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Phase boundaries and the Widom line from the Ruppeiner geometry of fluids
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The Ruppeiner geometry has been shown to provide novel ways for constructing the phase boundaries and
the Widom line of certain fluids. This paper examines the applicability of these geometric constructions to
more general fluids. We develop a general equation-of-state expansion for fluids near a critical point that
mainly assumes analyticity with respect to the number density. Based on this general parametrization of fluids,
we prove the equivalence of the Ruppeiner geometric construction and the standard Maxwell construction of
phase boundaries near the critical point. In contrast, we find that the usual prescription based on the Ruppeiner
geometry for the Widom line does not produce the expected Widom line for arbitrary cases of our general fluid
equation of state. This usual prescription relies on the Ruppeiner metric induced on a particular hypersurface of
the thermodynamic manifold. We show that by choosing a different hypersurface, which we call the Ruppeiner-N
surface, and using its associated induced metric, the Ruppeiner construction generates the entire Widom line of
the van der Waals fluid exactly, even away from the critical point. Interestingly, this alternative hypersurface
yields another benefit. It improves the classification scheme originally proposed by Diósi et al. for partitioning
the van der Waals state space into its different phases using geodesics of a thermodynamic metric. We argue that,
whereas the original Diósi boundaries did not correspond to any clear thermodynamic lines, the corresponding
boundaries based on the Ruppeiner-N metric become sensitive to the presence of the van der Waals Widom line
and provide the correct classification of all van der Waals states. These results suggest that the Ruppeiner-N
surface may be the more appropriate hypersurface to use when studying phase diagrams with thermodynamic
geometry.
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I. INTRODUCTION

Geometric ideas in thermodynamics trace a long illustrious
history [1–7]. In one sense, this is quite natural. Already, one
can see intimations of geometry in determining the stability
of thermodynamic states. Thermodynamic stability demands
the convexity or concavity of fundamental-relation surfaces.
An equilibrium state on the entropy hypersurface S = S(X i ),
where X i are natural extensive variables for entropy, is stable
when the surface at that point is concave [8]. The concavity of
the entropy is encoded in its stability matrix, or its Hessian,
D2S. This significance of a (proto-)geometric property, the
concavity, in the thermodynamics of systems has motivated
explorations of other geometric properties of thermodynamics
that have broad physical significance. It remains a fascinating
question just how much of the thermodynamics can be viewed
from the lens of geometry and what applications are enabled
by such a geometric viewpoint.

One complication toward this goal is that there is no unique
or natural metric for thermodynamics [9,10]. Instead, differ-
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ent metrics for thermodynamic spaces have been proposed
in the literature, depending on the application and on what
aspects of thermodynamics one wishes to highlight. The ear-
liest proposed metric appears to be that of Weinhold [6], who
defined it as the Hessian of the internal energy D2E . Weinhold
showed that the laws of thermodynamics can be restated as
mathematical statements requiring the Weinhold metric to be
Riemannian. Closely related to this, though coming from an
entirely different motivation, is the Ruppeiner metric [7]. This
metric is instead the negative Hessian of the entropy −D2S
whose interpretation is rooted in thermodynamic fluctuation
theory [11]. These two metrics were later shown [12] to
be conformal to each other through a factor of temperature:
D2E = T (−D2S).

Since the introduction of the Ruppeiner metric [7], a sub-
stantial body of work [11,13–15] has been directed toward
firming up its theoretical groundwork as well as developing
its potential uses. The Ruppeiner metric has found many
important applications in thermal physics, such as in fluctu-
ation theory [14], finite-time thermodynamics [16–18], phase
transitions [15,19–26], and even black hole thermodynamics
[25–27], among others.

Given a metric, the immediate objects of interest are its
geodesics and curvature. Much of the work [15–27] on the
Ruppeiner metric is anchored on these two geometric objects,
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though most papers tend to deal with either one or the other.
In the present work, we shall explore both. In particular, we
shall reexamine the use of geodesics and the curvature of
the Ruppeiner geometry in the construction of fluid phase
diagrams.

Geodesics in thermodynamic geometry admit different
physical interpretations. Some possibilities include the fol-
lowing: (1) the most probable path that fluctuations can drive
the system from A to B, which derives from fluctuation theory
[7,14], (2) the path of minimum number of distinguishable
fluctuations between A and B [28], or (3) the path of least
dissipation in a finite-time process [16–18].

In a pioneering study, Diósi et al. [29] proposed to classify
the different phases of the van der Waals fluid using geodesics
of the Ruppeiner geometry. The motivation for this was to
provide a coordinate-independent (i.e., geometric) definition
for the fluid phases. In the standard thermodynamic analysis,
the phases of two distinct states below the critical point are
operationally defined in terms of isotherms and isobars. This
is tantamount to singling out a special coordinate system on
the thermodynamic state space, which would be anathema
to a geometric treatment of thermodynamics. The use of
geodesics for classifying the thermodynamic phases frees it
from this apparent coordinate dependence. This was achieved
by Diósi et al. to some degree. However, as we shall see below,
their prescription suffers from a key weakness: The region
boundaries of their geodesics tend not to correspond to any
physically meaningful thermodynamic line. In this paper, we
show that in using a different submanifold of the Ruppeiner
metric space, geodesics-based boundaries shows a clearer
physical connection. Geodesics in this submanifold become
sensitive to the presence of the Widom line, a thermodynamic
line considered by many [30–32] to be the continuation of the
coexistence curve on the supercritical region of a fluid.

The usual Ruppeiner metric is computed with the volume
set constant. As explained by Ruppeiner [11], a constant vol-
ume (V ) analysis allows for ready interpretation of quantities,
such as the Ricci curvature being correlated with the corre-
lation length. This translates to limiting the analysis on the
constant-V hyperplane of the thermodynamic manifold, hence
we call this submanifold the Ruppeiner-V surface. In the alter-
native method we propose, we allow the volume to change and
keep the number of particles N constant instead, thus working
on a constant-N hyperplane we call the Ruppeiner-N surface.
We show here how the Ruppeiner-N surface can provide better
results than the conventional Ruppeiner-V surface.

As a short digression, we clarify the definition of the
Widom line. The term “Widom line” is used rather loosely
by different authors. Originally, it was defined as the locus
of points around a critical point that maximize the correlation
length [30,32]. Whether this maximum is taken along isobars
[19,22,32,33] or isotherms [30,31,34] tends to be ambiguous
in the literature. Since correlation lengths are challenging
to measure or compute, the Widom line is often indirectly
obtained through the maxima of thermodynamic response
functions, such as the isobaric heat capacity, isothermal com-
pressibility, or the thermal expansion coefficient [20,30].
These response functions scale as powers of the correlation
length near the critical point, and so their maxima should all
asymptote to the Widom line as they approach the critical

point. While this method is disputed by some authors [20,33],
it has become the established technique for obtaining the
Widom line, with the isobaric heat capacity most often used
as the response function for tracking the correlation length
[19,33,35]. Due to this, some authors [35] refer to the Widom
line directly as the locus of points that maximize the iso-
baric heat capacity. In order to differentiate these two distinct
notions of the Widom line, we refer to the correlation-length-
based curve as the statistical Widom line (since the correlation
length is a statistical quantity) and the heat-capacity-based
curve as the thermodynamic Widom line (in the same spirit,
since the heat capacity is a thermodynamic quantity). Further-
more, we may add the qualifiers “isobar” and “isotherm” to
clarify along which paths the maxima are taken.

