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Size-independent scaling analysis for explosive percolation
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The Achlioptas process, a percolation algorithm on random network, shows a rapid second-order phase
transition referred to as explosive percolation. To obtain the transition point and critical exponent β for
percolations on a random network, especially for bond percolations, we propose a new scaling analysis that
is independent of the system size. The transition point and critical exponent β are estimated for the product-rule
(PR) and da Costa-Dorogovtsev-Goltsev-Mendes (dCDGM) (m = 2) models of the Achlioptas process, as well
as for the Erdős-Rényi (ER) model, which is a classical model in which the analytic values are known. The
validity of the scaling analysis is confirmed, especially for the transition point. The estimations of β are also
consistent with previously reported values for the ER and dCDGM(2) models, whereas the β estimation for the
PR model deviates somewhat. By introducing a parameter representing the maximum cluster size, we develop
an extrapolation scheme for the critical exponent β from the simulation just at the transition point in order to
obtain a more accurate value. The estimated value of β is improved compared with that obtained by the scaling
analysis for the ER model and is also consistent with the β value obtained for the dCDGM(2) model, whereas its
deviation from the previously reported value is larger for the PR model. We discuss the accuracy of the present
estimations and draw conclusions about their reliability.
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I. INTRODUCTION

Percolation phenomena have been an active topic of study
in statistical physics because of their applicability to models
of conductive materials and the spread of infectious diseases
and because they are related to phase transitions and critical
phenomena. In 2009, Achlioptas et al. introduced explosive
percolation [1] in the field of random networks. They slightly
modified the Erdős-Rényi (ER) model, in which a random
network is produced by adding a new edge randomly, to a
rule by adding one of two randomly chosen edges to avoid
increasing the cluster size [2]. The model in which edges
are added by such rules is generally called the Achlioptas
process, of which there are several variations. When a network
is developed by this process, the phase transition becomes
more abrupt than that in the ER model, hence the name “ex-
plosive.” Whether the transition in the Achlioptas process is
first or second order was initially a subject of controversy,
but it has been confirmed to be a second-order transition
[3]. This abrupt but second-order transition behavior has also
attracted attention as a critical phenomenon and has been
studied by numerical methods. Notably, difficulties have been
observed in the analysis of finite size scaling [4]. In abrupt
phase transitions in which the exponent β is very small, the
order parameter becomes very steep near the transition and it
is somehow troublesome to estimate the transition point and
exponent precisely through the finite-size scaling of the order
parameter.

In the present study, we investigated a numerical analysis
method for explosive percolation to estimate the transition
point and the critical exponent β. For this purpose, we

propose a new system-size-independent scaling analysis for
percolations on a random network, especially for bond perco-
lations. The proposed method enables us to analyze numerical
data without finite-size effects, which means that the results
are equivalent to those in an infinite system. Such a size-
independent scaling analysis has been presented as dynamical
scaling analysis in the nonequilibrium relaxation method [5]
for phase transitions and critical phenomena, which has been
attracting attention as an alternative to finite-size scaling. We
also propose an extrapolation scheme, by introducing a pa-
rameter representing the maximum cluster size, for the critical
exponent β from the simulation just at the transition point in
order to obtain a more accurate value. The estimated value of
β is expected to be improved compared with that obtained by
the scaling analysis.

This paper is organized as follows. The percolation phe-
nomenon and models of percolation on random network are
described together with the classical percolation model in
Sec. II. In Sec. III, we propose the new scaling analysis and
present the corresponding numerical results. In Sec. IV, the
critical exponent β is precisely estimated by introducing an
extrapolation scheme. Section V summarizes and discusses
the results.

II. MODELS

A. Percolation on a lattice

In classical site percolations, each vertex on a lattice point
is assumed to be occupied with probability p or to be empty
with probability 1 − p, and the cluster formed by occupied
vertices connected to each other as nearest-neighboring pairs
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is considered. The size of clusters does not increase linearly
with p; large clusters suddenly appear at a certain value pc

[6]. When the occupancy probability p is less than pc, only
small clusters exist. However, when p is greater than pc, one
large cluster is dominant. When the number of vertices N
is sufficiently large, N → ∞, this large cluster is called an
infinite cluster.

