle is zero if the particle is not spotted in the region S
(as there is no potential flip carried out in this case).

The measurement carried out at the beginning of a cycle
gives information about the location of the particle and is
quantified by the Shannon information content, defined as
〈I〉 = −p ln p − (1 − p) ln (1 − p) [47] where p is the prob-
ability for finding the particle in the region S. The energy
equivalent of information content is kBT 〈I〉. For the values
of s, U0, and Fd used in the results in this section, the
value of kBT 〈I〉 = 0.24. In the measurement process, an
amount of heat equal to kBT 〈I〉 is dissipated to the heat bath.
This dissipation is associated with the erasure of memory bits
required for the measurement. The feedback process allows
one to regain a part of this dissipated energy back in the
form of an increase in free energy of the particle and also
possibly as work extracted from the heat bath. But this regain
is possible provided the information obtained is used before
the particle equilibrates after the measurement.

The efficiency of the information engine can be defined as

η = 〈�F − W 〉
kBT 〈I〉 , (8)

which is a measure of how efficiently the available informa-
tion is converted to free-energy gain and work extracted. �F
is the change in free energy and −W is the work extracted,
as defined above. Variation of efficiency and drift per cycle of
the particle for different values of feedback delay ε are shown
in Figs. 3 and 4, respectively. The efficiency is maximum
for minimal feedback delay and maximum value of efficiency
is around 41% for a feedback delay of 0.0001. The inset of
Fig. 3 shows the individual variation of �F and −〈W 〉 with
ε. For low values of ε, the contribution of −W to the total
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FIG. 3. Variation of efficiency with feedback delay time. For
ε � 0.01 (measured in units of 1/ξ ) the system works as an infor-
mation engine converting information to work. For larger values of
ε, the efficiency becomes negative indicating that sum of gain in
free energy and work extracted is negative. The maximum value
of efficiency obtained is 41% at ε = 0.0001. The inset shows the
contributions of �F and −〈W 〉 separately. For low values of ε, −〈W 〉
term is positive and one order larger than the �F . For large values
of ε, −〈W 〉 becomes negative implying that work has to be done
by the external agent. The error bars in the main figure are standard
deviations.

work extracted is much greater than that of �F . The system
is not working as an information engine for large values of
ε (the region where η < 0). In this regime 〈�F − W 〉 is
negative and heat is dissipated into the heat bath during the
cycle. This is over and above the amount kBT 〈I〉 that needs to
be dissipated for memory erasures associated with acquiring
positional information during the measurement phase.
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FIG. 4. Variation of particle’s velocity (measured in units of pe-
riod of potential times ξ ) as a function of feedback delay time, ε.
Negative value of displacement indicates net drift in the direction
opposite to the uniform external force. For large values of ε, the ef-
fect of feedback is reduced progressively. The (a) and (b) data points
correspond to two different external drives, Fd = 0.6 and Fd = 0.1,
respectively. The error bars in the figure are standard deviations.

The monotonic decrease of the efficiency with increasing
feedback delay can be understood as follows. Let us consider
the situation that the particle is spotted in S when the measure-
ment is carried out at time t = 0. For small values of feedback
delay, ε, the particle has a significant chance to stay close to
the current location (in S) by the time potential flip is carried
out. As a result, the particle loses potential energy during the
potential flip. This means that work is done by the system (W
is negative) [refer to Eq. (7)]. Additionally, for small ε value,
there will be a net drift toward the left on the average, as seen
in Fig. 4 (circles). This is because the particle will be spotted
in S only when it makes a leftward jump (against the applied
force) with respect to its current equilibrium position and in-
stantly switching the potential phase locally traps the particle
in the new minima to the left. This helps the particle to move
against the driving force direction which in turn results in a
positive free-energy change (since the displacement D of the
particle will be negative). Both of these reasons lead to a larger
efficiency value for small feedback delays, for a given amount
of information obtained. However for large values of ε, the
particle will most likely move to the right after it is spotted
in S, because of the net force in that direction and will equi-
librate in one of the minima of the potential. Consequently,
the external agent has to do work (W is positive) on the
particle during potential flip, since the potential energy of the
particle after the flip is likely to be larger). Also, the particle
is more likely to move toward the right after the potential flip
as there is a slight bias in the steady-state distribution of the
particle to the right due to the applied uniform force. This
leads to a decrease in the free energy on the average.

