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Reduced critical slowing down for statistical physics simulations
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Wang-Landau simulations offer the possibility to integrate explicitly over a collective coordinate and stochas-
tically over the remainder of configuration space. We propose to choose the so-called “slow mode,” which
is responsible for large autocorrelation times and thus critical slowing down, for collective integration. We
study this proposal for the Ising model and the linear-log-relaxation (LLR) method as simulation algorithm.
We first demonstrate supercritical slowing down in a phase with spontaneously broken symmetry and for the
heat-bath algorithms, for which autocorrelation times grow exponentially with system size. By contrast, using
the magnetization as collective coordinate, we present evidence that supercritical slowing down is absent. We
still observe a polynomial increase of the autocorrelation time with volume (critical slowing down), which is,
however, reduced by orders of magnitude when compared to local update techniques.
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I. INTRODUCTION

Stochastic simulations of lattice theories combined with
modern computer resources have rapidly evolved to an excep-
tional theoretical framework enlightening research areas such
as quantum field theory [1] and statistical physics [2]. Markov
chain Monte Carlo (MCMC) simulations in conjunction with
a local update of the degrees of freedom are ubiquitous in the
quiver of possibilities.

In MCMC simulations, a bunch of local updates, usually
called MC sweep, result in a new configuration of degrees of
freedom on the lattice. The simulations generate sequentially a
string of lattice configurations. Under the Markov assumption,
any configuration only depends on its predecessor. Objects of
interests are expectation values. By virtue of the law of large
numbers [3], those can be estimated using the N configura-
tions of the Markov set:

〈A〉 ≈ 1

N

N∑
i=1

Ai.

The price to pay for a finite reach N is that the above estimator
is afflicted by a statistical error εA, which scales like 1/

√
N

under the Markov assumption (and assuming that the variance
of A exists).

In practical Monte Carlo simulations, configurations are
correlated over a characteristic number of Monte Carlo up-
dates t ≈ τ , which is called autocorrelation time (we will give
a proper definition below). An immediate impact is that the
statistical error now scales like

√
τ/N . Large autocorrelation

times severely limit the usefulness of simulations at moderate
computational costs, and a good deal of algorithmic research
has been devoted to simulation methods with small autocorre-
lations.

The autocorrelation time depends on the simulation algo-
rithm, the parameters of the simulated theory, and the system
size, say volume V , which could be the number of lattice
sites. Of particular interest for many applications is a pa-
rameter regime that leaves the lattice degrees of freedom
correlated over a typical spatial scale ξ (correlation length).
In solid state physics, ξ diverges at a second-order phase tran-
sition. In quantum physics simulations, 1/ξ acts a regulator
for the inherent divergencies of the underpinning quantum
field theory, and the limit ξ → ∞ is of crucial importance
to extract physics relevant information from those computer
simulations. Generating independent Markov ensembles in
the case that degrees of freedom are correlated over many
sites is a challenge for any algorithm and in particular, for the
important class of local update algorithms . This challenge
is reflected by the monotonically increasing function τ (ξ )m
which describes the connection between correlation length ξ

and the autocorrelation time τ . On a finite lattice, say with an
extent L, spatial correlations are limited by L, leaving us with
τ = τ (L). We will distinguish between a power-law and an
exponential relation:

τ (L) ∝ Lz, (critical slowing down)

τ (L) ∝ em L, (supercritical slowing down).

Because of the connection between autocorrelation time τ and
statistical error ε, theories in the parameter regime afflicted by
supercritical slowing down can only be simulated for small or
moderate lattice sizes L, and extrapolation to large L might or
might not be possible.

Over many decades, research has been analyzing the com-
bination of theories and algorithms studying autocorrelations
times for particular observables. For Markov chain simulation
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that satisfies detailed balance, large autocorrelation times are
traced back to low eigenvalues of the transition matrix [4]. The
latter paper offers a detailed study for lattice QCD and the
important hybrid Monte Carlo approach [5]. In theories that
admit a characterization of configurations by topology, such
as QCD and CP(N) models, critical slowing down is often
related to slowly evolving topological modes [6,7]. More gen-
erally, modes with slowest decorrelation typically correspond
to long-wavelength modes of physical fields. For a free scalar
field theory, a combination of particular order of updating the
fields and tuning of stochastic over-relation can significantly
reduce critical slowing down [8]. Albeit this is per se an
interesting finding, we here do not consider algorithms that
need significant fine tuning for reducing autocorrelations.

To alleviate the “slow mode relaxation” issue, multigrid
methods have been proposed already in the late 1980s [9].
For specific models, targeted solutions can be found that
either eliminate critical slowing down or strongly reduce it.
Those attempts are based on a reformulation, and simulations
include nonlocal updates. For the CP(N-1) model, which is
plagued by the slow mode issue due to topological sectors,
a complete absence of critical slowing down was reported in
[10] for two dimensions. Cluster update algorithms [11,12]
generically possess a small dynamical critical exponent z and
thus provide a practical solution to the critical slowing down
issue. Whenever a model allows a cluster reformulation, the
performance cluster algorithms are hardly outperformed by
any other approach and hence are the preferred simulation
method.

Lattice theories that show spontaneous symmetry breaking
in the infinite volume limit are particularly prone to supercrit-
ical slowing down when simulated in the broken phase. Let φx

be the fields of such a theory with partition function

Z (β ) =
∫

Dφ exp{β S(φ)},

and M(φ) the order parameter. For any finite lattice size, the
symmetry implies that the expectation value of the order pa-
rameter, i.e., 〈M〉 vanishes. In the broken phase, stochastically
“important” configurations cluster in domains with M(φ) 	=
0 [13], and 〈M〉 vanishes upon averaging over these relevant
domains. Local update algorithms usually fail to induce transi-
tions between these domains, leading to supercritical slowing
down. Yang-Mills theories with a gauge group SU(N � 3) fall
into this important class of models [14]. Gauge symmetry pre-
vents the definition of meaningful (gauge invariant) clusters
and corresponding nonlocal update algorithms. We are hence
turning to other, more conventional simulation techniques.

