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Dynamic phase transitions on the kagome Ising ferromagnet
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We perform extensive Monte Carlo simulations to investigate the dynamic phase transition properties of the
two-dimensional kinetic Ising model on the kagome lattice in the presence of square-wave oscillating magnetic
field. Through detailed finite-size scaling analysis, we study universality aspects of the nonequilibrium phase
transition. Obtained critical exponents indicate that the two-dimensional kagome-lattice kinetic Ising model
belongs to the same universality class with the corresponding Ising model in equilibrium. Moreover, dynamic
critical exponent of the local moves used in simulations is determined with high precision. Our numerical results
are compatible with the previous ones on kinetic Ising models.
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I. INTRODUCTION

When a typical ferromagnet is exposed to a time-dependent
oscillating magnetic field below its Curie temperature, TC ,
it can display dynamically ordered and disordered phases
and a corresponding nonequilibrium dynamic phase transition
(DPT) [1–3]. A basic model to study the dynamic phase
transitions is the kinetic Ising model (KIM) which, despite its
simplicity, enables us to reach the complex dynamics behind
the nonequilibrium systems. KIM can represent a ferromag-
netic system subjected to a time-dependent magnetic field,
h(t ), with a half-period of, t1/2, and amplitude, h0. The com-
petition between time scales of period of the external field
and metastable lifetime of the system, which is defined as
the average time for the system to pass through the state with
zero magnetization, leads to a dynamic phase transition at the
critical period of the external field. Such a symmetry breaking
between dynamically disordered (paramagnetic) phase and
ordered (ferromagnetic) phase was initially observed in a the-
oretical study of a mean-field model [1] and later in kinetic
Monte Carlo simulations [4,5].

Throughout the years, many theoretical and experimental
studies have been devoted to understanding the physics behind
DPTs [2,3,6–16]. Several analogies between thermodynamic
and dynamic phase transitions, for instance, similar phase
diagrams, have been shown in theoretical and experimental
studies [6,17–19]. In addition, DPTs have been studied in
a diversity of models such as nanoscale systems [20–22],
systems with surfaces [16,23–26].

In the past two decades, there has been a great effort toward
estimation of critical exponents and universality classes of
spin systems exposed to a time-dependent magnetic field.
Successful implementations of finite-size scaling techniques
on KIM have shown that thermodynamic and dynamic phase
transitions belong to the same universality class for both 2D
and 3D cases [27–31,34]. It is worth mentioning that these
findings are also in agreement with the symmetry arguments
of Grinstein et al. [32] and the study of Ginzburg-Landau

model in an external oscillating field [33]. In Ref. [35] the
authors have found that the universality class of the Blume
Capel (BC) model driven by a time-dependent magnetic field
is the same as the equilibrium BC model. KIM with a dis-
order in exchange interaction couplings (random-bond KIM)
[36] and crystal field strength (random-crystal-field KIM) [37]
have been the subject of recent studies and the authors have
presented strong evidence that disordered KIM belongs to the
same universality class as the equilibrium Ising model except
for double-logarithmic corrections in the specific heat scaling
behavior. The effect of surfaces on DPT has been analyzed
by Park and Pleimling and remarkably, surface exponents in
nonequilibrium case are reported to be different from equi-
librium surface exponents [23]. Apart from the estimation of
critical exponents, there are few attempts to provide informa-
tion about the properties of critical dynamics of algorithms
used in the simulations. For instance, the critical exponents
of the 2D KIM have been estimated by using the standard
Glauber and Metropolis dynamics and it has been shown that
DPT is universal regarding to choice of the stochastic dynam-
ics [30]. Also, the autocorrelation function of the dynamic
order parameter at the critical period shows the existence
of critical slowing down which displays itself by increasing
correlation times with increasing lattice sizes. Korniss et al.
[29] have determined the dynamic exponent for the Glauber
single-spin-flip algorithm in KIM as z = 1.91(0.15) which is
close to the dynamic exponent of 2D equilibrium Ising model
with local dynamics [38].