It is seen that even for low values feedback delay time,
the efficiency of the information to free-energy conversion is
very less (≈40%). One reason for the low value of efficiency
is the fact that there is no feedback implemented when the
particle is not found in S during the measurement. This means,
one is not utilizing the full available information for feedback
control. For the parameters used in above simulations, value
of p = 0.067 and the corresponding value of 〈I〉 = 0.24. If
we do not provide feedback when the particle is not found in
S, the maximum information that we can hope to convert to
free energy or work is −p ln p = 0.18. This is about 75% of
the total information gathered and so the unused information
cannot fully account for the low value of efficiency seen. The
primary reason for low efficiency is due to the fact that the
feedback process is not reversible in the sense that the time-
reversed protocol do not lead to time-reversed processes [30]
and thus the engine is working suboptimally. One can modify
the protocols to try and optimize the information to free-
energy conversion. We discuss these below.

IV. OPTIMIZATION STUDIES

In this section we address the following question: Given a
fixed external drive (Fd = 0.1, in our studies), how can one
optimize the conversion of information to free energy? To
start with, we fix the shape of the external potential to be
sinusoidal and vary the parameters s and U0 sequentially to
search for maximum efficiency. This achieves only a partial
optimization as we are not scanning the entire parameter
space. The intention is to see the scale of dependence of
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FIG. 5. Optimization of efficiency with respect to parameter s.
For the values of U0 = 1.5 and Fd = 0.1, a maximum efficiency value
of 54.4% is obtained for s = 0.12. The error bars in the figure are
standard deviations.

efficiency on these parameters. Next, we alter the feedback
by associating a protocol when the particle is not spotted in
the region S during particle’s position measurement, which
enables more use of the available information for work extrac-
tion. We end the optimization studies by finding efficiency of
the system by using square potential instead of a sinusoidal
shaped one. We shall argue that the square potential increases
the reversibility of the feedback process, leading to larger
values of engine efficiency.

A. Parameter optimization for sinusoidal potential

The partial optimization with respect to experimental pa-
rameters was done as follows: First we find the optimum value
of s for which we get a maximum efficiency by keeping the
values of U0 and Fd fixed at 1.5 and 0.1, respectively. s is
varied by keeping the location of the starting point of region
S fixed at the maxima of the potential. Efficiency is seen
to have nonmonotonic variation with s and the maximum is
found to be at s = 0.12 as shown in the Fig. 5. The nature of
variation of efficiency with s can be understood as follows. For
Fd = 0.1, the value of �F is negligible compared to the work
extracted, −W . Therefore the major contribution to �F − W
comes from work extracted during the potential flip. The work
done is W ≈ −2U0 p(s), when the S is a narrow region lying
close to the maxima of the potential. Thus for low values of
s, we have η(s) = 2U0 p(s)/〈I (p(s))〉, which decreases as p
decreases. Since p decreases with s, the downward trend of
efficiency for small s values is expected. At large values of
s, an increase in s leads to a decrease in −W as the particle
is more likely to be spotted in regions where the potential
flip will lead to less work extraction. Given that 〈I〉 is an
increasing function of s (when p < 0.5), it is expected that the
efficiency decreases with s for large s values. The maximum
value obtained for η is 54.4%, which is 33% more efficiency
than for the s value used in the previous section and also in
the experimental study [13]. Optimization of efficiency with
respect to amplitude U0 is done by keeping the value of s =
0.12, obtained above. As seen from Fig. 6, efficiency increases
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FIG. 6. Variation of efficiency with the amplitude for s = 0.12
(blue circles) and s = 0.25 (red diamonds). The maximum value
of efficiency for s = 0.12 is about 80%. We have also shown the
dependence of η on amplitude of the potential for the square shaped
potential (green squares) with region S′ (shown in the inset of Fig. 9
in Sec. IV C) as the searched region during measurement. The max-
imum efficiency for this case is close to 90%. The error bars in the
figure are standard deviations.