A promising class of such algorithms are multicanonical
algorithms [15] and Wang-Landau techniques [16,17]. Al-
though the algorithmic differences and similarities between
both methods have been studied in the literature (see, e.g.,
[18]), both employ reweighing techniques with respect to a
marginal distribution, which is at the heart of solving the issue
of supercritical slowing down. This has been first demon-
strated by Torrie and Valleau [19] in a thermodynamics setting
and later by Berg et al. for the Ising model in [20].

At the root of supercritical slowing down is the double-
peak marginal distribution P(M ) of the order parameter, say
the magnetization M. Rather than leave it to importance sam-

pling to transition between the two equally important phases,
we calculate the partition function by integrating explicitly
over the order parameter M and stochastically over the re-
mainder of the configuration space. To this aim, we exploit
the identity

Z (β ) =
∫

dm ρ(m),

ρ(m) =
∫

Dφ δ(m − M(φ)) exp{β S(φ)},

where δ is the Dirac δ function. Thereby, ρ is called the
density of states. Density-of-states techniques have seen re-
markable successes over the last decade, ranging from a study
of the QCD phase diagram at significant baryon chemical
potentials [21], a recent study of the topological density in
pure Yang-Mills theories [22], and the first proof of concept
of solving a strong sign problem using the Z3 theory [23].

Key to the success of the density-of-states techniques is a
robust method to estimate the density of states ρ, including
control over its stochastic errors. In this paper we explore the
linear-log-relaxation (LLR) method [24–26], which belongs
to the class of the Wang-Landau techniques. The LLR method
is based upon a systematic expansion of the marginal distribu-
tion ρ(m) in a given m interval, leading to stochastic nonlinear
equations for the expansion parameters (see below for details).
In its lowest order, the LLR approach has similarities with the
“multi-magnetic ensemble” method by Berg et al. [20]. The
LLR approach is also markedly different: it confines the MC
simulation part to a window of size 2δ around a given value of
the magnetization m0, which is a nonlocal constraint. We will
be interested in the limit δ → 0.

In this paper we offer a systematic and large-scale study
of the phenomenon of critical slowing down using the LLR
method. Since we are interested in simulation methods, which
can applied universally to a wide range of lattice models,
we benchmark our findings against those from a heat-bath
approach rather than a cluster algorithm, which would be the
method of choice anyway if applicable. We find evidence
that supercritical slowing down is absent (in line with the
findings from a multicanonical simulation [20]). We still find
a correlation length that increases polynomially with the vol-
ume. We observe, however, that those correlations are strongly
suppressed even at criticality.

II. UNDERSTANDING CRITICAL SLOWING DOWN

A. Accessing autocorrelations

The well-studied Ising model in a finite volume also serves
here to illustrate the breakdown of importance sampling due
to a failure of sampling the configuration space within an
acceptable amount of computational resources. The purpose
of this section is to quantify this breakdown for the popu-
lar Markov-chain Monte-Carlo approach. We are particularly
interested in the parameter dependence of failure, foremost
its dependence on the system size. All numerical illustrations
of this section are carried out using shockingly small lattice
sizes. This illustrates the severeness of the issue—these small
sizes are mandatory because of the rapid breakdown of ergod-
icity at even moderate lattice sizes.
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Protagonists are the Ising spins sx = ±1 associated with
each lattice site x of the lattice of size V = L × L. We use
periodic boundary with periodic boundary conditions [27]
throughout the paper. The partition function Z and action S
are given by

Z =
∑
{sx}

exp{βS}, S =
∑
〈xy〉

sxsy, (1)

where the sum in the action extends over all nearest neigh-
bors x and y. Results for autocorrelations will depend on
the algorithm. We therefore present details of the simulation
here. We are employing the standard heat-bath algorithm as
benchmark:

(1) Choose a site x of the lattice at random and calculate
the sum over the neighboring spins:

bx =
∑

y∈〈xy〉
sy.

(2) Define

px = 1

1 + exp{−2β bx} ,

and choose sx = 1 with probability px and set sx = −1 other-
wise.

(3) Repeat both steps 1 and 2 above V times to complete
one lattice sweep.

(4) The spin configuration {sx}k after k sweeps is consid-
ered as part of a chain of configurations labeled by the Monte
Carlo time k = 1 . . . N . Define a sequence of random numbers
for an observable f ({sx}) by

f1 → f2 → . . . fN , fi = f ({sx}i).

(5) Obtain estimators for observables by

f := 1

N

N∑
i=1

fi.

(6) Repeating steps 1–5 many times defines a random
process for f itself. We denote the corresponding average by
[ f ]. Note that [ f ] is hence independent of, e.g., the random
numbers used for a particular run but does depend on N .
Approximate

〈 f 〉 ≈ [ f ].

A variable of particular interest is the magnetization per spin,

〈m〉 =
〈

1

V

V∑
x

sx

〉
= 〈sx〉,

which does not depend on the site x due to translation in-
variance. The corresponding elements of the chain of random
variables are given by

mi = 1

V

V∑
x=1

s(i)
x , (2)

where s(i)
x is the spin at site x of the configuration {sx}i.

By the law of large numbers, we find

〈m〉 = lim
N→∞

[m](N ).

Any stochastic simulation, however, resorts to a finite length
N of the chain, and the central question is, To what extent is
the approximation

〈m〉 ≈ [m] (3)

valid?
To avoid a cluttering of notation, we preemptively use a

result of the next section. By virtue of a symmetry argument,
we have

〈sx〉 = 0, [m](N ) = 0, ∀N.