Distinctions aside, the Widom line gained the attention of
the scientific community when various systems were observed
to undergo abrupt changes in its properties when crossing the
purported line [32,33,36,37]. Some supercritical fluids have
been shown to possess liquidlike properties on one side of
the line and gaslike properties on the other [31]. Given the
importance of the Widom line, it is thus desirable for a ther-
modynamic geometry to be sensitive to it, and in this paper we
show that this is achieved with geodesics of the Ruppeiner-N
metric and not the usual Ruppeiner-V metric.

Complementing the geodesic structure of thermodynamic
geometry is its curvature, which has also been proposed to
hold thermodynamic significance. Many investigations of the
Ricci scalar curvature [14] for different thermodynamic sys-
tems indicate its sign to reveal the nature of the dominant
intermolecular forces in a system. For example, the curvature
of a simple ideal gas vanishes everywhere, whereas the Fermi
and boson gas have positive and negative curvatures, respec-
tively [14]. Further examples are reviewed in Ref. [14]. The
physical meaning of the magnitude of the Ricci scalar remains
topical in thermodynamic geometry. Ruppeiner [7,14,15,19]
has hypothesized that the magnitude of the Ricci scalar is
proportional to the correlation volume near the critical point

R ∝ ξ 3. (1)

This relation has been shown to hold for many systems [7,38–
46], though it has not yet been proven to be generally true.
Quite notably, the Ricci scalar and the correlation length both
diverge at the critical point, and both are found to have the
same critical exponent [15].

Combined with Widom’s argument that the correlation
lengths of coexistent states are equal [47], Ruppeiner’s con-
jecture implies that the Ricci curvature of coexistent states
should also be equal. This enables a geometric construction of
phase boundaries using the Ricci curvature. That is, in contrast
to the standard approach in which we equate the Gibbs free
energy of two coexistent states to find the phase boundary, in a
geometry-based construction we equate their Ricci curvatures
instead [19]. We call the boundary generated using standard
methods the Maxwell phase boundary (from Maxwell’s equal
area law), and the Ricci-based boundary the Ricci phase
boundary. This alternative method of obtaining the phase
boundary is sometimes referred to as the R-crossing method.
It has been applied to many different systems [19–21,23–26].
In each of these specific cases, excellent agreement is found
between the two phase boundaries near the critical point. In
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this work, we wish to check if this agreement holds for a wide
class of fluids.

To achieve this, we construct a general parametrized
expansion of fluid equations of state (EoSs) near the criti-
cal point and then calculate the associated thermodynamic
metrics and their curvature. We then use the resulting
parametrized EoS to assess the general validity of the R-
crossing method. Indeed, we provide an explicit proof that
the Maxwell and Ricci phase boundaries must agree near the
critical point for our broad family of fluids.

The Ricci scalar has been used not only for constructing
phase boundaries but also for the (statistical) Widom line
[19,20]. This logically follows from Ruppeiner’s hypothesis in
Eq. (1) and the notion of the statistical Widom line as the locus
of local correlation length maxima: If the correlation length is
maximized, then so should the Ricci scalar. We shall call the
Widom line generated from the Ricci scalar the Ricci-Widom
line. Using the Ruppeiner-V metric, May and Mausbach [20]
calculated the Ricci-Widom line of the van der Waals fluid and
compared it to its thermodynamic Widom line and found the
curves to have equal slopes at the critical point. In this paper,
we show that if the Ruppeiner-N metric was used instead, the
agreement is much better: The van der Waals thermodynamic
Widom line and Ricci-Widom line are exactly the same, even
when far from the critical point.

Taken together, all these results suggest that the Ruppeiner-
N metric, through its geodesics and curvature, may be the
more appropriate metric to use when constructing fluid phase
diagrams with thermodynamic geometry.

The rest of the paper is organized as follows. In Sec. II,
we review the fundamentals of the Ruppeiner metric. We
then proceed to Sec. III to discuss the application of the
Ruppeiner-N metric in characterizing the phases of the van
der Waals fluid. We also give a review to the study of Diósi
et al. [29] regarding this partitioning scheme. In Sec. IV, we
present the parametrized fluid EoS expansion we designed
specifically for Ruppeiner metric applications. These results
are used in Sec. V where we investigate the relation of the
Ruppeiner curvature to a system’s phase boundary and Widom
line. Finally, we conclude the paper in Sec. VI.

II. RUPPEINER METRIC

A. Geometry from thermodynamic fluctuation theory

The Ruppeiner geometry naturally emerges from thermo-
dynamic fluctuation theory [11]. The latter is what lends a
physical interpretation to the concept of length in a thermo-
dynamic space. For completeness, we shall briefly review this
here.

Consider a system in contact with its environment and
whose equilibrium macrostate is at A0. With the assumption
of equal microstate probabilities, the probability of the system
to be at a macrostate A must be proportional to the number of
microstates of A:

PA ∝ �A. (2)

By inverting Boltzmann’s equation S = k ln �, we can write
this probability in terms of thermodynamic quantities:

PA ∝ exp
(
SU

A /k
)
, (3)

where SU
A is the entropy of the universe when the system is at

state A and k is the Boltzmann constant. Equation (3) is a well-
known relation used by Einstein in fluctuation theory [48]. To
incorporate the phenomenon of fluctuation in our analysis, we
expand the entropy about the equilibrium state A0:

SU =
∞∑

n=0

1

n!