The probability of a vertex belonging to the infinite cluster,
which is denoted by P(p), is recognized as the order parame-
ter, and p is the control parameter; thus, the system undergoes
a phase transition at p = pc. The function P(p) can be written
as [6]

P(p) = 1 −
∑

s

sns, (2.1)

where ns is the number of clusters with size s divided by
N . Some physical quantities are known to exhibit anomalies
near the transition point, and P(p) is expected to behave
algebraically as [6]

P(p) = a|p − pc|β, (2.2)

where β is referred to as a critical exponent and is a quantity
that characterizes the critical phenomenon.

B. Percolations on random network

In percolations on random network, a number of vertices
are prepared first instead of a lattice and each edge between
two of these vertices is considered to be connected or not. The
explosive percolation was introduced by Achlioptas et al. [1]
and has continued to be widely investigated [7]. In the Erdős-
Rényi (ER) model, which is one of the models of classical
percolation on a random network, a new edge is connected to
a network at random. By contrast, in the Achlioptas process,
a slight modification is made to the edge-connection rule.

For the product-rule (PR) model, which is a typical explo-
sive percolation model, let us randomly select two edges as
a candidate for a new connection. Each edge connects two
vertices, each of which is included by a cluster; we refer to
this cluster as a connected cluster for a vertex. The size of
the connected cluster is considered for each vertex. Each edge
is associated with a product of the sizes of two connected
clusters. We adopt one of the selected edges so that the product
is smaller; it is called the PR. Figure 1 shows an image for the
PR model. The rule used to choose a connecting edge in the
PR model is provided to make it difficult for the cluster size
to be larger.

Note that we can consider other rules for explosive
percolation in choosing edges. For example, in the da Costa-
Dorogovtsev-Goltsev-Mendes (dCDGM) model[8–10],
choosing m vertices at random, the one belonging to
the smallest cluster is selected. Two vertices are selected
independently in this way and a new edge connecting them
is added. The integer value m is fixed and distinguishes the
model as the dCDGM(m) model. These models are generally
called the Achlioptas process [11]. Because the transition is
confirmed to be second order even though it is abrupt, the
critical exponents can be defined as in Sec. II A.

The Achlioptas processes such as the PR model can be
applied to lattice percolation because the rules are defined by

FIG. 1. Process by which an edge is added for the PR model:
e1 and e2 are randomly selected candidates for the added edge. The
product of the cluster sizes at both ends of e1 is 5 2 = 10, and that of
e2 is 2 1 = 2. Therefore, e2 is chosen.

the manner in which edges are chosen [4]. However, in the
present paper, we investigate the process applied to random
networks and introduce a new method to analyze the phase
transition for the explosive percolation. We investigated the
PR and dCDGM(m = 2) models as well as the ER model, for
which the solution is known analytically. In Table I, we sum-
marize the previously obtained transition points and critical
exponents β for these models [8,12].

III. SCALING ANALYSIS

A. Method

We propose a scaling analysis for models of percolation on
random networks, in which the system size does not appear.
Extending the probability of an infinite cluster, P(t ), defined
in Eq. (2.1), where t is the average number of edges per
vertex corresponding to parameter p in lattice models, we
define a new function P(x, t ) and introduce a new parameter
x representing the maximum cluster size:

P(x, t ) = 1 −
∑
s<x

sns, (3.1)

where ns is the number of clusters with size s divided by N .
This function P(x, t ) represents the probability that a ran-
domly selected vertex belongs to a cluster greater than or
equal to x.

Equation (3.1) becomes equivalent to Eq. (2.1) as x → ∞,
and we expect the asymptotic behavior near the transition
point to be

P(∞, t ) = P(t ) = a|t − tc|β. (3.2)

TABLE I. Previously obtained transition point and critical
exponent.

