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When studying the collective motion of biological groups, a useful theoretical framework is that of ferromag-
netic systems, in which the alignment interactions are a surrogate of the effective imitation among the individuals.
In this context, the experimental discovery of scale-free correlations of speed fluctuations in starling flocks poses
a challenge to common statistical physics wisdom, as in the ordered phase of standard ferromagnetic models with
O(n) symmetry, the modulus of the order parameter has finite correlation length. To make sense of this anomaly,
a ferromagnetic theory has been proposed, where the bare confining potential has zero second derivative (i.e., it
is marginal) along the modulus of the order parameter. The marginal model exhibits a zero-temperature critical
point, where the modulus correlation length diverges, hence allowing us to boost both correlation and collective
order by simply reducing the temperature. Here, we derive an effective field theory describing the marginal
model close to the T = 0 critical point and calculate the renormalization group equations at one loop within a
momentum shell approach. We discover a nontrivial scenario, as the cubic and quartic vertices do not vanish in
the infrared limit, while the coupling constants effectively regulating the exponents v and 1 have upper critical
dimension d. = 2, so in three dimensions the critical exponents acquire their free values, v = 1/2 and n = 0.
This theoretical scenario is verified by a Monte Carlo study of the modulus susceptibility in three dimensions,
where the standard finite-size scaling relations have to be adapted to the case of d > d.. The numerical data fully

confirm our theoretical results.

DOI: 10.1103/PhysRevE.106.054136

I. INTRODUCTION

Ferromagnetic models have been a staple of the statisti-
cal physicists’ way to study collective motion in biological
systems, and more generally in active matter. The seminal
Vicsek model of flocking [1] is essentially a ferromagnetic
O(n) model on the move, where each particle aligns its orien-
tation to the local neighbors, but instead of being anchored on
a lattice, it actively moves following its own direction. The
corresponding continuous theory formulated by Toner and
Tu [2-4] is essentially Navier-Stokes hydrodynamics meeting
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the Landau-Ginzburg theory of critical phenomena. Beyond
these key cases, models and theories where local effective
alignment plus active motion are the key ingredients, have
been used across many alleys of active matter [5]. Of course,
in most active systems off-equilibrium effects play a funda-
mental role in giving a phenomenology different from the
standard framework of statistical physics; among the many
examples, a very vivid one is the emergence of long-range
order in the low-temperature phase of the Vicsek model even
in two dimensions due to the off-equilibrium coupling be-
tween polarization and density, which propagates order more
effectively than in the equilibrium case, hence bypassing the
Mermin-Wagner impossibility to have ferromagnetic order in
d=21[2].

In some other cases, though, the deviations of active
systems from standard ferromagnetic phenomenology seem
not principally due to off-equilibrium effects. In the case of
biological systems, this is hardly a surprise, given that being
out of equilibrium is but one of the many hurdles that biology
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puts in front of us when modeling living systems. The case of
bird flocks is interesting from this point of view. Experiments
have shown that connected correlations are scale-free in
starling flocks in the wild [6]. Flocks are highly ordered
systems, hence in the ferromagnetic context it is reasonable to
model them as (active) O(n) systems in their low-temperature
phase (which is essentially what Toner-Tu theory does), where
the Goldstone theorem [7] grants massless transverse modes,
giving scale-free correlations of the orientation fluctuations.
The problem, however, is that starling flocks display
long-range correlation also of the speed fluctuations, namely,
of the modulus of the order parameter. This is an anomaly
in standard equilibrium systems: while the longitudinal fluc-
tuations (i.e., the fluctuations that, in a Cartesian orthogonal
decomposition, are parallel to the total magnetization), which
are massive at the bare level, become, in fact, massless
after renormalization due to the coupling with the transverse
modes [8—10], the modulus is always a massive mode in the
ordered phase, and therefore has finite correlation length.
Moreover, the off-equilibrium nature of flocks does not
seem to play a crucial role in connection to this anomaly, as
both off-equilibrium simulations of self-propelled particles
ruled by standard O(n) ferromagnetism [11], and the relative
theoretical approaches [12], find that the speed is not a scale-
free variable in the active case. This is probably not surprising,
as experiments show that starling flocks are quasiequilibrium
systems, since—due to the strong ordering—the reshuffling
time of the interaction network is significantly larger
than the local relaxation time of the velocity [13]. This
does not exclude that off-equilibrium effects may emerge
when studying these systems on very long timescales, but
this would not explain the scale-free behavior of speed
fluctuations. Summing up, speed scale-free correlations are
an anomaly that statistical physics should explain with some
new ingredients unrelated to off-equilibrium effects.