[
(dX · ∇ )n

A0
S + (dX′ · ∇′)n

A0
S′], (4)

where the X μ components of X are the natural extensive
variables of the entropy. Unprimed variables denote system
quantities while primed variables denote environment quanti-
ties. Because A0 is the equilibrium state, the n = 1 terms of
Eq. (4) are all zero. Up to the leading nonvanishing order, the
entropy of the universe is then

SU = SU
A0

+ [
1
2 (dX · ∇ )2

A0
S + 1

2 (dX′ · ∇′)2
A0

S′]. (5)

The Hessians of S and S′ already appear in the second and
third terms of Eq. (5), respectively. To set the scale of the
system, we keep one extensive variable constant. Let this scale
variable be X sc. This also fixes the corresponding environ-
ment extensive variable X ′sc. We then take the densities of
the extensive variables with respect to scale variables, i.e.,
xμ := X μ/X sc and x′μ := X ′μ/X ′sc. Because extensive quan-
tities are conserved for a closed system such as the universe,
dx′μ = −ε dxμ, where ε = X sc/X ′sc. The last term in Eq. (5)
is of the order ε2. Assuming that the environment is very large
compared to the system, in the sense that X sc � X ′sc (ε � 1),
we only keep that lowest-order term in ε, which is the zeroth
order. Finally, dropping the last term of Eq. (5) and plugging
this expression of the entropy to Eq. (3) we get

PA = C exp

[
− 1

2k

(
− ∂2S

∂X α∂X β

)
A0

δX α
A δX β

A

]
, (6)

where C is the normalization constant, and δX α
A := X α

A − X α
A0

.
We are using Einstein’s summation convention for repeated
indices. Ruppeiner [7,14] notes that the Hessian of the system
entropy qualifies as a Riemannian metric and defines this to
be the thermodynamic metric to be

gαβ = − ∂2S

∂X α∂X β
. (7)

Ruppeiner’s choice for the scale variable X sc is the volume
V of the system [11]. In this ensemble, domains correspond
to actual spatial regions and this allowed for a more intuitive
interpretation of quantities introduced by the Ruppeiner met-
ric. Thus in the literature, this is also the usual choice. We
refer to the metric resulting from this choice the Ruppeiner-V
metric. However, nothing really prohibits choosing alternative
scale variables like the number of particles N of the system,
which is the particular choice we investigate in this paper. The
motivation for this is that in phase transition analysis, N is
often chosen to be constant [8,49], as in the ensemble assumed
by the Helmholtz and Gibbs free energy. The resulting metric
for this choice differs from the usual Ruppeiner-V metric, and
we refer to it as the Ruppeiner-N metric. It is thus worth
noting how the metric is seemingly sensitive to the choice
of ensemble. While equally valid, the Ruppeiner-N metric is
an unpopular choice in the literature. Nevertheless, there is at
least one study [25] that used this metric. It is the principal
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object of this work to show how the Ruppeiner-N metric can
work better than its far more popular sibling Ruppeiner-V for
geometric constructions of fluid phase diagrams.

Writing Eq. (6) as

PA = C exp

[
− 1

2k
gA0 (δXA, δXA)

]
, (8)

= C exp

(
− 1

2k
|δXA|2A0

)
, (9)

we see that the probability of the system to fluctuate from its
equilibrium state A0 to a nearby state A is measured by the
distance between A and A0 under the Ruppeiner metric; the
smaller the distance, the larger the probability.

Let us now consider the case when A is distant from the
equilibrium state A0. We let the system go through a series
of stepwise fluctuations that will bring the system from A0

to A. The physical picture of this is that we have a series of
baths with preset temperatures, pressures, etc. We immerse the
system to one bath after another until it reaches the state A. Let
the intermediate states be indexed by t from t = 0 to t = τ .
The total probability of going from A0 to A is then PA0→A =
PA0→A1 PA1→A2 . . . PAτ−1→Aτ

or

PA0→A = C exp

[
− 1

2k

∫ τ

0
g(δX(t ), δX(t )) dt

]
. (10)

Invoking Titu’s lemma (a special case of the Cauchy-Schwarz
inequality) [50]

1

N

(
N∑

k=1

ak

)2

�
N∑

k=1

a2
k , (11)

we find an upper bound of PA0→A to be

PA0→A � C exp

{
− 1

2k

[ ∫ τ

0

√
g(δX(t ), δX(t )) dt

]2}
.

(12)

The integral in Eq. (12) is the distance of the path from A0

to A. We see that the greater the distance, the smaller the
upper bound of the probability of the system transitioning
from state A0 to A becomes. In other words, states that are
“far” in the thermodynamic space have low transition proba-
bilities. Looking back at Eq. (10), notice that the probability
is dependent on the parametrization of states. In finite-time
thermodynamics [51], the parameter t is interpreted as time.
If the parametrization is such that g(δX(t ), δX(t )) is constant,
we get the equality sign in Eq. (12).

In summary, the Ruppeiner distance gives a measure of the
probability of fluctuation from one state to another.

B. Coordinates

We are not constrained to express the Ruppeiner met-
ric using the natural extensive variables of the entropy. Let
Yμ := ∂S/∂X μ be the conjugate variable of X μ. Here we use
the notation that Greek indices run through all the extensive
or intensive variables, while Latin indices exclude the en-
ergy X 0 := E and the inverse temperature Y 0 := 1/T . From

Eq. (7), we can write the Ruppeiner metric as

g = − ∂2S

∂X α∂X β
dX αdX β, (13)

= −dX μdYμ. (14)

With the fundamental relation

dE = T dS + PidX i, (15)

where Pi is the conjugate of X i in the energy representation,
one can recast Eq. (14) as

g = 1

T
dT dS + 1

T
dX idPi. (16)

The Ruppeiner metric is diagonal in the coordinate system
(X k, T ), where X k is the lone extensive variable (aside from
the energy and entropy) allowed to vary. In the (N, T ) surface
where V is constant, we have

gV = 1

T

(−∂2
T F dT 2 + ∂2

N F dN2
)
, (17)

where F is the Helmholtz free energy. In the (V, T ) surface
where N is constant, we have

gN = 1

T

(−∂2
T F dT 2 + ∂2

V F dV 2
)
. (18)

These can be obtained from Eq. (16) by writing the total
differentials dS and dPi in terms of dT and dX i.

The two metrics in Eqs. (17) and (18) are different because
we are looking at two different surfaces of the same thermody-
namic manifold: the hyperplane of constant V (Ruppeiner-V
surface) and the hyperplane of constant N (Ruppeiner-N sur-
face). These metrics are induced from the same Ruppeiner
metric defined on the whole thermodynamic space. In what
follows, we shall refer to Eq. (18) as the Ruppeiner-V metric
and Eq. (17) as the Ruppeiner-N metric.

C. Example: van der Waals fluid

The simplest fluid that exhibits phase transitions is the van
der Waals fluid [52]. Let us consider its Ruppeiner metric. The
ideal van der Waals fluid is characterized by the following
pressure and energy EoS [53]:

P = NkT

V − Nb
− a

N2

V 2
, (19)

E = 3

2
NkT − a

N2

V
. (20)

The corresponding Helmholtz free energy is

F = −NkT ln

[(
V

N
− b

)
(T η)3/2

]
− aN2

V
, (21)

for some constant η. In our analysis, we always work in the
frame (x, T ), where x is the number density x := N/V . It is
also convenient to normalize quantities with respect to their
critical values:

PC = 1

27

a

b2
, (22)

TC = 8

27

a

bk
, (23)

xC = 1

3

1

b
. (24)
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From here onward, we will always use normalized quantities
where all critical values are set to unity. For example, when-
ever the temperature “T ” appears, we shall take this to mean
T/TC .