Despite the above-mentioned attempts for the characteri-
zation of the universality class of KIM, there are still some
unanswered points related to the critical properties of the
model. For instance, critical exponents and the universality
class of the KIM have not been determined on lattices which
correspond to realistic materials. Additionally, as far as we
know, there has not been a precise estimate of the dynamic
exponent z of local dynamics used in the simulations for the
systems subjected to a sinusoidal external drive except for the
result for square-lattice KIM [29]. Therefore, the objective
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of the present work is to provide detailed estimates of the
critical exponents of 2D KIM located on a kagome lattice,
using extensive MC simulations based on the Metropolis al-
gorithm and finite-size scaling tools. Kagome lattice is an
appropriate model to represent the recent 2D ferromagnetic
materials that are promising candidates for the development of
spintronic devices [39]. In addition to the critical exponents,
we have determined the dynamic exponent of single-spin-flip
Metropolis algorithm at the dynamic phase transition. In a
nutshell, it is possible to say that our estimate on the dynamic
exponent is found to be very close to the dynamic exponent of
2D equilibrium counterpart supporting the previous estimate
[29].

The remainder part of the paper is organized as follows: In
Sec. II we present the model and details of MC simulations.
Also, the thermodynamic quantities measured in the simula-
tions are introduced. Section III includes our numerical results
and discussion. Our conclusions are presented in Sec. IV.

II. MODEL AND SIMULATION DETAILS

In this study, we consider 2D kinetic Ising model located
on a kagome lattice in the presence of a time-dependent oscil-
lating magnetic field. The Hamiltonian of the system can be
written as

H = −J
∑
〈xy〉

σxσy − h(t )
∑

x

σx, (1)

where the spin variable σx takes the values {±1}. J > 0 repre-
sents the ferromagnetic exchange coupling constant and 〈xy〉
denotes the summation over nearest-neighbor spins. The final
term h(t ) represents periodically oscillating magnetic field
that is spatially uniform such that all lattice sites in the system
are subjected to a square-wave magnetic field with amplitude
h0 and half period t1/2 [23,29]. The time-dependent magneti-
zation per site is given by

M(t ) = 1

N

N∑
x=1

σx(t ), (2)

where N is the number of total sites in the system. To observe
dynamic phase transitions, we shall study various thermo-
dynamic quantities with varying half-period of the external
field. One of them is dynamic order parameter which is the
period-averaged magnetization [2,3],

Q = 1

2t1/2

∮
M(t )dt . (3)

Here, the integration is over one cycle of the oscillating mag-
netic field. Since the probability density of the order parameter
is bimodal with two opposite peaks for such finite systems, we
measure the average norm of the order parameter, 〈|Q|〉 in our
calculations.

To determine and characterize dynamic phase transition
and also extract critical exponents using finite-size scaling
tools, one has to calculate the scaled variance of the dynamic
order parameter which is analogous to the static susceptibility
[27–29],

χ
Q
L = N

[〈Q2〉L − 〈|Q|〉2
L

]
. (4)

FIG. 1. Representation of kagome lattice with L = 5. The lattice
includes 3L2 sites.

The usage of χ
Q
L has been confirmed as a proxy for the

nonequilibrium susceptibility by fluctuation-dissipation rela-
tions [40]. In the same way, one can measure the scaled
variance of the period-averaged energy,

χE
L = N

[〈E2〉L − 〈E〉2
L

]
. (5)

χE
L can be considered as the relevant heat capacity of the

dynamic system. Here, E denotes the cycle-averaged energy
corresponding to the cooperative part of the Hamiltonian (1).

Moreover, we measure the fourth-order Binder cumulant,

U Q
L = 1 − 〈Q4〉L

3〈Q2〉2
L

, (6)

via the dynamic order parameter Q to determine the dynamic
phase transition point [41].

Monte Carlo simulations on the kagome lattice have
been performed based on single-spin flip Metropolis algo-
rithm [42–44] which is proven to be successful in Kinetic
MC simulations. We carry out simulations on kagome lat-
tices by updating the lattice sites randomly and enforcing
helical boundary conditions. Kagome lattice is a regular ar-
ray including hexagons and triangles (see Fig. 1). Its unit
cell contains three sites constructing an equilateral trian-
gle [44]. Simulations are performed on lattices with L ∈
{15, 30, 45, 60, 75, 90, 105, 120, 150, 180, 210}, where L is
the dimension of the lattice in unit cells. The total number
of lattice sites is N = 3L2. For the system to reach thermo-
dynamic equilibrium, the first 2 500 periods of the oscillating
field have been discarded and thermal average of several quan-
tities is calculated from next 25 000 periods. The unit of time
in our simulations is Monte Carlo step per site (MCSS). For
each lattice size, 100 independent computer experiments are
performed and error calculations have been carried out by
using the jackknife method [44].