with amplitude and attains a maximum value of about 80% for
amplitude U0 � 4.0. The increase in efficiency with amplitude
can be understood as follows: As U0 increases the energy
equivalent of available information, kBT 〈I〉 decreases because
the probability to find the particle in region S decreases. The
average work extracted during the flip (〈−W 〉) has a more
complex dependence on U0. The work done during individual
flip of the potential will increase with U0 on the average, but
the occurrence of flips itself become exponentially less likely
with increasing U0. This leads to the behavior seen where −W
increases initially with U0 but then falls to zero very fast as
can be seen in Fig. 7. For low values of U0 (compared to
kBT ) the efficiency tends to zero since −W is negligible and
kBT 〈I〉 is finite. At large values of U0, both the numerator
and denominator in the expression for efficiency tend to zero,
leading to a relatively flat curve.

Even though there is a substantial increase in the efficiency
attained by increasing the U0 value, it comes with the cost
of extremely low value for work extracted per cycle of the
information engine. The low values of p at large U0 make
the available information limited. The dependence of work
extracted per cycle on the amplitude is show in Fig. 7. We have
also shown in the same figure the behavior of work extracted
per cycle with amplitude for s = 0.25. In fact, s = 0.25 gives
better values for this quantity than the efficiency optimized
parameter value of s = 0.12. In both cases, the maximum
value of work per cycle is obtained for a potential amplitude of
U0 ≈ 0.9, which is of the order of kBT . The maximum value
of work per cycle for optimized and nonoptimized case are
correspondingly 0.07 and 0.12 in relevant units.

B. Feedback protocol studies

As pointed out at the end of Sec. III, one of the reasons
for the protocol used to be suboptimal is that there is no
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FIG. 7. Variation of total work extracted per cycle with ampli-
tude of potential for s = 0.12 (blue circles) and for s = 0.25 (red
diamonds). The functions have peaks close to U0 = 0.9. Work ex-
tracted per cycle is more with s = 0.25. The work extracted per
cycle as a function of U0 for the case of square potential with S′

region as the search location during measurement (green squares)
shows a much more prominent peak. The value location of the peak
is marginally lower at U0 ≈ 0.7. The error bars in the figure are
standard deviations.

feedback employed when the particle is not spotted in S. By
incorporating a feedback protocol for the negative result of the
measurement outcome, we can improve the efficiency of the
engine. One way to do this would be by raising the potential
barrier height (deepening the well) when the particle is not
spotted in S. This would increase the efficiency by mitigating
the motion of particle in the direction of the drive. When the
particle is not spotted in S, the chance that the particle is to the
right of the potential minima (region R in Fig. 2) is more than
it is otherwise. So by raising the amplitude of the potential,
the possibility of the particle drifting in the direction of of the
external drive is reduced, thus helping in cutting the loss of
free energy.

We have implemented this protocol with the parameters
values kept same as in Sec. III. In the new protocol, in addition
to the potential flip carried out when the particle is seen in S,
the amplitude of the potential is increased from U0 to 1.1U0,
when it is not. The increased value of amplitude is maintained
until t = 0.0490 and the potential amplitude is reverted to its
original value at the end of the cycle at t = τ (0.05). Such a
modification in the feedback protocol increased the efficiency
marginally from around 41% to about 43%. It is seen that the
new protocol could marginally reduce the movement of the
particle in the direction of drive. The gain in efficiency is not
appreciable due to the fact that the changes in �F is not very
crucial for the total work extracted, since the key contribution
is coming from the −W term.

C. Square potential

We can extract maximum work using feedback by instan-
taneously changing the Hamiltonian of the system after the
measurement such that the post measurement state of the
system is identical to the equilibrium state of the new Hamilto-

FIG. 8. Feedback process with square periodic potential. (a) The
initial shape of the potential energy function. S′ is the region where
particle is probed for during the measurement. (b) Post measurement
distribution of the particle for the case when particle is spotted in
the region S′. (c) The potential that has its equilibrium distribution
as the post measurement distribution for the case when the particle is
spotted in S′. (d) The flipped potential at the end of the cycle.