As usual, the error for the approximation (3) is given by the
standard deviation

ε2 = [m2] − [m]2 = [m2]. (4)

We find

ε2 =
[(

N∑
i=1

N∑
	=1

mi

)]
= 1

N2

N∑
i=1

N∑
	=1

[mi m	]. (5)

Apparently, the latter equation depends how the random vari-
able mi is correlated to the variable m	, and the average mim	

is called autocorrelation. A key assumption here is that this
correlation decreases exponentially with the distance |k| be-
tween the positions in the chain:

[mi m	] = m2
0 exp

{
− k

τ

}
, k = |i − 	| (6)

m2
0 : = [

m2
i

]
,

where τ is called autocorrelation time. This is expected to
be the case for large separations k. A rather stark assumption
is that the exponential behavior dominates the double sum
in (5). This assumption only can be justified afterwards in
the numerical experiment, but it seems to be the case for the
parameter range explored in this paper. Inserting (6) into (5),
the double sum can be performed analytically:

ε2 = m2
0

N2

N∑
	=1

N∑
i=1

a|i−	| = m2
0

N

1 + a

1 − a
− 2a m2

0

N2(1 − a)2
(1 − aN ),

(7)

a = exp{−1/τ }. (8)

For a moderately sized autocorrelation time, we might find
ourselves in a situation where we have 1 � τ � N . Expand-
ing (7) yields for this case

ε2 = 2m2
0 τ

N
+ O

(
τ 2

N2

)
. (9)

This is the famous 1/
√

N law of MCMC simulations taking
into account an autocorrelation time τ  1.

In case that the autocorrelation time is exceedingly large,
we might face the ordering 1 � N � τ . Expanding (7) for
this scenario yields an entirely different picture:

ε2 = m2
0

[
1 − N

3τ
+ O

(
1

Nτ
,

N2

τ 2

) ]
. (10)

In this case, the error is of order 1, and we cannot expect that
(3) yields a meaningful approximation. Note, however, that
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Eq. (10) still can provide information on the (large) autocor-
relation time by virtue of the correction to the leading term
even if N ∼ τ .

B. Symmetry breaking and ergodicity

Partition function and action are invariant under a Z2 trans-
formation of the spins:

sx −→ (−1) sx for ∀x. (11)

This means that the configurations {sx} and {−sx} have the
same probabilistic weight, implying for any finite lattice size
V ,

〈m〉 = 〈sx〉 = −〈sx〉 = −〈m〉, ⇒ 〈m〉 = 0.

It also implies that, during the generation of the MCMC chain,
the sequences

m1 → m2 → . . . mN and − m1 → −m2 → . . . − mN

occur with equal probability, meaning the average over chains
vanishes as well, i.e.,

[m](N ) = 0.

The above symmetry enables us to cast each configuration
of the MCMC chain into Z2 classes. To this aim, we define

mi = zi |mi|, zi = ±1. (12)

Thus the mapping

{s}i −→ zi

assigns a Z2 sector (by virtue of the value of zi) to each
configuration. The symmetry transformation (11) maps each
configuration onto a configuration with equal statistical
weight of the other Z2 sector.

The above conclusions are not necessarily true in the
infinite volume limit V → ∞. For infinite systems, the Z2

symmetry ca be spontaneously broken. In fact, the Ising model
is a prototype to explore this phenomenon. For β > βc, the
statistical system “freezes” in one of the Z2 sectors with
〈m〉 	= 0. For β < βc, we still find 〈m〉 = 0 and the symmetry
is realized. The critical value βc can be calculated analytically
[28], and one finds

βc = 1
2 ln(1 +

√
2) ≈ 0.440 686 . . . . (13)

This phenomenon is called spontaneous symmetry breaking
and only applies to infinite volume systems.

Why should we be concerned with this phenomenon since
we are only dealing with cases where V is finite? The an-
swer is that most important sampling algorithms (if not all)
for large enough β  βc and system size L anticipate this
phenomenon, leading to the wrong result,

[m](N < Nc) 	= 0,

even at finite size V . The theorem of large numbers only
guarantees [m] = 0 for N → ∞, and on some practical ap-
plications, Nc can be unfeasibly large.

Let us study this statement in the context of an actual nu-
merical simulation. We generate a chain for the magnetization
mi and for the Z2 element zi as a function of the Monte Carlo
time k for β = 0.35 and L = 12. We observe that the system
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FIG. 1. Autocorrelation functions for a 12 × 12 Ising model at
β = 0.35 as a function of the MC time difference k (see 6).

changes between Z2 sectors during the run, which is expected
since the Z2 symmetry is unbroken at such small values of
β. However, we realize that regions of positive (negative)
mi cluster for some time. This indicates that we observe a
significant autocorrelation time τ even at this small β. In order
to quantify this, we present estimators for the autocorrelation
functions for

mk, zk, and |mk|.
Note that averages for [mk] and [zk] vanish but that for [|mk|]
is nonzero due to the (semi-)positive nature of the observ-
able. The simulation is carried out for a 12 × 12 lattice at
β = 0.35, which is well placed within the symmetric phase
with a moderate autocorrelation time. The simulation starts
with a random spin configuration (hot-start) and initially dis-
cards 1000 configurations for thermalization. The result for
the autocorrelation functions is shown in Fig. 1, right panel.
Our findings suggest that the autocorrelation functions of m
and z are proportional (at least for sufficiently large a MC time
difference), i.e.,

[mimk] ≈ m2
z [zizk], (14)

where m2
z is a parameter that can be obtained by comparing

the fits in Fig. 1, right panel, and which is about 0.149. This
finding signals that the autocorrelation of the center sector
drives the overall autocorrelation of the magnetization.

We have systematically studied the error ε [as given by
Eq. (4)] for an L = 12 lattice size and the three β values 0.3,
0.35, and 0.44. We fitted the theoretical expression for ε from
(7) [the square root of (7) to be precise] to the numerical data.
This yields an estimate for m2

0 and the desirable autocorrela-
tion time τ . Our findings are summarized in Fig. 2, left panel.
For beta 0.3 and 0.35 the observed autocorrelation time is
small enough so that we can observe the characteristic 1/

√
N

behavior at large N . Note, however, that close to β ≈ βc, we
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FIG. 2. Left panel: Solid lines are estimates [see (17)] for the statistical error ε as a function of the length N of the MCMC time series;
12 × 12 Ising model. Open symbols are the theoretical prediction (7). Right panel: extracted autocorrelation time as a function of β for several
lattice sizes; n × n Ising model.

observe a large autocorrelation time, which does not allow for
the characteristic falloff for the range of N explored. Note,
however, that we still can get an estimate for τ by virtue of
(7), which does not assume N  τ .