Evaluating Eqs. (17) and (18), the Ruppeiner-V and
Ruppeiner-N metric of the van der Waals fluid are

gV =
(

4x

T 2

)
dT 2 +

[
24

x(x − 3)2
− 6

T

]
dx2, (25)

gN =
(

4

T 2

)
dT 2 + 1

x

[
24

x(x − 3)2
− 6

T

]
dx2, (26)

respectively. Note that the two metrics are conformal to each
other: gN = 1

x gV . We shall study these geometries extensively
in what follows.

III. THERMODYNAMIC GEODESICS

An immediate application of the Ruppeiner-N metric is
that its geodesics provide an improved coordinate-invariant
partitioning scheme for defining phases in thermodynamic
state spaces. But first we discuss some preliminaries.

The length s of a curve γ on a space with metric gab is
given by [54]

s =
∫

γ

√
gabγ̇ aγ̇ b dt, (27)

where a dot on top a variable indicates taking derivative with
respect to the parameter t . Geodesics are the curves that ex-
tremize the length s. They satisfy the nonlinear differential
equation:

γ̈ a + �a
bcγ̇

bγ̇ c = 0, (28)

where �a
bc are the Christoffel symbols [55]. The Christoffel

symbols are computed from the metric [56]:

�α
μν = 1

2 gαβ (gβμ,ν + gβν,μ − gμν,β ). (29)

The symbol gαβ with up-up indices refers to the inverse of the
metric gαβ written with down-down indices. Lowered indices
after a comma refers to partial differentiation with respect to
the corresponding coordinate: gβμ,ν = ∂νgβμ.

In general relativity, point particles, with or without
mass, travel along geodesics of the given space time, a
four-dimensional pseudo-Riemannian manifold. In thermody-
namic geometry, however, no mechanism constrains systems
to evolve exclusively along geodesics. Nevertheless, the sig-
nificance of these geodesics in thermodynamic geometry has
been noted in several papers [7,14,16–18,28].

The geodesics of the Ruppeiner metric, being the curves
that minimize the average fluctuations between two states
[28], were utilized by Diósi et al. [29] in their proposal of
a covariant rule for classifying liquid and gas states in the
van de Waals state space. This rule provided a means of
partitioning the van der Waals state space into its liquid and
gas regions, even above the critical point. However, as investi-
gated in this paper, the boundary produced using their scheme
was not seen to correspond to any of the already-established
thermodynamic lines. We show here that we can overcome
this weakness by adopting the Ruppeiner-N metric instead of
the usual Ruppeiner-V metric. With the Ruppeiner-N metric,

we can generate a geodesic-based boundary that neatly divides
the liquid and gas states in the subcritical region and divides
the supercritical region the same way as the isotherm Widom
line does.

In what follows, we first review the Diósi partitioning
based on Ref. [29] before discussing our own modified parti-
tioning of the van der Waals state space using the Ruppeiner-N
metric.

A. Diósi partitioning of the van der Waals state space

Just for this subsection, we use the dimensionless vari-
ables adopted by Diósi et al. for easier comparison. The
variables are nondimensionalized but not normalized, i.e.,
Eqs. (22)–(24) but without the coefficients 1/27, 8/27, and
1/3, respectively. These numbers become the critical values
of the dimensionless pressure, temperature, and density in this
definition, respectively.

The first rule of the Diósi partitioning scheme is this:

If two states belong to the same phase, then the states must be
geodesically connected.

Geodesically connected means there is a geodesic curve
that contains the two points. An important remark to this
definition is that it is intentionally not a biconditional. Thus,
this rule alone is insufficient to judge which states belong to a
phase.

The authors then argued the following:

States geodesically connected to states on the phase boundary,
known to be at some phase, also belong to that same phase.

For example, states that are geodesically connected to a
state on the liquid part of the phase boundary are liquid them-
selves. The rationale behind this definition is that we are most
sure at the phase boundary that a state is at one specific phase
because we can compare it to the other coexisting state and
we can see the two behaving differently. So clearly, one must
be in a phase that the other is not. These two rules can now
assign a phase to a set of mutually geodesically connected
(MG-connected) states—but an issue arises that weakens the
physical significance of the Diósi phase regions. Consider the
states on the gas part of the phase boundary. By the authors’
definition, these states should all be at the gaseous phase.
Thus, we should expect these states to be MG connected
themselves, but this is not the case for the van der Waals fluid
(see Fig. 1). We will talk more about this in a while.

To locate all points of a particular phase in the Diósi
scheme, one could imagine doing the following procedure:
(1) locate points at the phase boundary (red curve in Fig. 1;
part of it overlaps with the blue and green curves) that are
MG connected; (2) for each cluster of MG-connected points,
propagate geodesics from each point; and (3) check the points
in these geodesics that are MG connected. The phase region
then constitutes all these MG-connected points from steps 1
and 3. Of course, several issues are already apparent just from
enumerating the steps. For one, we are basically trying to
cover a two-dimensional region with one-dimensional curves,
which would be impossible. We also do not know whether
these regions are simply connected.
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FIG. 1. Diósi partitioning of the van der Waals state space.

To simplify the process, the authors made assumptions so
that the boundaries of these regions can be drawn by just
looking at the envelope of geodesics emanating from a single
sample point at the phase boundary. For example, we go
over the gaseous part of the phase boundary (x < xC = 1/3
in Fig. 1). The authors chose to propagate geodesics from
an asymptotically low-density gas state (x = 0.01, T = 0.16)
(see Fig. 2). One can see from the plot that some gaseous
states at the phase boundary (x < 1/3) are not geodesically
connected with the source point, even though these states be-
long to the same phase in the standard sense. By observation,
propagating geodesics at a gaseous source point with a higher
density will have an envelope that is farther to the right. Thus,
it is the envelope produced from lower densities that bounds
the possibly MG-connected gas states. This observation let the
authors to consider just a single state at the phase boundary,
instead of having to deal with step 1 mentioned from the last
paragraph. With the assumption that all the points bounded by
this envelope are also MG connected, the region bounded by
the phase boundary curve and the “gas” envelope is then taken
to be the Diósi gas region. In their study, they made checks on
sample pairs of points from a phase region if they are indeed
geodesically connected.

FIG. 2. Geodesics emanating from an asymptotically low-
density gas state. One hundred (100) sample geodesics are prop-
agated from the state (x = 0.01, T = 0.16). The outer envelope of
these curves, excluding states below the phase boundary (metastable
states), is the blue curve in Fig. 1.