It is known that metastable decay of the system in field-
reversals depends on the temperature, field, and system size.
DPT occurs in the multidroplet (MD) regime where the
metastable decay of the system takes place through the nu-
cleation and growth of many droplets [27,45]. To study in
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FIG. 2. Magnetization as a function of time at T = 0.8Tc for a
lattice size of L = 180. The system was initially in a state with all
spins up. Then, a constant magnetic field in the opposite direction of
the initial spin alignment is applied.

MD regime, the amplitude of the external square-wave mag-
netic field is chosen as h0 = 0.3 and temperature is fixed as
T = 0.8 × Tc, where Tc is the critical temperature of the cor-
responding equilibrium model [29]. The critical temperature
of the 2D kagome lattice is available as Tc = 2.14332J/kB (kB

is the Boltzmann constant) which has been calculated exactly
by Syôzi [46].

To measure the metastable lifetime, 〈τ 〉, we choose the
initial configuration as a fully ordered state. When a constant
magnetic field is applied in the opposite direction of the spin
alignment at a temperature below the Curie temperature of the
system, the magnetization changes by nucleating droplets that
align in the same direction as the constant field. Determination
of metastable lifetime is shown in Fig. 2 for a lattice size of
L = 180. Here, we have performed 25 000 independent simu-
lations and according to our simulations, metastable lifetime
is determined as 〈τ 〉 = 55.8 (in terms of MCSS) at T = 0.8Tc

for the considered system. Metastable lifetime has been also
determined for various lattice sizes and it has been found that
〈τ 〉 is independent of the system size in agreement with earlier
results [31].

Throughout the paper, we present the thermodynamic
quantities as a function of the competition parameter, which
is defined as the ratio of the half-period of the external field to
metastable lifetime 〈τ 〉,

� = t1/2

〈τ 〉 , (7)

which is analogous to temperature in thermodynamic phase
transitions.

In addition to the above thermodynamic quantities, we
measure other useful quantities to provide further insight
about the properties of dynamics used in the simulations. One
of them is the time-displayed autocorrelation function of the
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FIG. 3. (Main panel) Dynamic order parameter as a function of
� for various system sizes L. The inset shows the finite-size scaling
behavior of the corresponding dynamic susceptibility χ

Q
L . The error

bars are smaller than the symbol sizes.

order parameter at nth period which is defined as [29,30]

CQ
L (n) = 〈Q(i)Q(i + n)〉 − 〈Q(i)〉2

〈Q2(i)〉 − 〈Q(i)〉2
, (8)

where Q(i) is the value of the order parameter at ith period. By
benefiting from the autocorrelation function, we also calculate
integrated correlation time [44],

τ
Q
L = 1

2
+

∞∑
n=1

CQ
L (n), (9)

which enables us to calculate the dynamic exponent z.
We use the data for L � Lmin for the employment of finite-

size scaling laws. In our fittings, we apply the standard χ2

goodness of fit test. To obtain an acceptable fit, we consider a
fit as being acceptable if the probability Q values are 10% �
Q � 90%.

III. RESULTS AND DISCUSSION

In this section, critical properties of 2D KIM located on
the kagome lattice have been presented. It is now well-
established that finite-size scaling tools can be implemented
for the nonequilibrium models [29–31,34–37]. Accordingly,
we carried out large-scale MC simulations and use finite-size
scaling tools to extract the critical exponents of the present
system.