The same Fig. 2, right panel, shows the autocorrelation
time as a function of β for the three lattice sizes 12, 14,
and 32. We observe that the autocorrelation time increases
exponentially in all cases. Note, however, that the slope of the
increase changes around β ≈ βc and is “steeper” for β > βc,
which corresponds to the symmetry broken phase in the infi-
nite volume limit.

Equation (14) suggests that tunneling between the Z2 sector
is suppressed and that this suppression is at the heart of the
practical ergodicity issue. For each step of the MCMC chain,
we can assign a probability p that the configuration changes
the Z2 sector during this step. We then can calculate the
autocorrelation [zizk] analytically.

In a time series of k + 1 samples zi, i = 1 . . . k + 1, assume
that 	 transitions occur at k possible locations (links between
i and i + 1). The probability for this event is given by(

k
	

)
p	 (1 − p)k−	.

The contribution of this event to the autocorrelation function
〈z1zk+1〉 is (−1)	. Hence we find

〈z1zk+1〉 =
k∑
	

(
k
	

)
p	 (1 − p)k−	 (−1)	

= (1 − 2p)k . (15)

Using the latter result in (14) and exploiting the connection
to the autocorrelation time in (6), we find the connection
between the autocorrelation time τ and sector tunneling prob-

ability p:

p = 1

2
(1 − e−1/τ ) ≈ 1

2τ
. (16)

The latter approximation holds for τ  1. For the example
of the previous section, i.e., the heat-bath algorithm, a 12 ×
12 lattice, and β = 0.35, we found τ ≈ 28, leaving us with a
tunneling probability of just p ≈ 1.8%.

C. Computational resources and precision

The strategy of comparing the performance of two different
algorithms is as follows: We will agree at certain level of error
ε2 and then ask the question, How many “lattice sweeps” N
do we need to achieve this?

For the heat-bath algorithm, we already worked out a con-
nection between ε2 and N [see Eq. (7)], and it depends on only
two parameters, i.e., m0 and τ . It is time to put this equation to
the test. We have generated a time series of 6 000 000 magne-
tizations mk , which we divide into subsequences of length N .
For each subsequence, we calculate the average magnetization

m(α) = 1

N

N∑
k=1

m(α)
k ,

where α numbers the subsequences from 1 to nα , which fit
into the series of 6 000 000 magnetizations. The error for the
magnetization estimator (4) is then estimated by

ε2(N ) ≈ 1

nα

nα∑
α=1

[m(α)]2. (17)

Our numerical findings for N = 10 . . . 1500 appear in Fig. 2,
left panel, as solid lines. We show results for β = 0.3, β =
0.35, β = 0.44. Each curve is fitted by the theoretical predic-
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FIG. 3. Average magnetization from a MCMC time series of
length N for three β [see (18) for the β−N pairs]; 12 × 12 Ising
model.

tion (7) with respect to only two fit parameters: m0 and τ . The
agreement is excellent.

We can now ask the following question: At least how many
MCMC configurations do we need to achieve ε < 0.01? For
an answer, we use (7) with the readily obtained fit parameter
m0 and τ . The agreement between theory and numerical data
is so good that we can extrapolate to N values bigger than
1500. We find that for our lattice size L = 12, N has to be at
least the following:

β = 0.30 : N = 10 800

β = 0.35 : N = 58 300

β = 0.44 : N = 10 460 000. (18)

Note that the above N values are vastly outside the fitting
range of N = 10 . . . 1500, and the application of (7) is an
extrapolation. It is therefore in order to check the predictions
(18). To this aim, we have created, for each β, an MCMC
time series of length N and have calculated the corresponding
average magnetization. We have repeated this ten times. Since
〈m〉 = 0, we expect these m values to be scattered around zero
with an error band ε = 0.01 (one standard deviation). Our
result is shown in Fig. 3. We observed the expected behavior
even for β = 0.44, for which N = 10 460 000.

It appears that fitting ε data with (7) is an economical way
to calculate the autocorrelation time. We have done this for a
range of β values and show the result in Fig. 2, right panel.
We observe that the autocorrelation time τ exponentially in-
creases with β. In the “symmetric phase” β � 0.44, the slope
seems to be independent of the lattice size L. In the “broken
phase” β > 0.44, the picture changes: The slope of the ex-
ponential increase depends on the volume and is significantly
bigger than in the symmetric phase. This signals a breakdown

of validity of the heat-bath simulation for reasonably sized
sample sizes N .

D. Volume dependence and critical slowing down

Of particular interest is to study the volume dependence of
the autocorrelation time at a given value of β. For subcritical
values, i.e., β < βc, we expect a power-law increase with
the system size. This is simply because we operate with a
local update algorithm, for which it is increasingly difficult
to disorder a lattice configuration with increasing size. In the
broken phase, i.e., β > βc, the picture is entirely different. The
tunneling between center sectors is exponentially suppressed,
and a changing a Z2 sector needs resources with exponentially
increasing volume. In this section we verify this picture with
unprecedented numerical evidence.

For extracting the autocorrelation time τ for given size L
and β, we calculate the autocorrelation function as a function
of the Monte Carlo time t . We fit the asymptotic tail to the
exponential form

C(t ) = [m0mt ] ∝ exp{−t/τ }.
For small t , we expect power-law corrections to the above
functional form and, for large t , the signal might be drowning
in the statistical noise of the estimator. Let E (t ) be the esti-
mated error of the function C(t ) at time t . For the parameters
L, β explored in this section, we only take data with

t > 200, t < tmax,

where

tmax : largest t with: C(t ) > 5E (t )

or tmax = 2000, whatever is smaller. This is necessary to keep
memory usage under control during the simulation. One of
our many results is shown in Fig. 4, top panel. The parameters
were L = 16, 32 and β = 0.43. Not all data are shown, since
the figure would become too crowded. The numerical data
is well fitted by exponential form. Throughout, we monitor
the χ2 of the fit. Errors for the fit parameter and hence the
autocorrelation time are obtained by bootstrap. For the fits
shown in Fig. 4, we obtained specifically

τ (L = 16) = 808.5(6), τ (L = 32) = 1794(1).