FIG. 3. Geodesics propagating at a gas state on the phase bound-
ary in the Ruppeiner-N van der Waals space. The source point is
at (x = 0.7000, T = 0.9757). Notice that only a few rays cross the
critical isochore, which is also the isotherm thermodynamic Widom
line of the van der Waals fluid.

But one question remains: What about the actual gas states,
in the standard sense (x < xC, T < TC), that are not included
in the Diósi gas region? Easy. They are thrown away into the
critical region (see Fig. 1), which is just the region whose
points are not geodesically connected to all Diósi gas or liquid
states. This is one main weakness of the Diósi partitioning
scheme; the boundaries it produces do not even completely
agree with the phase boundary. In fact, probably the only
satisfactory result from the Diósi partitioning is that no two
states belonging from two different phases (in the standard
sense) are geodesically connected. In short, the Diósi regions
and boundaries fail to acquire physical significance.

For the Diósi liquid region, the chosen asymptotically
high-density state is (x = 0.98, T = 0.0196).

To further test if the Diósi boundaries correspond to pos-
sible physical boundaries, we superimposed the isotherm
(solid black curve) and isobar (orange curve) thermodynamic
Widom line atop the Diósi boundaries (see Fig. 1). A sketch
for finding the Widom line of a system is given in Sec. V A.
We used Widom lines because these are considered by many
authors to be the continuation of the phase boundary on the
supercritical region. As can be seen, the Diósi boundaries still
ignore the presence of any of these lines.

B. Phase boundaries of van der Waals gas using
Ruppeiner-N geodesics

In this subsection, we revert back to the dimensionless and
normalized variables in Eqs. (22)–(24).

A general property of geodesics using the Ruppeiner-N
metric is that those emanating from gas states (x < 1) hardly
cross the critical isochore x = 1, with the exception of few
trajectories. For example in Fig. 3, rays at different initial
angles in the (x, T ) space are propagated from a single point.
The chosen initial point is at (x = 0.7000, T = 0.9757), a
gas state on the phase boundary. We can see that only a few
rays passes the critical isochore with much of them staying
at the gas side (to the left of the critical isochore) of the
state space. If we lower down the temperature, then fewer
rays cross the critical isochore (see Fig. 4). This prompts us
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FIG. 4. Geodesics propagating from a gas state slightly below the
phase boundary. The source point is at (x = 0.7000, T = 0.9657), a
difference of −0.01 from the temperature value of the source point in
Fig. 3. Here rays are no longer seen to intersect the critical isochore
or isotherm Widom line.

to check the geodesics emanating from asymptotic states just
above the spinodal curve. From Fig. 5, we can see that the
geodesics are compressed and bundled along a vertical line
(constant x) even though initial angles are varying. Looking at
an asymptotic spinodal gas state very near the critical point,
we see that no geodesic emanating from this state crosses the
critical isochore. That is, all geodesics stay to the left of the
critical isochore. The same features hold for the liquid states
on the right of the critical isochore. The key observation here
is that the geodesics in the Ruppeiner-N space seem to be
aware of the presence of the critical isochore. For the van der
Waals fluid, the critical isochore turns out to be the isotherm
thermodynamic Widom line.

We now state our version of the phase partitioning rule:

Gas (liquid) states are states that are geodesically connected
to any asymptotic spinodal gas (liquid) state.

Our rule generates only one boundary, which is exactly
the critical isochore and the isotherm thermodynamic Widom
line. Any state on the left of the critical isochore (in Figs. 3–
5) is a gas and any state on the right is a liquid. Unlike

FIG. 5. Geodesics propagating from an asymptotically spinodal
gas state very near the critical point. One thousand rays are propa-
gated from the state at (x = 0.999000, T = 0.999999).

the original Diósi prescription, our partitioning rule separates
states in a way that is entirely consistent with the standard
definition of gas and liquid states of the van der Waals fluid
in the subcritical region. Furthermore, our boundary correctly
extends to the supercritical region, where it coincides with
the isotherm Widom line. Thus, the phase partitioning rule
based on the Ruppeiner-N geodesics gives a more sensible
classification van der Waals states throughout the whole state
space.

IV. EQUATION OF STATE NEAR THE CRITICAL POINT

Applications of the Ruppeiner metric and the R-crossing
method to specific model systems are abundant in the lit-
erature [19–21,23–26]. In this paper, we wish to check if
the R-crossing method works for general fluids that possess
a critical point. We do this by first constructing a general
equation of state.

We start with a pressure EoS written as a function of
temperature and number density P(T, x) and perform an ex-
pansion in the number density about the critical point x =
1. The reason for this expansion is because the R-crossing
method is expected to work in the neighborhood of the critical
point. This is due to Ruppeiner’s hypothesis of the Ricci scalar
being proportional to the correlation volume near the critical
point [19]. Because at the critical point ∂xP = ∂2

x P = 0, we
keep terms in our expansion up to third order in (x − 1) [57]:

P(T, x) = a0(T ) + a1(T )x + a1(T )x2 + a3(T )x3. (30)

We subject Eq. (30) to a number of constraints that will limit
the forms of the ai functions so that the pressure EoS evolves
as expected as the temperature approaches the critical value
T = 1.

First, we require that below the critical temperature P(T, x)
should have two real extremal critical points (values of x that
extremizes P, not to be confused with the thermodynamic
critical point). Let x1(T ) and x2(T ) be the extremal critical
points of P at a given temperature. Then, we should have

∂xP ∝ [x − x1(T )][x − x2(T )]. (31)

At the critical temperature, x1 and x2 should coincide at
the critical point: x1(T = 1) = x2(T = 1) = 1. Just above the
critical temperature, no extremal critical points should exist
because the pressure EoS should now be stable everywhere.
So, in general, x1 and x2 are complex numbers. We decompose
them to their real and imaginary parts,

x1(T ) = f1(T ) + i g1(T ), (32)

x2(T ) = f2(T ) + i g2(T ). (33)

Even though the x1(T ) and x2(T ) are complex-valued func-
tions, we should not see any imaginary numbers in the
full form of P(T, x). Integrating Eq. (31) with respect to x
and zeroing out all imaginary terms, we get the following
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constraints:

f1(T ) = f2(T ), (34)

g1(T ) = −g2(T ). (35)

We now write the extremal critical points as

x± = f (T ) ± i g̃(T ). (36)

Now that the behavior of the pressure EoS above the critical
point has been worked out, we return to the subcritical region.
When T < 1, x±(T ) should be purely real so that the two ex-
tremal critical points exist. If we let i · g̃(T ) = √

g(T ), where
g(T ) is a function such that g(T < 1) � 0, g(T = 1) = 0, and
g(T > 1) < 0, then we see that x±(T ) acquires the desired
properties we have for it: x±(T < 1) ∈ R, x±(T = 1) = 1,
and x±(T > 1) /∈ R. With this, the final form of our general
cubic EoS becomes

P = h(T )
{

1
3 x3 − f (T )x2 + [ f 2(T ) − g(T )]x + c(T )

}
.