Model tc β Reference

ER 0.5 1
PR 0.888449(2) 0.0861(5) [12]
dCDGM(2) 0.923207509297(2) 0.05557108(1) [8]
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FIG. 2. Size dependence for the ER model on a double-
logarithmic scale.

Because no infinite clusters exist at t < tc, we have P(∞, t ) =
0. However, if t > tc, the existence of an infinite cluster means
that P(∞, t ) has a positive finite value. Under this considera-
tion, we expect the following asymptotic (x → ∞) behaviors
for every t case:

P(x, t ) ∼
⎧⎨
⎩

A exp(−x/ξ ) (t < tc),
x−λP (t = tc),
p∞ + A′ exp(−x/ξ ) (t > tc).

(3.3)

where we introduce another function ξ that depends on t as
ξ = ξ (t ) and exponent λP.

If a second-order phase transition is assumed, the asymp-
totic behavior of ξ is expected to be

ξ (t ) = b|t − tc|−ν, (3.4)

where we define a new exponent ν satisfying the relation

λP = β/ν. (3.5)

Note we use the symbols ξ and ν here because Eq. (3.3)
shows a behavior similar to the correlation function for clas-
sical percolation on a lattice, where P(x, t ) corresponds to
the correlation function with x as the distance between two
vertices, and we use ξ as the correlation length and ν as its
critical exponent. Of course, no concept of length exists in the
present models on random networks. We therefore will not
further consider the relation among these quantities.

The transition point tc and critical exponent β can be esti-
mated from the behavior of P(x, t ). Noting Eqs. (3.2)–(3.5)
and referring to the asymptotic behavior of the correlation
function in percolation on a lattice where A and A′ would
include an algebraic dependence of x−λP , P(x, t ) is expected
to satisfy the following scaling form in the asymptotic regime
in t ∼ tc:

P(x, t ) = ξ−λP�(x/ξ ). (3.6)
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FIG. 3. Results of P(x, t ) for the ER model on a double-
logarithmic scale.

Appropriate values of tc and β as well as a, b, ν in Eqs. (3.2)
and (3.4) should be chosen such that ξλP P(x, t ) is fitted as
a function of x/ξ (t ) on a scaling function �. To efficiently
carry out such a scaling plot, we apply the method introduced
for the dynamical scaling, in which Bayesian inference and
the kernel method are used [13].

B. Numerical results

We applied the previously discussed scaling analysis to the
ER, PR, and dCDGM(2) models. First, we present the results
for the ER model, for which the analytic solution is known.
To perform the scaling analysis precisely, we need to confirm
that the size N is sufficiently large for the numerical data
of P(x, t ) to show no size dependence up to the maximum
value of x used in the simulation. We simulated at t = 1/2 for
several sizes and calculated P(x, t ), as plotted in Fig. 2. We
found that, for x values x � 3000, no size dependence appears
in the data for the system with N = 1 × 108 or larger. The
simulation was performed using these parameters, and 2240
independent samples were used for averaging. The value of t
was varied from 0.480 to 0.498 with an increment of 0.002.
The results for P(x, t ) are plotted in Fig. 3, and the resultant
scaling plot is shown in Fig. 4. The transition points tc and the
critical exponent β were evaluated and are shown in Table II.

TABLE II. Estimated tc and β values obtained using the present
scaling analysis.

Model tc β

ER 0.49978(7) 1.010(9)
PR 0.88843(1) 0.0889(7)
dCDGM(2) 0.923211(5) 0.056(1)
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FIG. 4. Scaling plot of P(x, t ) for the ER model on a double-
logarithmic scale.

The error bar was estimated by the bootstrap method [13].
The deviations from the analytic values tc = 1/2, β = 1 are
approximately 0.044% and 1.0%, respectively, demonstrating
that the present analysis is reliable.