We have repeated this analysis for L ∈ [8, 39] and β =
0.43, 0.44, 0.45, 0.46, 0.48. The results for the autocorrela-
tion time τ are shown in the same Fig. 4, bottom panel. We
observe that τ rapidly grows for β values instigating sponta-
neous symmetry breaking. We observe that the numerical data
for τ are well fitted by the formula

τ (L) = b0 Lb1 exp{b2 L}. (19)

Our findings are summarized in Table I. In the absence of
the exponential (b2 = 0), the formula describes a power-law
growth of τ with size L, while for b2 > 0, the formula
suggests a dominating exponential growth. The fits are also
shown in the bottom panel of Fig. 4. They well describe the
data. In particular, we thus find evidence that b2 starts growing
to nonzero values around the critical values β ≈ βc for the
phase transition. In the symmetric phase at β = 0.43, we find
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FIG. 4. Autocorrelation function as a function of Monte Carlo
time t for two lattice sizes at β = 0.43 (top). The autocorrelation
time for the magnetization is observable as a function of system size
L for several values of β (bottom).

TABLE I. Results of the fitting of the lattice size dependence of
the autocorrelation time in Monte Carlo simulations with heat-bath
updates with a product of power-law and exponential functions (19).

ln(b0 ) b1 b2

β = 0.43 1.727(8) 1.991(4) −0.0035(2)
β = 0.44 1.213(7) 2.303(3) −0.0087(1)
β = 0.45 1.26(3) 2.26(2) 0.047(1)
β = 0.46 1.5(1) 2.00(7) 0.130(4)
β = 0.48 1.5(10) 1.8(7) 0.28(6)

that the autocorrelation time τ approximately grows with the
volume L2.

III. REDUCED CRITICAL SLOWING DOWN WITH THE
LLR METHOD

A. Brief introduction to the LLR approach

We are aiming to estimate the magnetization M with reli-
able errors over a wide spectrum of β values stretching from
the symmetric phase deep into the symmetry broken phase for
β  0.44. We start by defining the density of states ρ(M ) for
the magnetization:

ρ(M ) = 1

Z

∑
{sx}

δ

(
M,

∑
x

sx

)
exp{βS}, (20)

with the action S in (1). The Kronecker δ is defined in the
usual way:

δ(i, k) = 1 for i = k, 0 else.

The magnetization is then given by

〈m〉 =
∑

M M ρ(M )∑
M ρ(M )

,

M = −V,−V + 2, . . . ,V − 2,V. (21)

With the normalization∑
M

ρ(M ) = 1, (22)

because of the definition (14) and that of the partition function
Z in (1), ρ(M ) can be interpreted as the probability with which
magnetizations M contribute to expectation values such as the
one in (21). By virtue of the Z2 symmetry transformation (11),
the density is symmetric, i.e.,

ρ(−M ) = ρ(M ),

leading to 〈m〉 = 0 as expected. In our numerical study we
will not exploit the above symmetry relation but rather will
study the stochastic errors for our estimate for 〈m〉.

At the heart of the LLR approach is the expectation value

〈〈 f 〉〉(a) = 1

N
∑
{s}

f (s) eβS + a m(s) Wδ (m0, m(s)),

m(s) =
∑

x

sx, (23)

where we here use a Heaviside function for the window func-
tion:

Wδ (m0, m(s)) =
{

1 for m0 − δ � m(s) � m0 + δ.

0 else. (24)

Note that 〈〈 f 〉〉(a) depends also on the parameters δ and m0,
and a is also called the LLR coefficient. You can obtain the
density of states ρ(m0) by carrying out the following steps:

1. For a given δ and m0, solve the stochastic equation

〈〈m(s) − m0〉〉(a∗) = 0 (25)

for a (solution a∗), which depends smoothly on m0 and δ for
m0 ∈ [−V,V ].
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2. Use

d

dm0
ln ρ(m0) = lim

δ→0
a(δ, m0) (26)

and evaluate (or estimate) ρ(m0) up to a multiplicative factor
by integrating the above equation.

3. Determine the multiplicative factor by normalizing ρ

[see (22)].
The last step might be optional, since a normalization con-

stant drops out of expectation values such as that of Eq. (20).
As for the heat-bath MCMC approach, we are interested

in the question, What type of precision can we achieve as a
function of the invested computational resources? We there-
fore will critically investigate the parameter dependence of the
numerical error.

Let us first comment on solving the stochastic equation of
the type (25). This task has been extensively studied first by
Robbins and Monro [29] and then taken up by a number of
authors (see [30] for a review). If F (a) is a noisy estimator for

f (a) := 〈〈m(s) − m0〉〉(a), (27)

Robbins and Monro propose an under-relaxed iterative ap-
proach. Starting with some a1, consider the recursion

an+1 = an − αn F (an) (28)

with a sequence of positive weights αn, n = 1, 2, 3 . . . satisfy-
ing

∞∑
n=1

αn → ∞,

∞∑
n=1

α2
n → finite.

The sequence converges with probability 1 to the solution
a∗ := a∞ [31]. A particular sequence was suggested by Rob-
bins and Monro:

αn = κ

n
.

The algorithm reaches asymptotically the optimal conver-
gence rate of 1/

√
n, but the initial (low n) performance

crucially depends on the sequence. Chung [32] and Fabian
[33] showed that optimal convergence is reached with the
choice

αn = 1

f ′(a∗) n
.

This choice, however, hinges on the solution a∗. For the
specific problem at hand, i.e., Eq. (25), we can, however,
find a good value κ . For small enough δ, the marginal value
for the magnetization m in the window [m0 − δ, m0 + δ] is
Poisson distributed, i.e., ∝ exp{−a∗m}. Together with the “re-
weighting” factor exp{am} in (23), the m distribution becomes
flat for values m inside the window. We then find with (27), the
definition (23) and the solution (25):

f ′(a∗) = 〈〈(m(s) − m0)m(s)〉〉(a∗)

= 〈〈(m(s) − m0)2〉〉(a∗) = 1

2δ + 1

δ∑
m=−δ

m2

= δ (δ + 1)

3
≈ δ2

3
.