An early attempt to explain scale-free speed correlations
was done in Ref. [14], where a maximum entropy model de-
rived directly from the experimental correlation data in flocks
found that a standard O(n) ferromagnetic potential confining
the modulus of the velocity can give scale-free speed correla-
tions provided that the amplitude g of the potential is small
enough: within a spin-wave expansion (which holds quite
well in the ordered phase of flocks), the modulus correlation
length scales as g~!/2, and because flocks are large but finite
systems of linear size L, if g <« L2, one finds scale-free speed
correlations over all observable scales [14]. The idea of this
approach is to reduce the amplitude g of the whole bare po-
tential, hence reducing its curvature in the modulus direction,
so to boost the correlation length beyond the system’s size
L; but because flocks are finite, this does not require g to be
strictly zero, hence a speed-confining potential bounding the
theory is always present in the effective Hamiltonian. This
promising theoretical model, however, did not stand in front
of another generation of experimental data, which showed
that a comparison between theory and data crashes at low
values of the flocks’ size L [15]: In small groups, the low
value of the potential amplitude g blows the group speed to
values that far exceed the natural reference speed, and—
most importantly—disagree with experimental observations.
Essentially, what happens is that by lowering the amplitude g

of the whole confining potential, we are not only decreasing
the speed mass (hence increasing its correlation length), but
we are at the same time depressing the bounding capacity of
the potential, hence allowing the entropy to blow the collec-
tive speed to unrealistic values, which are indeed completely
absent in the experimental data.

A different approach—still based on ferromagnetism—
was proposed in Ref. [16] and successfully tested against
numerical simulations and—most importantly—experimental
data in Ref. [15]. The idea of this theory is to have zero cur-
vature of the bare potential from the outset, without the need
to decrease the overall amplitude of the bounding potential.
This can be done by switching from the classic O(n) bare
potential, V = g(1 — ¢ - ), which bounds around |o| = 1
the modulus of the fluctuating variable ¢ and which needs a
small g to decrease the second derivative along the modulus,
to the equally simple form V = A(1 — ¢ - ¢)*, which has zero
second derivative of the modulus irrespective of the value of
the amplitude A; because of this always-vanishing curvature,
this was called marginal potential [16]. The fact that the bare
mass of the modulus is zero suggests that the modulus correla-
tions are scale-free (even in the bulk) exactly at T = 0, where
entropic effects are not present; on the other hand, upon rais-
ing the temperature, fluctuations create a nonzero curvature
(that is, a mass, in field-theoretical language), which decreases
the modulus correlation length. A mean-field analysis showed
that this is indeed the case [16]: the marginal model has a
finite-temperature phenomenology completely analogous to
its O(n) cousin, with a standard ordering transition at a finite
T., but it also has a zero-temperature critical point where
the modulus correlation length diverges as £ ~ T~!/2. Hence,
in the marginal model, to obtain scale-free correlations in
systems of finite size L, one simply has to push the system
deeply in the ordered phase and satisfy T « L™2, while the
fact that the amplitude X is no longer connected to the modulus
correlation means that it can remain finite, hence allowing
the bounding potential to tame the collective speed of the
group. Results of self-propelled particle simulations ruled by
the marginal confining potential are completely compatible
with both the theoretical expectations and the experimental
data [15], hence the marginal theory of speed control is at the
moment a reasonable hypothesis to explain scale-free speed
correlations in flocks.

The analytic study of the marginal theory has been limited
to the equilibrium mean-field approximation [16]. Hence, for
theoretical progress, one should first go beyond mean field,
performing a finite-dimensional study still at equilibrium,
and finally extend the analysis beyond the equilibrium case,
eventually including self-propulsion terms in the equations of
motion. Here, we deal with the first part of this program by
writing an effective field theory for the marginal model valid
in the deeply ordered phase where flocks live, namely, in the
vicinity of the zero temperature critical point, and by calcu-
lating the critical exponents using the renormalization group
(RG) in momentum shell [17,18] at one loop. Apart from the
solid methodological motivation that it is better to first have
a complete theoretical grasp of the equilibrium case before
moving to off equilibrium, the equilibrium theory has some
interest per se. As we have already said, starling flocks are
close to equilibrium, hence the equilibrium theory has great

054136-2



RENORMALIZATION GROUP STUDY OF MARGINAL ...

PHYSICAL REVIEW E 106, 054136 (2022)

interest, if nothing else as a reference theory around which
developing a future framework for small deviations from equi-
librium. Finally, marginal ferromagnetism has an interesting
zero temperature critical point, which is unusual under many
respects even in the context of equilibrium statistical physics.
The strange mix that we will find of free critical exponents
and interacting theory, with relevant non-Gaussian couplings,
will confirm a posteriori that the marginal theory has some
intrinsic theoretical interest.