The same analysis was performed for the PR model. The
size dependence at t = 0.888 45 is shown in Fig. 5. The
results show that the simulation for the system with N =
1 × 108 up to x � 1000 was sufficiently large. The simulation
was performed using these parameters, and 2240 independent

FIG. 5. Size dependence for the PR model.
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FIG. 6. Results of P(x, t ) for the PR model.

samples were used for averaging. The value of t was varied
from 0.8820 to 0.8880 with an increment of 0.005. The results
are plotted in Fig. 6, and the scaling plot is shown in Fig. 7.
The transition points tc and the critical exponent β were esti-
mated and are shown in Table II. A comparison of the results
with those of Grassberger (Table I) reveals that the transition
point agrees very well and that the β value is consistent but
deviates slightly from the previously reported values.

For the dCDGM(2) model, only the results for tc and β are
listed in Table II. It was confirmed that the simulation for the
system with N = 1 × 108 to x � 3000 was sufficiently large.
The simulation was performed using these parameters, and
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FIG. 7. Scaling plot of P(x, t ) for the PR model.
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4480 independent samples were used for averaging, where the
value of t was varied from 0.9197 to 0.9232 with an increment
of 0.0005. The tc and β values are consistent with those of da
Costa (Table I).

IV. ESTIMATION OF β BY EXTRAPOLATION

Although the value of β estimated by the scaling analysis in
Sec. III results in a good scaling plot of P(x, t ) for the range of
x to a maximum observed value, β may deviate from the true
value corresponding to that for x → ∞. In this section, we
investigate an extrapolation scheme for β estimated in finite x
values to that at x → ∞.

A. Method of extrapolation

We define another function Q(x, t ) as the partial derivative
of P(x, t ) with t :

Q(x, t ) ≡ ∂P(x, t )

∂t
. (4.1)

From Eqs. (3.2) and (3.3), Q(x, t ) is expected to diverge
algebraically as x → ∞ at the transition point:

Q(x, tc) ∼ xλQ , (4.2)

where the exponent λQ is obtained through β defined in
Eq. (3.2) and ν defined in Eq. (3.4) as

λQ = (1 − β )/ν. (4.3)

For convenience, the logarithmic derivatives of P(x, tc) and
Q(x, tc) are defined for a finite value of x:

λP(x) = −d ln P(x, tc)

d ln x
, (4.4)

λQ(x) = d ln Q(x, tc)

d ln x
, (4.5)

which can asymptotically approach the exponents λP and λQ,
respectively, as x → ∞ and are referred to as the “local ex-
ponents” of λP and λQ. Because the exponents λP, λQ, and β

are related through Eqs. (3.5) and (4.3), we define the local
exponent β(x) as

β(x) = λP(x)

λP(x) + λQ(x)
, (4.6)

which can approach β as x → ∞.
Although the function Q(x, t ) is defined by the partial

derivative of P(x, t ) with t , as in Eq. (4.1), we did not use a nu-
merical derivative of P(x, t ) to obtain it; we instead evaluated
it by simulation directly. To obtain Q(x, t ), we substituted the
operation ∂t by an operation that adds a few edges to the net-
work and then evaluated ∂P(x, t ) by the difference of P(x, t ).
In the case of the ER model, for each sample, we simulated
the following procedure. Edges were added until t = tc. Then,
for all remaining unconnected edges, the value of ∂P(x, t ) was
averaged for the case where the edge was chosen in the next
step, which provided Q(x, tc). In the case of the PR model
or the dCDGM model, for each sample, we simulated the
following procedure. Edges were added until t = tc. The value
of ∂P(x, t ) was then averaged for N independent additions of
a single edge, which provided Q(x, tc).

FIG. 8. Results of P(x, tc ) and Q(x, tc ) for the ER model on a
double-logarithmic scale

B. Numerical results

First, we present the analysis for the ER model. The sim-
ulation was performed at tc = 1/2, the analytic value of the
transition point, with the size N = 1 × 109; 22 400 indepen-
dent samples were used for averaging. The results of P(x, tc)
and Q(x, tc) are plotted in Fig. 8. Note that, because the β