nian [30,32]. Such a protocol avoids dissipation as the particle
density does not have to relax to the new equilibrium distri-
bution. If one now changes the potential back to its original
form quasistatically, then one can extract maximum work in
the full cyclic process. In a scheme where the measurement
amounts to finding the presence of the particle within a region
and feedback protocol employs flipping of the potential, the
choice of a square potential would come closest to achieving
the above condition. This can be justified as follows: Consider
a square of period one given by

Us(x) = U0 (0 < x � 0.5)

= −U0 (0.5 < x � 1), (9)

with Us(x) = Us(x + 1) [see Fig. 8(a)]. Consider S′ to be the
region between between x = 0 and x = 0.5 where the particle
is searched for in the measurement phase. The post measure-
ment density when the particle is spotted in S′ has a uniform
value equals to 2 in region S′ and zero outside of S′ [see
Fig. 8(b)]. To implement the reversible scheme, one would
then have to switch the potential to an infinite barrier shape as
shown in Fig. 8(c) and then quasistatically bring it back to the
flipped potential shown in Fig. 8(d). Since we are restricting
ourselves to potential flips, we bypass the intermediate step.
For large barrier height compared to kBT , the loss incurred in
this bye-passing of the intermediate procedure will be mini-
mal because post measurement density distribution will then
be very close to the equilibrium distribution for the flipped
potential.

We have carried out the simulations by replacing the
sinusoidal potential with an approximate form for square po-
tential, obtained by keeping the first 10 terms in the Fourier
series expansion of a periodic square potential of amplitude
U0. That is, U (x) = 4U0

π

∑19
n=1(odd)

1
n sin (2nπx). The uniform

external drive is kept the same as before. The resultant net
potential is shown in the inset of Fig. 9.
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FIG. 9. Comparison of efficiency values with different values of
ε in the case of square potential. The inset shows the newly defined
region (S′) of particle’s position measurement. S′ covers approxi-
mately the raised portion of the potential. The red circles correspond
to efficiency values when the particle’s position is measured in S′.
The blue diamonds correspond to efficiency values when the par-
ticle’s position is measured only in half of the raised portion of the
potential. Such a region starts from the middle of the raised portion of
the potential at x = 0.24 and ends at x = 0.49. It is seen that choosing
the entire raised portion of the square potential as the measurement
region (S′) gives better efficiency values comparing to measuring the
particle’s position only in half of the raised portion of the potential,
for all values of ε where efficiency is positive. The error bars in the
figure are standard deviations.

The region where particle is searched for during measure-
ment is chosen to be the position values where the potential is
approximately, U0 (S′ in the figure). This region extends from
x = 0.03 to x = 0.47 for the approximate square potential
modelled above. We have also computed the efficiency for the
case when the region where particle is searched for is half
of the raised portion of the potential. The variation of engine
efficiency is shown in Fig. 9. For the smallest feedback delay,
switching to square potential has increased the efficiency to
almost 71%. Note that for the sinusoidal potential with same
U0 and optimal s is only 54%. Like in the case for sinusoidal
potential, the contribution to the numerator of η coming from
�F is negligible compared to −〈W 〉.

We have also studied the variation of the efficiency and
power as a function of the amplitude of the square potential.
The results are shown along with that for the sinusoidal poten-
tial (see Figs. 6 and 7). It is seen that the square potential offers
better efficiency and work per cycle for almost the entire range
of U0. The maximal work per cycle for the square potential
is almost double of that obtained for the sinusoidal potential
with s = 0.25. The maximum efficiency for the square case is
above 90% compared to the 80% for the sinusoidal one.

V. VERIFYING GENERALIZED
FLUCTUATION THEOREMS

The GIFT for processes which include an error-free feed-
back mechanism is given by [40]

〈e(�F−W )/kBT −I+Iu〉 = 1, (10)

where the average is carried out over multiple trials, all start-
ing off with the initial state of the system in equilibrium at
temperature T . The quantity Iu is the unavailable information
associated with each measurement outcome. It is determined
by running the process backwards without feedback and find-
ing the probability, p1 (p2) of finding the particle within region
S (outside of region S) if the particle was spotted in S (not
spotted in S) in the forward process. Iu is given by − log(p1)
(− log(p2)) if the particle is spotted in S (not spotted in S)
in the forward process. The generalized form of Jarzynski
equality (GJE) when feedback is present can be written as [48]