(37)

So far, we have four free functions of temperature characteriz-
ing a specific system near a critical point. We further impose
these constraints to the free functions:

P(1, 1) = 1, (38)

d

dT
P(T, x±(T ))|T =1 > 0, (39)

∂P

∂x

∣∣∣∣
T >1

> 0. (40)

Equation (38) sets the critical value of the dimensionless
pressure to unity. Equation (39) ensures that the equation P =
P(T < 1, x) will not have multiple roots in x for P > 1. This
removes the possibility of having coexistent states with pres-
sures greater than the critical value. Finally, Eq. (40) imposes
that the system be stable above the critical temperature.

The corresponding Helmholtz free energy is

F = h(T )

{
1

6
x2 − f (T )x

+ [ f 2(T ) − g(T )] ln x − c(T )

x

}
+ j(T ). (41)

calculated from the relation P = −(∂F/∂V )T [58]. Notice the
additional free function j(T ).

A. Function parameters

We have a total of five free functions in our expansion,
c(T ), f (T ), g(T ), h(T ), and j(T ), that characterize a fluid
system near a critical point. For example, the van der Waals
fluid with the pressure [59] and temperature [60] EoS

P = 8xT

3 − x
− 3x2, (42)

T = 1

4
(E + 3x), (43)

using normalized variables (E stands for the normalized inter-
nal energy) has the following assignment in our parametrized

expansion:

c(T ) = −1/9,

f (T ) = 1/3 + 2/(3T ),

g(T ) = f 2(T ) − 1, (44)

h(T ) = 9T/2,

j(T ) = −4T [ln (T ) + K],

where K is a constant.
Our expansion also works for nonfluid systems, where the

order parameter is different from the number density x, after
some minor modifications. To illustrate this, we look at the
Curie-Weiss ferromagnet which is the mean-field approxima-
tion to the Ising model [61]. Its Helmholtz free energy per spin
F is given by [62]

F = −kT

[
m arctanh m + 1

2
ln (1 − m2) − 1

2

Tc

T
m2 − ln 2

]
,

(45)

where Tc is the critical temperature. Equation (37) still holds,
although this will now be the expression for the external mag-
netic field H , and number density x is replaced by the mean
magnetization per spin m. Since H = (∂F/∂m)T , Eq. (41) is
replaced with

F = h(T )
{

1
12 x4 − 1

3 f (T )x3 + 1
2 [ f 2(T ) − g(T )]x2

+ c(T )x
} + j(T ). (46)

The corresponding free functions for the Curie-Weiss magnet
are

c(T ) = 0,

f (T ) = 0,

g(T ) = 1 − T, (47)

h(T ) = T,

j(T ) = 0,

where we have set k = 1 and Tc = 1 to normalize and remove
the dimensions of the thermodynamic variables.

Finally, we look at some of these free functions and their
physical significance. The functions f (T ) and g(T ) model the
spinodal curve of the fluid through

x±(T ) = f (T ) ±
√

g(T ), (48)

following Eq. (36). Meanwhile, the function j(T ) sets the
isochoric heat capacity of the system from the relation CV =
−T (∂2F/∂T 2)V [63].

V. RICCI CONSTRUCTION OF THE PHASE BOUNDARY
AND THE ISOBAR WIDOM LINE

In this section, we discuss the implications of Ruppeiner’s
hypothesis in Eq. (1) that the Ricci scalar is proportional to
the correlation volume near the critical point of a system.
As discussed in Sec. I, this introduces an alternative method
for computing the phase boundary and the (isobar) Widom
line, which we collectively call the Ricci construction. For the
reader’s convenience, a summary of the different methods is
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TABLE I. Terminology and definitions of the standard or thermo-
dynamic and Ricci-constructed phase boundary and isobar Widom
line.

Standard Ricci
construction construction

Phase boundary Maxwell phase Ricci phase
boundary (coexistent boundary (coexistent
states have equal states have equal
Gibbs free energy) Ricci scalar)

Isobar Widom Widom line (maximum Ricci-Widom
line isobaric heat capacity line (maximum Ricci

along isobars) scalar along isobars)

presented in Table I. We now apply the Ricci construction on
the van der Waals fluid and one sample fluid from our EoS
class presented in Sec. IV with the following choice of free
functions:

c(T ) = 2/3 − (1 − T ),

f (T ) = 1,

g(T ) = 1 − T, (49)

h(T ) = 1,

j(T ) = −T 2/2.

This is one of the simplest choice of free functions. We simply
call this system Fluid A. We also looked at two other sample
systems (plots not shown): One has instead g(T ) = 1 − T +
(1 − T )2 and one has f (T ) = T , as compared to the choices
made above. The findings, however, are qualitatively the same
as with Fluid A’s.

We shall also generate the corresponding thermodynamic
lines using standard methods from thermodynamics and com-
pare the resulting curves. These methods are discussed in the
following subsection.

A. Calculating phase boundaries and the Widom line

1. Standard thermodynamic construction

The phase boundary and the (thermodynamic) Widom line
can be readily computed using standard methods in thermody-
namics. The standard Maxwell phase boundary is computed
by finding pairs of states with different densities, xA and xB,
for every value of the temperature less than the critical value
that satisfies the equality of pressure as dictated by a pressure
EoS,

P(T, xA) = P(T, xB), (50)

and the equality of the Gibbs free function (thus, the chemical
potential μ = G/N as well) [64],

G(T, P, xA) = G(T, P, xB). (51)

The two unknowns xA and xB are completely determined from
Eqs. (50) and (51).

Meanwhile, the isobar thermodynamic Widom line is di-
rectly computed by finding the maximum of the isobaric heat
capacity at lines of constant pressure. We use the isobar vari-
ant of the Widom line as this is the definition most often used

in the literature [19,33,35]. Given a pressure EoS P(T,V, N )
and a corresponding Helmholtz free energy F (T,V, N ), the
isobaric heat capacity can be calculated using

CP = −T

(
∂2F

∂T 2

)
V

− T

(
∂P

∂T

)2

V

(
∂P

∂V

)−1

T

. (52)

2. Ricci construction

The Ricci scalar R is the simplest curvature invariant that
can be obtained from two successive contractions of the Rie-
mann tensor Rρ

σμν [65]

Rρ
σμν = �ρ

νσ,μ − �ρ
μσ,ν + �

ρ

μλ�
λ
νσ − �

ρ

νλ�
λ
μσ , (53)

Rσν = Rμ
σμν, (54)

R = gσνRσν. (55)

For diagonal metrics, which are the ones we will work with,
the curvature is given by [66]

R = 1√
g

[
∂

∂x1

(
1√
g

∂g22

∂x1

)
+ ∂

∂x2

(
1√
g

∂g11

∂x2

)]
. (56)