The latter hold for δ  1, which would also be the result if
the degrees of freedom have a continuous domain of support.
Note that by the nature of the task at hand (25,23), f ′(a∗) does
not depend on the solution a∗. We arrive at the iteration that
we will study in the remainder of the paper:

an+1 = an − 3

δ2 n
F (an). (29)

We put the above iteration to the test for a V = 12 × 12
lattice, β = 0.3, m0 = INT (0.8V ) and several δ values. The
estimator F (a) is obtained by 20 successive lattice sweeps.
Our findings for the error εa in the LLR coefficient a as a
function of the Robbins-Monro iteration time n is shown in
Fig. 5. We performed 1000 independent Robbins-Monro runs
to estimate the error for εa. We find optimal convergence
behavior already for n > 200. The error for small δ are smaller
than those for large δ. This is expected, since for larger δ the
window function is wider and hence includes more spin in the
averaging.

B. Precision versus resource

The following study is done for the 2D Ising model on a
32 × 32 lattice. The objective is to find the amount of “lat-
tice sweeps” needed to calculate the magnetization 〈m〉 to a
given accuracy. In the last section we saw that the heat-bath
algorithm needs a rapidly increasing amount of resource if β

approaches the regime of a spontaneously broken symmetry.
Our simulation parameters are “ballpark” figures and are

not fine tuned.
(1) We use a step function as window function m ∈ [m0 −

δ, m0 + δ] with δ = 8, 16, 24, 32.
(2) We perform 10 000 Robbins-Monro iterations for each

m0 and for each δ, leaving us with an estimate for the LLR
parameter a(δ). We perform a quadratic fit for extrapolating
to δ → 0 and set a = a(0).

(3) Each double-expectation value is estimated with 20
lattice sweeps.

(4) We generate LLR parameters a for 63 values of m0,
i.e., (m0)k = −322 + k × 32, k = 1 . . . 63.

(5) For each m0, we generate 80 potential LLR parameters
ai for the subsequent statistical analysis.

We will measure resource in units of “lattice sweeps” (ls),
i.e., one resource unit corresponds to V spin updates. This
choice allows us to measure resources independent of hard-
ware employed for the calculations. All algorithms studied
here—heat-bath update, cluster algorithms, LLR method—
use lattice sweeps at low levels of the calculation. Although
Ising spin updates are low cost, the lattice sweep might be the
most expensive computational element for other systems such
as gauge theories with fermions (QCD), where a lattice sweep
could be defined by a hybrid Monte Carlo trajectory.

To generate the above data set for the LLR coefficients
(steps 1–4), the resources needed are

4 × 20 × 10 000 × 63 ls = 5.04 × 107 ls. (30)

From this data set, we can already estimate expectation values
of functions of the magnetization, and the objective here is to
estimate the precision with which we can calculate 〈m〉 (which
equals zero for a simulation with infinite resources). To this
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FIG. 5. Left: The error in the LLR coefficient a as a function of the number of Robbins-Monro iterations n (29). The fits correspond to
a 1/

√
n power law. 12 × 12 Ising model, β = 0.30. Right: Dependence of the LLR coefficient a on δ for a 64 × 64 lattice near criticality

(β = 0.44).

aim, we will repeat the calculation 80 times. Thus the analy-
sis uses the resources of 5.04 × 107 × 80 ls = 4.032 × 109 ls,
which must not be confused with the resource (30) needed to
produce one sample result.

The density of states ρ for the magnetization m is obtained
by integration of the LLR coefficient:

ρ(m) = exp

{∫ m

0
a(m′) dm′

}
. (31)

The normalization is arbitrarily chosen to be ρ(0) = 1. Expec-
tation values are then obtained by a second integration, e.g.,

〈m〉 =
∫

m ρ(m) dm /

∫
ρ(m) dm. (32)

Early studies [23–25] used a trapezium rule and summation,
which leads to an accumulation of error for increasing m. Rep-
resenting the function a(m) by a high-degree polynomial and
performing the integrations (semi-) analytically has proven
very successful [26,34–36]. One can prove that the density of
states for the Ising model is an even function in m by virtue of
its Z2 symmetry. Correspondingly, the LLR coefficient a(m) is
an odd function. A numerical approach exploiting this obser-
vation would approximate a(m � 0) by a polynomial of odd
powers of m. This would lead to the exact result 〈m〉 = 0.

The prime objectives here are to avoid any assumptions on
symmetry and to observe to what extent the exact result 〈m〉 =
0 is obtained. For this purpose, we approximate a(m) over the
full domain by a polynomial containing even and odd powers
of m. We find that a polynomial of degree of 16 represents the
numerical data for a very well.

The result for ρ(m) (on a logarithmic scale) is shown in
Fig. 6. Error bars are obtained by the bootstrap method:

(1) For each m0, calculate a set of nB LLR coefficients
from independent runs. We have chosen here nB = 60.

(2) For each of the (discrete) m0 choose an LLR coefficient
out of the nB possibilities.

(3) Fit a polynomial of degree 16 to the data.
(4) Perform the integration (31) analytically and obtain

one sample for ρ(m).
(5a) Repeat this procedure many times and calculate the

average for ρ(m) and the standard deviation (error bar).
Step 5a gives rise to the graphs in Fig. 6, left panel. We find

that for β = 0.25, 0.30, 0.40 the density of states is maximal
at m = 0, making m = 0 the most likely magnetization. We
also observe that for a finite L = 32 lattice, the curve for β =
0.44 develops a double-peak structure, which is characteristic
for the spontaneous breakdown of symmetry. We expect that
for increasing lattice size, the β for which the double-peak
structure occurs will approach βc in (13).