We start our analysis by showing the dependency of the
dynamic order parameter (main panel) and the corresponding
dynamic susceptibility (inset) on the competition parameter in
Fig. 3. The order parameter takes finite values corresponding
to a robust dynamically ordered phase for small half-period
values whereas it approaches zero as � increases. Apart from
the small system sizes, the dynamic susceptibility has a di-
vergent behavior and a typical peak near the phase transition
indicating the existence of second-order phase transition in
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FIG. 4. Dynamic susceptibility maxima (χQ
L )∗ as a function of

lattice size. The results are shown in log-log scale. The error bars are
smaller than the symbol sizes.

the system. This characteristic peak takes larger values with
increasing system size. Figure 4 displays the maxima of dy-
namic susceptibility, (χQ

L )∗, as a function of system size. The
solid line is fit of the form

(
χ

Q
L

)∗ ∼ Lγ /ν . (10)

Based on our numerical data, the exponent is found as γ /ν =
1.744(8) with a good agreement with the 2D Ising universality
class value of γ /ν = 7/4.

The locations of the peaks of the dynamic susceptibility,
�∗, obtained in finite-size systems can be used to estimate the
critical competition parameter �c, at which an infinite system
undergoes a phase transition, with a relation as follows [35]:

�∗ = �c + bL−1/ν . (11)

Figure 5 shows �∗ as a function of system size. The solid
line is a fit of the form of Eq. (11) which provides the crit-
ical competition parameter of �c = 0.911(3). This value is
very close to unity implying that the DPT takes place when
the metastable lifetime of the system is comparable with the
half-period of the external field. Also, the critical exponent of
the correlation length is estimated as ν = 1.00(2) with a clear
agreement with the value ν = 1 of 2D Ising universality class
[43,47–49]. In addition to the shift-behavior technique, we use
the intersection method of the fourth-order Binder cumulant
of the order parameter, U Q

L , to determine �c accurately [41].
We present U Q

L defined in Eq. (6) as a function of � for
various lattice sizes in Fig. 6. The vertical dashed line in the
figure indicates a critical value of �c = 0.911 in agreement
with our analysis of Fig 5. Also, the obtained �c values are
compatible with the peak position of the response function
χ

Q
L illustrated in Fig 3.

Estimation of the exponent of order parameter β/ν is per-
formed by determining the order parameter at the positions of
(χQ

L )∗ for all the system sizes considered as shown in Fig. 7.
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Lmin = 30

FIG. 5. Shift behavior of pseudocritical competition parameter
�∗ obtained from the maxima of dynamic susceptibility.

The scaling behavior

〈|Q|〉L ∼ L−β/ν (12)

helps us to estimate critical exponent as β/ν = 0.125(5). This
value is again very close to β/ν = 1/8 of 2D equilibrium
Ising model within errors [43,47–49].

To give a complete description of universal aspects of the
present system, we continue our finite-size scaling analysis
by considering period averaged internal energy and the cor-
responding scaled variance which are displayed in the main
panel and inset of Fig. 8, respectively. A slow increment in the
scaled variance of energy with increasing system size can be
explicitly observed from the figure. Moreover, it is expected
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FIG. 6. The competition parameter dependency of fourth-order
Binder cumulant U Q

L for various lattice sizes. The vertical dashed
line implies a critical value of �c = 0.911. The error bars are smaller
than the symbol sizes.
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FIG. 7. Order parameter at the positions (χQ
L )∗ as a function of

system size in log-log scale. The error bars are smaller than the
symbol sizes.

to observe a logarithmic scaling behavior of the maxima of
the heat capacity (χE

L )∗ if the specific-heat critical exponent
α = 0. Variation of maxima of scaled energy variance (χE

L )∗
as a function of system size in log-lin scale is demonstrated
in Fig. 9. The numerical data represented here to show a clear
logarithmic divergence of the form [50]

(
χE

L

)∗ ∝ c1 + c2 ln(L), (13)

as it is for the equilibrium Ising universality class.
It is possible to say that the overall critical exponents

estimated above are in good agreement with the previous
results for KIM on two-dimensional lattices [29,30,34–37].
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FIG. 8. The competition parameter dependency of period-
average internal energy for various lattice sizes. The inset shows
finite-size behavior of the corresponding scaled energy variance
(X E

L ). The error bars are smaller than the symbol sizes.
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FIG. 9. Finite-size-scaling behavior of the maxima of scaled en-
ergy variance (X E

L )∗. The error bars are smaller than the symbol sizes.