Widom [47] argued that the correlation length must be
equal for coexistent states. And by Eq. (1), the Ricci scalar
must also be equal for two coexistent states. Thus, the Ricci
phase boundary is computed from Eq. (50) and, this time,
from the equality of the Ricci scalars

R(T, xA) = R(T, xB), (57)

in place of Eq. (51).
Equation (1) also implies that near the critical point the

isobar (isotherm) statistical Widom line should be calculable
from the Ricci scalar. Since the Ricci scalar is proportional
to a power of the correlation length in this region, one can
locate instead the maximum of the Ricci scalar along iso-
bars (isotherms) instead of the correlation length. That is,
we collect the values of the number density x that maximize
R(T (P, x), x) for a given pressure P. This collection of points
(x, P) is supposed to be the isobar statistical Widom line.
We call this Widom line generated using the Ricci scalar the
Ricci-Widom line. The strength of the Ricci-Widom line is that
it appeals to the original statistical definition of the Widom
line, i.e., the locus of correlation length maxima. This is in
contrast to the thermodynamics-based standard construction
of the Widom line. In other words, the standard Widom line
computed in this paper is an isobar thermodynamic Widom
line and the Ricci-Widom line is an isobar statistical Widom
line.

The standard and Ricci-based phase boundary and isobar
Widom line for the van der Waals fluid and Fluid A are shown
in Figs. 6 and 7. Figure 6 plots the phase boundaries in the P-T
plane while Fig. 7 plots the coexistent states and the Widom
lines of the sample thermodynamic systems.

B. Equivalence of Maxwell and Ricci phase boundaries

As can be seen in Figs. 6 and 7, the Maxwell and Ricci
phase boundaries of the van der Waals and Fluid A all coincide
near the critical point. Our plots in Figs. 6 and 7 are qualita-
tively similar to the calculated Maxwell phase boundary of
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FIG. 6. Maxwell and Ricci phase boundaries of the van der Waals fluid and Fluid A. Normalized thermodynamic variables are used.

other fluid models [23,67]. It seems then that this is a property
of a large group of systems, if not universal.

Here we prove that the Maxwell and Ricci phase bound-
aries are guaranteed to agree near the critical point using the
EoS expansion presented in Sec. IV. Figure 8 shows a generic
pressure EoS plot at a subcritical temperature in a pressure-
density frame. The equation P = P(T, x) has multiple density
roots in the interval [Pmin, Pmax]. These roots lie in the interval
[xmin, xmax]. However, roots in the interval [xA, xB] correspond
to thermodynamically unstable states. The densities xA and
xB are the densities of the spinodal gas and liquid states,
respectively. Stable multiple roots, then, must lie along the
intervals Ig = [xmin, xA) and Il = (xB, xmax]. This means that
coexistent states (roots that additionally satisfy Eq. (51) for
the Maxwell phase boundary states, and (57) for the Ricci
phase boundary states) must also be in Ig ∪ Il . Coexistent gas
states are in Ig and coexistent liquid states are in Il . Near
the critical point where the EoS may be expressed using our
expansion in Eq. (37), the measure (length) of both intervals
is given by

√
g(T ). However, recall that we demanded this

free function to vanish at the critical point so that the pressure
EoS may feature a critical point. Thus, as the temperature
approaches the critical value, the length of the intervals Ig and
Il approaches zero. These narrowing intervals Ig and Il squeeze
the Maxwell and Ricci phase boundaries together until they
meet at the critical point.

Turning to the phase boundary as plotted in the pressure-
temperature frame, we can also show that Maxwell and Ricci
phase boundaries are tangent to each other at the critical point,
as can be seen in Fig. 6. The curve Pmin as function of T is
given by Pmin = P(T, xmin(T )), and the curve Pmax by Pmax =
P(T, xmax(T )):

Pmin(T ) = 1
3 h(T )[3c(T ) − 3 f (T )g(T ) + f (T )3 − 2g(T )3/2],

(58)

Pmax(T ) = 1
3 h(T )[3c(T ) − 3 f (T )g(T ) + f (T )3 + 2g(T )3/2].

(59)

FIG. 7. Maxwell and Ricci phase boundaries of the van der Waals fluid and Fluid A as plotted in a temperature-density frame. Normalized
thermodynamic variables are used. The Ricci-Widom line of Fluid A ends not too far from the critical point. Its Ricci curvature no longer have
relative maxima at pressures far from the critical value. This is just reasonable since the EoS given for Fluid A is only an expansion around the
critical point.
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FIG. 8. A pressure EOS at a temperature below and near the
critical value.

A sample plot of these curves are shown in Fig. 9. Let PM (T )
and PR(T ) be the Maxwell and Ricci phase boundaries in
the P-T plane. As discussed previously, Pmax(T ) and Pmin(T )
bounds PM (T ) and PR(T ) from above and below, respectively.
We note two things: (1) Pmax(T = 1) = Pmin(T = 1), and (2)
P′

max(T = 1) = P′
min(T = 1), since

|P′
max(T ) − P′

min(T )|= 2
3

√
g(T ) |3h(T )g′(T ) + 2g(T )h′(T )|

(60)

and g(T = 1) = 0. Because the bounding curves meet at the
critical point with the same slope, the Maxwell and Ricci
phase boundaries are squeezed together and forced to have
equal slopes at the critical point.

Turning for a moment to magnetic systems, this result
applies as well to the Curie-Weiss ferromagnet, as we have
shown that the Curie-Weiss EoS fits our proposed expansion
[68]. This is consistent with the results reported in Ref. [62].

Finally, we note that we did not assume a specific form
of G(T, P, x) or R(T, x) in Eqs. (51) and (57) in our analy-
sis. While our analysis supports the Ruppeiner’s R-crossing
theorem, it also reveals that it is not unique to the Ruppeiner
metric that a phase boundary can be generated consistent with
the standard curve. In fact, any construction that chooses pairs
of coexistent states lying in the interval Ig and Il will produce

FIG. 9. Bounding curves of the phase boundary on the P-T
plane. This sample plot uses the expanded van der Waals EOS in
Eq. (44).

a phase boundary that matches the Maxwell phase boundary
at the critical point.

C. Equivalence of van der Waals Widom lines
and disparity in Fluid A

In contrast to the Maxwell and Ricci phase boundaries, the
agreement of the Widom and Ricci-Widom line near the criti-
cal point does not necessarily hold for arbitrary EoS. Already
with Fluid A, the Widom and Ricci-Widom lines are seen to
run on different directions just from the critical point.