value for the ER model is close to unity, the exponent λQ gives
a small value from Eq. (4.3), providing the gently increasing
behavior observed in Fig. 8. From the data of these functions,
we calculate λP(x) and λQ(x) defined in Eqs. (4.4) and (4.5)
by the numerical derivative of a linearly fitted line in an appro-
priate interval of x. Then, the local exponent β(x) is calculated
by the use of Eq. (4.6) and is plotted as a function of 1/x0.713 in
Fig. 9; the exponent 0.713 in the horizontal axis was chosen
so that the extrapolation shows the best linearity [14]. Note
that the calculated local exponent β(x) clearly depends on x,
which indicates that this extrapolation is important for obtain-
ing a precise value corresponding to x → ∞. The estimated
β is listed in Table III, where the error bar was evaluated from
the guidelines plotted in the figure; the estimation is obtained
by the solid line and the error bar is determined by the broken
lines. The analysis was found to be valid, with an error of
approximately 0.73% compared to the analytic value. Note
that the obtained value is closer to the analytic value than
that estimated by the scaling method and reported in Table II.
Thus, the value of β estimated by the extrapolation method is
expected to be precise.

TABLE III. Estimations of β by extrapolation.

Model β

ER 0.993(1)
PR 0.0933(9)
dCDGM(2) 0.0548(3)
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FIG. 9. Extrapolation of β for the ER model. The best fitting is
indicated by a solid line, and broken lines are a guide to the eye,
highlighting the errors that reveal the asymptotic behavior.

Let us discuss the importance and reliability of the extrap-
olation scheme for the estimation of exponent β. Since the
two functions P(x, t ) and Q(x, t ) are related analytically as
in Eq. (4.1), the resulting value of β by the scaling analysis
of P(x, t ) in Sec. III and that by the present extrapolation
scheme by the use of both P(x, t ) and Q(x, t ) have the same
origin. As seen in Fig. 9, the estimated value of β depends
on the observed region of x, the precise value can be obtained
by taking the limit of x → ∞. Similarly, the resulting value
of β by the scaling analysis would also be deviated from a
true value depending on the maximum value of observed x;
this deviation is expected to disappear asymptotically when
x → ∞. In the simulation, it is necessary to increase the num-
ber of vertices N for calculating these functions with larger x
region. Thus, the extrapolation scheme is easier for taking the
limit, and we introduce it to estimate a precise β. Note that,
for the ER model, the improvement of estimated β between
Tables II and III is small, and further the error bar is not
appropriate in the latter. However, because of the asymptotic
behavior on x stated above, we expect that the estimated value
can be improved in the extrapolation scheme. We consider
that one should not compare the error bars between in the
scaling analysis and in the extrapolation scheme seriously.
The former is recognized as a statistical one, while the latter
is not statistical but a measure for the stability of data. It is
obtained by the guide lines in Fig. 9, which are plotted to
guide the eye for the extrapolation, in which the plotted data
are included.

The same analysis was performed for the PR model. The
simulation was performed at tc = 0.888 434, which was es-
timated as described in Sec. III, with the size N = 5 × 108;
4480 independent samples were used for averaging. The re-
sults of P(x, tc) and Q(x, tc) are plotted in Fig. 10. The local
exponent β(x) is plotted as a function of 1/x0.699 in Fig. 11;

FIG. 10. Results of P(x, tc ) and Q(x, tc ) for the PR model.

the exponent 0.699 in the horizontal axis was chosen so that
the extrapolation shows the best linearity. The estimated β

value is listed in Table III, where the error bar was evaluated
from the guidelines plotted in the figure. The value of β

deviates from that reported by Grassberger [12] (Table I) to
a greater extent than the value estimated from the scaling in
Table II. We will discuss this point later.

The same analysis was performed for the dCDGM(2)
model. The simulation was performed at tc = 0.923212, as
estimated in Sec. III, with the size N = 5 × 108; 5600 inde-
pendent samples were used for averaging. The local exponent
β(x) is plotted as a function of 1/x0.716 in Fig. 13; the results
of P(x, tc) and Q(x, tc) are shown in Fig. 12. The β value,
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FIG. 11. Extrapolation of β for the PR model.
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FIG. 12. Results of P(x, tc ) and Q(x, tc ) for the dCDGM(2) model.

which is shown in Table III, does not substantially deviate
from the scaling result.