Accordingly, one can conclude that the universality properties
in DPT are independent of the topology of lattice. Our results
together with the earlier ones in the literature imply that
nonequilibrium phase transitions in KIM fall into the same
universality class with its equilibrium counterpart, except for
the systems including surface [23].

Having the determined critical value of �c, it is worthwhile
to study the details about the characteristics of dynamics
used in our MC simulations. The period dependency of
time-displaced normalized autocorrelation function for mag-
netization defined in Eq. (8) at the critical point, �c, is shown
in Fig. 10. The increment in correlation time with system size
can be explicitly observed. This also indicates the existence of
critical slowing down as anticipated in systems evolve under
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FIG. 10. Period dependence of normalized time-displaced auto-
correlation function of the order parameter, CL (n), at the critical point
�c.
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FIG. 11. Time dependence of normalized time-displaced auto-
correlation function for the order parameter on lin-log scale at the
critical point �c.

local Metropolis moves. Correlation time is expected to decay
exponentially as

CL(n) ∼ exp
(−n/τ

Q,Exp
L

)
, (14)

which can be checked by plotting the autocorrelation func-
tion in lin-log scale as shown in Fig. 11. Here, τ

Q,Exp
L is

the exponential correlation time. The correlation time gets
higher with increasing L. The curves show that there is a clear
critical slowing down in the system at the critical competi-
tion parameter. An alternative way to provide insight about
characteristics of simulations is to calculate integrated corre-
lation time, τ

Q
L , defined in Eq. (9). Lattice size dependence

of τ
Q
L is depicted in Fig. 12. The correlation time is expected

15 30 60 90 150 210
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FIG. 12. Estimation of critical exponent z. Integrated correlation
time as a function system size is shown in log-log scale. The error
bars are smaller than the symbol sizes.

to obey [44]

τ
Q
L ∼ Lz (15)

at the critical point. A fit of the form of Eq. (15) gives a dy-
namic exponent as z = 2.17(3). Precise value of the dynamic
exponent of the 2D equilibrium Ising model obtained with
single-spin flip dynamics is available as z = 2.1665(12) [38].
To the best of our knowledge, there is no detailed estimation of
the dynamic critical exponent for KIM simulated with single-
spin flip dynamics except for the result reported by Korniss
et al. when the system evolves under Glauber dynamics as z =
1.91(0.15) [29] on the square lattice. Therefore, combining
the previous result in literature [29] and our z value, one may
conclude that the dynamic critical exponent for single-spin
flip dynamics in KIM is compatible with its equilibrium coun-
terpart despite the presence of a time-dependent oscillating
magnetic field.

IV. CONCLUSIONS

In the present work, we studied the universality properties
of KIM in two dimensions by extensive MC simulations. We
particularly considered kagome lattice subjected to a periodic
square-wave magnetic field below the Curie temperature of
the system. By benefiting from finite-size scaling tools, we
determined the critical exponent of the correlation length ν,
critical exponents ratios of magnetic susceptibility γ /ν and
magnetization β/ν with high accuracy. The critical competi-
tion parameter at which a DPT occurs was obtained. Also, a
logarithmic divergence in finite-size behavior of the specific
heat was observed. Obtained numerical results were found
to be compatible with the critical exponents reported for 2D
square-lattice KIM [29]. We additionally studied properties
of the local dynamics used in MC calculations at the criti-
cal competition parameter. The dynamic exponent value was
found as z = 2.17(3) which is comparable with that of equi-
librium Ising model in 2D [38] confirming the previous result
obtained for square-lattice KIM [29].

In summary, our numerical findings indicate that 2D KIM
on the kagome lattice belongs to the same universality class as
2D equilibrium Ising model. Despite the fact that our knowl-
edge about critical phenomena in equilibrium systems have
been well established, the same is not the case for nonequilib-
rium systems since there are very limited studies regarding
the dynamic critical exponent of the model systems under
the presence of a time-dependent magnetic field. It is worth
noting that further studies are needed to have a better under-
standing of DPT and its relevant critical properties. Therefore,
we believe that this work contributes to the classification of
universal properties of nonequilibrium systems and triggers
further theoretical and experimental studies in the field.
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