Here we are not primarily interested in the density of states
ρ but the expectation value of the magnetization:

m = M/V = 1

V

∑
x

zx.

In this case, we replace step 5a by
(5b) For the sample ρ(m), calculate the two integrals in

(31) analytically and thus obtain a sample value for 〈m〉.
Repeat this procedure many times and calculate the average
for 〈m〉 and the standard deviation (error bar).

Figure 6, left panel, shows the (log of the) density of states
as a function of the intrinsic magnetization m = M/L2. For
the finite volume L = 32, we see that the most likely magne-
tizations m are at m 	= 0 for β = 0.44. This is a precursor of
spontaneous symmetry breaking. Increasing the volume, it is
expected that this bifurcation moves up in β to approach βc

(13) in the infinite volume limit.
Having calculated the density of states, we estimated the

magnetization m using (32). The precision with which the
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FIG. 6. Left: Log of the density of states ρ(m) as a function of the (intensive) magnetization m for four β values; 32 × 32 Ising model.
Right: Error of the magnetization (32) as a function of β.

exact result 〈m〉 = 0 is recovered depends on the quality of
the symmetry ρ(m) = ρ(−m). Our result for the error of m
is shown in Fig. 6, right panel, as a function of β, where
we have kept fixed the number of Robbins-Monro iterations
and the bootstrap copies. We find a moderate increase with
increasing β, which can be explained by the larger variation of
ρ(m) with m due to its peak structure, which makes it harder
to control the numerical precision of the integration over m in
the integrals of (23).

C. Autocorrelations and density of states

The so-called double-expectation values such as in (17)
are at the heart of the LLR approach, since they ultimately
give rise to a and hence the density of states [see Eq. (25)].
These expectation values can be viewed as ordinary Monte
Carlo expectation values, and as such, they are susceptible to
autocorrelations of the Markov chain.

We already established that there is a close link between
spontaneous symmetry breaking and the exploding autocor-
relation time for local update algorithms operating close to
criticality. We expect that the double-expectation values are
much less affected by this phenomenon simply because they
are not operating at close to criticality “most of the time.”

We first note that the double-expectation values depend on
a number of parameters that are not present in a standard heat-
bath simulation. There is the LLR parameter a which adds
a term a

∑
x sx to the action. For a 	= 0 this parameter acts

like a magnetic field, which breaks the Z2 symmetry sx →
−sx. Secondly, the window function W (m0, m(s)) (24) is part
of the probabilistic measure. It restricts spin configurations to
values of the magnetization m(s) close m0. This means that
this factor also breaks the Z2 symmetry as long as m0 	= 0.
Note, however, that for m0 = 0, the solution of the stochastic
equation is a = 0 precisely because of the Z2 symmetry. We
thus expect that the calculation of ρ(m ≈ 0) might be affected

by long autocorrelations. Note that for most of the observables
in the broken phase, ρ(m ≈ 0) might be an entirely suppressed
domain of integration for the integrals in, e.g., Eq. (32). In this
case, these autocorrelations have little impact on the precision
of the calculation.

In a first step we studied the autocorrelation time for the ac-
tion and the spin-spin correlation function for different values
of m0, the center of the window function:

action:
∑
〈xy〉

sxsy, spin-spin: sx sx+L/2.

Our findings are summarized in Fig. 7, left panel. Indeed, we
observe that those autocorrelations are highest close to m0 =
0, where the system can have critical behavior.

Since the magnetization is constrained to a region around
m0 in the LLR simulation, autocorrelations of the magne-
tization are indeed very small. In search of an observable
susceptible to longest autocorrelations, we introduce the
Fourier transform of the magnetization:

M̄(px, py) =
∑

x

sx,y cos

(
2π

L
(x px + y py)

)
. (33)

For px = 0, py = 0, this quantity becomes the magnetiza-
tion, i.e., M = M̄(0). Another “infrared” observable, similarly
prone to autocorrelations but unconstrained by the LLR ap-
proach, is M̄ for the lowest momenta with either px = 1,
py = 0 or px = 0, py = 1. The choice of these observables
is motivated by the common observation that low-momentum
modes typically have the slowest relaxation or decorrelation
rate in local, translationally invariant quantum field theories.
We thus study the autocorrelation time for the observable:

M1 ≡ M̄(1, 0) =
∑
x,y

sx,y cos

(
2π

L
x

)
. (34)
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FIG. 7. Autocorrelation time for the LLR double-expectation
value for the action and the spin-spin correlation as a function of
m0. 64 × 64 Ising model, β = 0.44, δ = 40.

To this end, we first estimate the autocorrelation function C(t )
of M1 and extract the autocorrelation time by analyzing the
exponential decrease at large values of t . If t is too large,
statistical noise drowns the signal. If σ (t ) is the standard
deviation of the estimator for C(t ), we only use data with

C(t ) > 5 σ (t ).

At small values of t , C(t ) is not well represented by an expo-
nential function, which only holds asymptotically. We proceed
as follows: Starting at t = t0 = 0, we fit an exponential func-
tion to the data and obtain the χ2/dof. We then systematically
increase t0 until χ2/dof falls below 0.8 for the first time. We
thus extract the autocorrelation time τ from the fit:

a0 exp{−t/τ }.
Figure 8 shows the correlation function C(t ) for a 322 lattice
and for four values of β within the dynamically generated
domain of support. Repeating this procedure for lattice sizes
between L = 8 and 48, we find the result shown in Fig. 9. We
indeed observe that the autocorrelation times for M1 increase
with increasing lattice size L, but not nearly to the extent as
we have seen for those of the heat-bath simulation and the
magnetization M.

The central question is whether or not these autocorrelation
times increase exponentially with L. In search of an answer,
we have employed the same fit (19) of the data as in the case of
the heat-bath result. Of particular interest is the coefficient b2,
which indicates supercritical slowing down for b2 > 0. Our
findings are summarized in Table II.