〈e(�F−W )/kBT 〉 = γ , (11)

where γ = p1 + p2. If the process is completely reversible,
then p1 = p2 = 1 and we have the maximum value of γ = 2.
The unavailable information in this case becomes zero. Thus
γ measures the efficacy of information to free-energy conver-
sion and its value can vary between 0 and 2 for the present
protocol, with two possible measurement outcomes used for
the feedback process. One expects to regain the usual JE if
there is no correlation between the outcome and the feedback,
which is expected to happen when the waiting time ε is com-
parable to the equilibration time. As the feedback procedure
becomes more and more irreversible, one should even expect
the γ value to drop below 1 due to the very low efficacy of the
process.

We verify the GJE in the simulations by averaging over a
large number of trials (106 runs for each value of ε) that is
warranted by the exponential average involved [34,49]. We
have calculated γ in our simulation as follows: The time-
reversed trajectories are obtained by running the process in
time-reversed manner with and without potential flip. The
reverse cycle starts at t = 0 with the system in equilibrium
and the potential is flipped at t = τ − ε (for finding p1) or not
flipped (for finding p2). At t = τ , a measurement of the parti-
cle’s position is done. If the potential is flipped in the reverse
run, then the probability for finding the particle in region S
is calculated, which gives p1. For a run without potential flip,
the probability for finding the particle outside S is calculated,
which is p2. The sum of the two probabilities give us γ . The
value of p1 and p2 are estimated by averaging over 106 cycles
each and the error in their estimates is also determined. The
average value of p is determined using similar averages in the
forward cycle.

Variation of left-hand and right-hand sides of GJE as a
function of ε for the sinusoidal potential case with Fd = 0.1 is
shown in Fig. 10. As expected, the value of γ starts above
1 but below the maximum value of 2 for small values of
ε and is seen to tend toward 1 for large values of ε. The
difference (in percentage) between the computed right-hand
side and left-hand side of the equation is given in Fig. 11(b).
The slight discrepancy that exists (less than 1%), as seen from
Fig. 11 can be attributed to the fact that with the driving
force on, the starting state is not a true equilibrium state. This
mismatch is more apparent if the drive is stronger as can be
seen from data in Fig. 12 which is for a driving force Fd = 0.6
and the corresponding discrepancy in shown in Fig. 11(c).
Figure 11(a) shows the difference between right-hand side
and left-hand side of GJE for Fd = 0. One can see that the
difference has reduced and to within the statistical fluctuations
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FIG. 10. Variation of left and right-hand side of GJE with feed-
back delay, ε, for a driving force value Fd = 0.1. The open circles
give the left-hand side of Eq. (11) and the solid triangles the right-
hand side. At large values of ε the feedback effect becomes minimal
and conventional JE is approached. The open diamonds and solid
squares too represent the same relation but now for a feedback
protocol that is designed to make the process more irreversible. The
error bars in the figure are standard deviations.

the GJE is valid for all ε values. The verification of GIFT
carried out for Fd = 0, Fd = 0.1, and Fd = 0.6 are shown
in Figs. 13(a), 13(b) and 13(c), respectively. The relation is
found to hold for all values of ε for the zero drive case. We
have also verified the GJE for a feedback protocol that leads
to values of γ less than 1. This was achieved by altering the
feedback protocol such that the flip of the potential is carried
out when the particles is not spotted in S and the potential is
left unaltered when the particle is spotted in S. The data given
in Fig. 10 (bottom set) asserts the validity of the GJE for this
case.
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0
2
4
6

(c)

(a)

(b)

FIG. 11. Discrepancy in percentage between the left- and right-
hand sides of GJE for (a) Fd = 0, (b) Fd = 0.1, and (c) Fd = 0.6.
The discrepancy is calculated as [〈e(�F−W )/kBT 〉 − γ ]/〈e(�F−W )/kBT 〉
in percentage. The error bars in the figure are standard deviations.
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FIG. 12. Verification of GJE for larger driving force, Fd = 0.6.
The discrepancy between the forward and reverse values are larger
as compared to lower driving forces. The error bars in the figure are
standard deviations.