While for Fluid A we observed generally poor agreement
of the Widom and Ricci-Widom lines, the complete opposite
was seen for the van der Waals case. The Widom and Ricci-
Widom lines of the van der Waals fluid are exactly the same,
for both the isotherm and the isobar variant. The isobaric heat
capacity of the van der Waals fluid can be expressed as [69]

CP(P, x) = 4[5P + 3x2(2x − 1)]

3[P + x2(2x − 3)]
. (61)

Meanwhile, the Ricci curvature of the van der Waals fluid (in
the Ruppeiner-N metric) is

R(T, x) = −x(x − 3)2[x(x − 3)2 − 8T ]

8[x(x − 3)2 − 4T ]2
. (62)

With the pressure EoS of the van der Waals fluid, the tem-
perature in Eq. (62) can be expressed as a function of the
pressure and density. What is surprising is that while the two
functions are entirely different, their maxima along isobars
and isotherms turns out to be exactly coincident, lying at

PWid(x) = x3

2 − x
, (63)

and x = xC = 1 for x � 1, respectively. In the work of
May and Mausbach [20] where the authors used the usual
Ruppeiner-V metric, the Widom and Ricci-Widom lines are
only consistent up to their slopes at the critical point, i.e., they
are tangent at the point.

It is a curious matter why the Ricci construction of the
Widom line works very well for the van der Waals fluid
while failing to be consistent with the standard curve for an
arbitrary EoS, i.e., an arbitrary choice of free functions. In
Ref. [62], it was shown that this disparity is also present in
the Curie-Weiss ferromagnet. Aside from the van der Waals
fluid, consistent curves are also seen in the Lennard-Jones
fluid [20], i.e., the Ricci-Widom line was able to approximate
the standard Widom line up to having the same slope at the
critical point. The disparity in the curves we found here may
be due to the artificial and bare nature of the EoS of Fluid
A. We suspect that more realistic equations of state of fluids
have certain properties that the EoS of Fluid A and other bare
EoS lack. That is, we may need to impose additional physical
constraints in our free functions in Eq. (41). Knowing when
and how the Ricci-Widom line becomes consistent with the
standard Widom line is an important question that we intend
to investigate in future works.
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VI. CONCLUSION AND RECOMMENDATIONS

This work was an exploration of the geodesics and
Ricci curvature of the Ruppeiner geometry of different fluid
systems. We have discovered that basing geometric prescrip-
tions for important thermodynamic curves, such as phase
boundaries and the Widom line, on an alternative hypersur-
face of thermodynamic space results in better agreement with
standard thermodynamic methods. This alternative hypersur-
face is one on which the number of particles N is constant
as opposed to the usual hypersurface used in applications
that keeps the volume V constant. Our overall message is
that the induced metric on this constant-N hypersurface, the
Ruppeiner-N metric, may be the appropriate metric to use
when studying phase diagrams with thermodynamic geome-
try.

The advantages of the Ruppeiner-N metric already show
up in its geodesics. We revisited the pioneering work of Diósi
et al. [29] that first introduced a geodesic-based redefinition
of the phases of the van der Waals fluid using the standard
Ruppeiner-V metric. In their classification scheme, however,
there is no correspondence between the boundaries they pro-
duced and established thermodynamic curves like the phase
boundary in the subcritical region and the Widom line in the
supercritical region. This disconnect suggests that their par-
titioning scheme may have little to do with thermodynamics.
In contrast, we have shown that geodesics of the Ruppeiner-N
metric detect the presence of the isotherm Widom line (locus
of isobaric heat capacity maxima along isotherms), which for
the van der Waals fluid is also the critical isochore. With our
proposed metric, the geodesics select the Widom line as the
separating boundary in the supercritical region, thus making
thermodynamic geometry more faithful to actual thermody-
namics.

Beyond geodesics, we looked at the Ricci curvature of the
Ruppeiner-N metric for different fluid systems. We developed
a general expansion of equations of state about a critical point
in order to accommodate a broad class of fluid systems in our
analysis. In comparing the phase boundary and the Widom
line generated by the Ricci construction (R-crossing method)
to those calculated using standard thermodynamic methods,
we found that the phase boundaries are indeed consistent
near the critical point. We also provided an explicit proof
guaranteeing this agreement for fluids belonging to our EoS
family, which unifies the results of May and Mausbach [21]
and Jaramillo-Gutiérrez et al. [23], and in magnetic systems
such as the Curie-Weiss ferromagnet [62]. We showed that
magnetic systems can be made to fit our EoS parametrization
after some minor modifications.

Finally, we investigated the Ricci construction of the isobar
thermodynamic Widom line (locus of isobaric heat capacity

maxima along isobars). We found that unlike the phase
boundary, the standard and Ricci-based Widom lines do not
generally agree for systems belonging to our EoS family. This
may be due to missing additional physical constraints that
should be incorporated in choosing the free functions of our
EoS expansion. It is worth noting that the same disparity of
the Widom lines also occurs in the case of the Curie-Weiss
ferromagnet [62], even though this is not a fluid system. For
more canonical fluid models, like the van der Waals and
the Lennard-Jones fluid [20], the Ricci construction of the
Widom line is able to approximate the standard thermody-
namic curve close to the critical point. For the van der Waals
fluid, we showed that the Ricci construction gives the exact
same Widom line obtained from standard methods, but this
is true only when the Ruppeiner-N metric is used. This is
an improvement from the results of May and Mausbach [20]
which used the usual Ruppeiner-V metric, in which the Ricci-
constructed Widom line is only tangent to the standard curve
at the critical point.

Our work opens several directions for future study. We
exclusively focused on fluids, so it remains to be investigated
what the replacement of the Ruppeiner-V by the Ruppeiner-N
metric could bring to nonfluid systems. It is of great interest
to check if the advantages we report here can also be observed
in other systems. Much of what is known about the Ruppeiner
geometry is based on the Ruppeiner-V metric, which is more
intuitive and gives a ready interpretation to some quantities
that can be computed, but we see no fundamental reason
against using the Ruppeiner-N metric. It remains to be seen
what other results in the thermodynamic geometry literature
will be changed or enhanced by our proposal. In this paper, we
have shied away from exploring deeper theoretical and inter-
pretational aspects of the Ruppeiner-N metric, and it remains a
mystery why it works better than the traditional Ruppeiner-V
metric for the applications we considered.

Finally, further refinements can be made to the fluid
EoS expansion we presented. The flexibility of our EoS
parametrization is quite wide with its five free functions,
whose physical interpretations we left unexplored. It is a
curious matter that the Ricci construction of the Widom line
should work very well for some systems, but not in gen-
eral, and our hunch is that this may serve as a guide toward
meaningfully restricting the free functions. One may start
by turning the question around and asking what conditions
the free functions must satisfy for the Ricci construction to
generate a Widom line that is consistent with the standard
curve. We leave this and related questions to future work.

Data availability. The Mathematica notebooks used to
generate plots in this study can be accessed on Github at
krlodeleon/thermo-geom. The code uses xAct packages by
J. M. Martin-Garcia et al.
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