We observe a very small coefficient b2 when compared to
the heat-bath simulation, where b2 ≈ 0.28 at β = 0.48. The
quality is less convincing, especially for β = 0.5. Figure 9
shows two fits: the exp–power-law fit (19) and a power-law
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FIG. 8. Autocorrelation function for the observable M1 (34) as
a function of the autocorrelation time for four values of β. 32 × 32
Ising model, m0 = 0.
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FIG. 9. Autocorrelation time for the observable M1 (34) as a
function of the system size L for four values of β and for the worst
case scenario m0 = 0.

TABLE II. Results of the fitting of the lattice size dependence of
the autocorrelation time in LLR simulations with a product of power-
law and exponential functions (19)

ln(b0) b1 b2

β = 0.44 −1.28(1) 1.965(4) 0.0038(2)
β = 0.46 −1.26(3) 1.942(3) 0.025(1)
β = 0.48 −1.495(6) 2.080(3) 0.036(1)
β = 0.50 −2.194(7) 2.484(4) 0.029(2)
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FIG. 10. A comparison of the dependence of autocorrelation
time for the observable M1 on lattice size L for the LLR approach
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fit b2 = 0. Both fits reasonably well present the data. We are
carefully optimistic that any exponential growth is a quite
small rate, implying that autocorrelation times are manageable
for realistic lattice sizes. Higher precision data and perhaps
larger lattice sizes are needed to evidence this at a quantitative
level.

As detailed above, only the double-expectation values for
m0 = 0 are afflicted by criticality, since for m0 	= 0, the Z2

symmetry is explicitly broken by the window function and
an LLR coefficient a 	= 0. Nevertheless, it is important how
the autocorrelation times scales with the lattice size L. In the
broken phase, say for β > 0.45, the marginal distribution for
the magnetizations peak at rather large values M/V ≈ ±0.9.
For generic observables with a broad domain of support from
large portions of the domain of magnetization, the dominant
contributions from the LLR integration over the magnetization
rises from the region around M/V ≈ ±0.9. Hence we studied
the volume dependence of the observable (34) as a function
of the lattice size L at m0 	= 0. The results for m0 = 0.9 are
shown in Fig. 10 in the double-log scale in comparison with
the m0 = 0 data. We observe that autocorrelation times are
orders-of-magnitude smaller than in the m0 = 0 case. Most
importantly, however, we find that the increase of the auto-
correlation time with size is at most polynomial in L and for
β values away from its critical value, even subpolynomial.
A log-log scale plot illustrates this in a particularly clear
way, mapping any power-law dependence to a straight line.
Therefore plots of functions that grow faster than a power of L
appear as bending upwards from a straight line, whereas plots
of functions with subpolynomial growth are bending down
from a straight line.

This is an important finding, since observables that receive
their dominant contribution from the regions of large magne-
tization are not affected by supercritical slowing down.

IV. DISCUSSION AND CONCLUSIONS

Local update algorithms for Markov chains of a given
sample size tend to fail in exploring the full configuration
space, and hence ergodicity, for theories in the regime of a
spontaneously broken symmetry. In this regime, the marginal
distribution of the order parameter exhibits several regions of
equal stochastic importance, but importance sampling gener-
ically selects only one of these regions and fails to transition
between. Consequently, the autocorrelation function rises ex-
ponentially with the system size (supercritical slowing down).
A second question which arises is whether the autocorrelation
length still rises polynomially, say at criticality (critical slow-
ing down). We addressed both issues in this study.

Our approach is to decompose the configuration space into
the order parameter as a collective coordinate and the hyper-
space orthogonal to this mode. Wang-Landau techniques (and
the LLR method, in particular) are ideally placed to integrate
the slow mode explicitly, while the integration over the hyper-
space is done stochastically using MCMC techniques.

In this paper we used a simple two-dimensional Ising
model to demonstrate how to explore the performance of
the LLR method. For the Ising model, there are efficient
model-specific cluster algorithms that not only eliminate su-
percritical slowing down but also largely alleviate critical
slowing down, as witnessed by a small dynamical critical
exponent. Note, however, that cluster algorithms are only
available for very specific models. The present research tar-
gets algorithms that work for a large class of models “out of
the box,” without major fine-tuning.

For the Ising model, the mode that exhibits the longest
autocorrelation time is the global magnetization, that is, the
sum of all spins. We expect that for all models that are well
described by the Landau theory of phase transitions, the global
order parameter will always have the longest autocorrelation
time. To confirm this, we also studied the autocorrelation time
for the mode with lowest nonzero momentum p = 2π

L , where
L is the linear system size. Our approach also resembles,
to some extent, lattice QCD simulations in fixed topological
sectors [7]. Indeed, global topological charge is known to be
the observable with the longest autocorrelation time in lattice
QCD.

We found that the LLR algorithm has a potential for
solving the issue of supercritical slowing down for most ob-
servables. Only observables that are sensitive to the marginal
distribution around M ≈ 0, no matter how small it is, might
be affected by critical slowing down. We only know one such
observable: the order-disorder interface tension. We still see a
polynomial rise of the autocorrelation time with the volume at
criticality (and hence critical slowing down), but we find that
at a quantitative level the autocorrelation time is reduced by
orders of magnitude when compared with that of a heat-bath
simulation with the same system size (see Fig. 11).

As a next step, it would be interesting to check whether
explicit integration over more than one observable using
higher-dimensional generalization of the LLR algorithm
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FIG. 11. A comparison of the dependence of autocorrelation time on lattice size L for the conventional heat-bath algorithm, where total
magnetization has the longest autocorrelation time, and for the LLR algorithm with magnetization in the vicinity of m0 = 0 and m0 = 0.8,
where the Fourier component of magnetization with lowest nonzero momentum exhibits slowest decorrelation.

could result in further reduction of computational time. It
is also worth exploring whether the application of the LLR
method to fermionic systems could reduce ergodicity issues
related to zeros of the fermionic determinant. Finally, in a
recent paper [37] it was suggested that normalizing flows can
eliminate the need to integrate the density of states over m
altogether, thus yielding an even larger speedup for Monte
Carlo simulations. It would be interesting to see to what ex-

tent normalizing flows can further reduce the critical slowing
down in our situation.
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