VI. CONCLUSION

We have carried out a Brownian dynamics simulation of a
driven colloidal particle in one dimensional periodic potential
with feedback control. An experimental study of a similar
system using feedback control for converting the obtained
information about the particle’s position to free energy has
been conducted before [13]. The control over various model
parameters as well as advantage of better averaging in sim-
ulations has allowed us to explore the model in great detail.
Shorter waiting time for potential flip (in simulations, one can
implement an almost instantaneous flip of the potential if the
particle is spotted in S) as well as introduction of feedback
process when the particle is not observed during measurement
allows one to reach an efficiency close to 43%. Optimization
carried out by varying both the amplitude of the sinusoidal
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0.99

0.995
1

1.005
1.01
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0.99

0.995
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FIG. 13. The verification of generalized integral fluctuation the-
orem for the case with (a) Fd = 0, (b) Fd = 0.1, and Fd = 0.6. There
is a slight improvement of the validity of the relation for small drive.
The values are visibly violating the relation for larger value of drive.
GIFT is found to be valid for all values of ε studied with zero or
small drive. The error bars in the figure are standard deviations.
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part of the potential U0 as well as the width of the region S in
the model takes the efficiency value to 80%. This is almost the
double the value of η before optimization. But this comes at
the cost of low value of resultant work extracted per cycle. For
comparison, the experimentally obtained efficiency for a sim-
ilar engine using colloidal particle in sinusoidal potential [13]
is 28% and for an experimental implementation of Brownian
motor working in a harmonic potential [23] is 35%.

The efficiency at maximum work per cycle that we have
obtained is about 40% for the sinusoidal potential. It has to
be kept in mind that the optimization has not been exhaustive
and better combinations of power and efficiency could be pos-
sible. For comparison, the experimentally obtained efficiency
at maximum power for the experimental implementation of
Brownian motor working in a harmonic potential referred to
above [23] is 19%. It is not surprising that with the current
model the conversion of all the available information to work
is not possible. The fact that we are constraining the potential
change after the measurement to the one arising from a flip
does not allow one to tune the Hamiltonian post measurement
to one where the post measurement distribution is the equi-
librium distribution of the new Hamiltonian. This invariably
leads to irreversibility in the process with the associated dissi-
pation [30].

We have been able to work around the above limitation
to an extent by using a square potential instead of the sinu-
soidal one. For large amplitude of the square potential, the
flipping of the potential during the feedback process leads
to a new Hamiltonian whose equilibrium distribution closely
matches with the nonequilibrium distribution resulting from
the measurement process. We find that both the work done
per cycle as well as the efficiency has much better values for
this choice. The efficiency goes above 90% for high values of
amplitude and the efficiency at maximum work per cycle is
53%. This suggests that using appropriate potential shape can
lead to an appreciable change in the performance of this type
of information engine based on a particle moving in a periodic
potential.

We have numerically verified GJE as well as GIFT for
different values of feedback delay. The left and right-hand
sides of the GJE [see Eq. (11)] have been found independently
using the forward and time-reversed process respectively. We
find that for zero drive force, fluctuation theorems are valid to
within the simulation accuracy. The GJE for a similar system
was verified experimentally [13] and found to hold with 3%
discrepancy. The error margin in the present simulation results
are smaller with error bars down to less than 1%. We observe,
like in the experiment, that for larger drives, the deviations in
GJE is violated by a larger margin (around 5% for Fd = 0.6).
This is expected since the condition of the starting state being
an equilibrium one is then not met with [38,48]. Further, we
have also verified GJE for the case when efficacy is a value
less than 1, implemented by changing the feedback process. It
is found that for zero drive, the GIFT is valid for the waiting
times studied. Though GIFT has been experimentally verified
for and theoretically checked in information engine models
based on a particle moving in a harmonic potential [16,40],
this is the first time it is being verified for an error free
information engine based on a particle moving in a periodic
potential with feedback process based on potential flips.

All the feedback studies we have carried out in this work
are based on single cycle processes. The study can be ex-
tended by exploring the effects of correlation on efficiency
of such an information engine by simulating multicycle re-
alizations. There are preliminary indications that multicycle
processes can lead to higher efficiencies. Experimental im-
plementation of the information engine based on a colloidal
particle moving in a square potential should be possible.
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