V. SUMMARY AND DISCUSSION

The explosive percolation that appears in the Achlioptas
process was investigated by introducing a size-independent
scaling method for percolations on a random network. The
transition point and critical exponent β were estimated for two
models of the Achlioptas process: the product-rule (PR) and
dCDGM(2) models. We further applied the scaling method
to the Erdős-Rényi (ER) model, which is a classical model
in which the analytic values are known, and confirmed the
validity of the analysis. The estimations of the transition point
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 0  0.003  0.006  0.009  0.012

β

 1/x0.716

FIG. 13. Extrapolation of β for the dCDGM(2) model.

for these models were in good agreement with those reported
previously. The estimations of β were also consistent with
previously reported values, whereas the β value estimated
using the PR model deviated slightly. To obtain a more ac-
curate value of β, we proposed a scheme of extrapolating
the simulation just at the transition point by introducing a
parameter representing the maximum cluster size. The esti-
mated value of β was improved compared with that estimated
by the scaling analysis for the ER model and was also
consistent with the value estimated using the dCDGM(2)
model.

By contrast, the deviation of the β value from the previ-
ously reported value became larger for the PR model. The
value of β for the PR model was previously estimated as
0.0861(5) by finite-size scaling analysis [12]; let us refer to
this value as β0. The β value was obtained as 0.0889(7) by
the present size-independent scaling analysis, which was con-
firmed to be reliable by the results for the ER and dCDGM(2)
models. The extrapolation scheme for β was also confirmed
to be reliable for the ER and dCDGM(2) models, whereas that
for the PR model, 0.0933(9), showed a greater deviation; let
us call this value βE. We consider that β(x) in Eq. (4.6) should
approach the true value of β in the limit of x → ∞. However,
our data for P(x, t ) and Q(x, t ) only extend to a finite value
of x; thus, the extrapolation scheme becomes necessary. In-
creasing x further in the present analysis is difficult because
the system size needs to be larger to avoid size dependence.
Notably, the extrapolation scheme is provided for the data at
the transition point and the quality of the result is influenced
by the accuracy of the transition point in the simulation.

We examined the dependence of the estimated βE on the
value of tc used in the extrapolation scheme for the PR model.
For both the lower and upper bounds of tc of the PR model
listed in Table II, tc− ≡ tc − �tc = 0.888 421 and tc+ ≡ tc +
�tc = 0.888 447, respectively, the same analysis as in Sec. IV
was performed, where 3360 samples were used for averaging,
with a size of N = 3 × 108. We obtained β− ≡ 0.096(2) for
tc = tc− and β+ ≡ 0.0903(7) for tc = tc+. A small but finite
monotonic tc dependence of β was observed. We found that
the values of β estimated by extrapolation in tc− � tc � tc+
are all larger than β0 for tc = 0.888 449, the previous esti-
mation reported in Table I. In addition, β+ for tc = tc+ still
deviates from and is larger than the previously reported value
β0 even though the values of tc are similar. Furthermore, it
is seen in Fig. 11 that the β(x) is monotonic increasing with
x, and the smallest value of observed β(x) is larger than β0.
Since the true value is given by β(x) with x → ∞ if our
argument for the asymptotic behavior in the extrapolation
scheme is correct, the present estimation βE is expected to be
closer to the true value. These results suggest that the previous
estimation β0 contains an error stemming from a finite-size
effect.

Improving the accuracy of the scaling analysis or extrap-
olation scheme requires conducting a simulation for larger
values of x, which requires a larger system size N and more
samples. In addition, for the extrapolation scheme, the ac-
curacy of the transition point tc used in the simulation is
important.

The present size-independent scaling analysis and the
extrapolation scheme can be applied to a wide range of

054138-7



KENTA HAGIWARA AND YUKIYASU OZEKI PHYSICAL REVIEW E 106, 054138 (2022)

percolation phenomena, including lattice percolations. As an
example, we applied the extrapolation scheme to the classical
bond percolation on a square lattice in two dimensions and
obtained β = 0.1369(4), where β = 5/36 was pointed out
analytically [6].
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