II. THE MARGINAL FERROMAGNETIC THEORY
A. Microscopic model

The microscopic Hamiltonian of the general ferromagnetic
class of models we study is given by

N N
J
H=3 izjn,g,-(oi —0)?+ ZV(G,- -0), (1)

where the o; are (classical) spins with n components, living
in an external space of d dimensions. The first ferromagnetic
term represents mutual imitation, favoring the spins to have
similar orientation and modulus. In the finite-dimensional
case, the adjacency matrix is given by n;; =1 if i and j
are nearest neighbors and n;; = 0 otherwise; N is the total
number of spins in the system. Spins are soft real variables,
i.e., their modulus is not fixed, hence the bare potential V has
the role to bound the modulus of the spins around a reference
value, which we will fix to 1. This requirement, together
with rotational invariance and the need to have a maximum
at o = 0, fixes the general form of the bare potential, V ~
(1 — o -0)”. The case of normal ferromagnets is given by
the p = 2 standard O(n) potential, V = g(1 — o - o), whose
coarse-grained field theory gives the classic Landau-Ginzburg
Hamiltonian [19]; this theory has nonzero bare mass of the
modulus, proportional to g, hence the correlation function of
the modulus (i.e., speed correlations, in the biological con-
text) are not scale-free in the low temperature phase, unless g
itself becomes small, which has its own shortcomings, as we
discussed in the Introduction and demonstrated in Ref. [15].

The marginal model, on the other hand, is given by the p =
4 case, namely, by the following bare potential [15,16]:

V(g-0)=r(1—0-0), (2)

where A is an amplitude. The marginal form is the simplest
one with a flat minimum also in the longitudinal direction, i.e.,
a minimum with zero curvature. With this potential, the mod-
ulus mode becomes massless at zero temperature, irrespective
of the value of A [15,16], hence developing scale-free corre-
lations. We want to investigate this zero-temperature critical
point with the RG [18].

B. From the mean-field case to field theory

The first step in our study is to define a field-theory ver-
sion of the marginal model to which we can then apply the
momentum-shell RG method. To do this, we will proceed
in a phenomenological way, similar to the Landau-Ginzburg
case, namely, we will look for the coarse-grained field the-
ory whose Landau approximation gives the same results as

the mean-field approximation of the microscopic model [19].
The mean-field theory of the marginal model was studied in
Ref. [16]: by setting the adjacency matrix to n;; = 1/N for all
pairs, one obtains a fully connected (or infinite dimensional)
model where the saddle point method can be used to calculate
in the limit of N — oo the partition function of the system. If
we define the magnetization as

mzjlvii:ai, (3)

and its modulus m = |m|, the probability distribution of m
defines the mean-field Gibbs free-energy g(m):

P(m) ~ ¢ Ve, 4)

Working at 7 <« 1 and expanding g(m) near m = 1 (which
is the equilibrium magnetization at 7 = 0), we obtain (see
Appendix A for details)

gm) =r(1 —m®)* + Tlar(1 — m*? + as(1 —m?*)* +---]
+ T ar(1 = m®) + as(1 = m>)> + -+ 1], (5)

where the a, are T-independent constants which are functions
of the parameters J and A of the Hamiltonian. For 7 = 0,
the free energy reduces to the same functional form as V,
Eq. (2), and it thus has a minimum with zero curvature. So
the mean-field Gibbs free energy, in the limit of vanishing
temperature, has a flat minimum, implying a divergent suscep-
tibility for fluctuations of the modulus of the magnetization.
On the other hand, when T grows, entropic fluctuations gen-
erate a nonzero second derivative of the free energy, hence
making the susceptibility finite. This trade-off between bare
potential and entropic fluctuations close to T = 0 is the origin
of the zero-temperature critical point of the marginal model.
This mean-field scenario was confirmed also in the finite-
dimensional case by numerical simulations on a cubic lattice
[16].

We can reorder the terms in Eq. (5), collecting powers of
(1 — m?) and writing the coefficients to the lowest order in T,

gm) = a;T*(1 —m*) + a;T(1 —m*)?
+asT(1L—m2)? + A1 —m?) 4. (6)

To proceed in defining the field theory, we do not need the
actual values of the coefficient a,, as the only relevant thing
is that they do not depend on the temperature 7. We now
promote the magnetization modulus to a fluctuating field,
m — ¢(x). Because we are interested in the system’s prop-
erties near the marginal critical point [16] at T = 0, where the
equilibrium magnetization modulus is 1, it is convenient to
work with the shifted field, ¢(x) = 1 — ¢(x), which is small
near the zero-temperature critical point. We stress the fact that,
even if the magnetization modulus is not analytic for m close
to 0, we are far from this regime since in the low temperature
phase m ~ 1. Following this scheme, we have that (1 — m?) =
(1 —m)(1 + m) — 2¢, where the numerical factor of 2 will
be absorbed into the couplings of the field theory. Addi-
tionally, we ignore the angular degrees of freedom, focusing
only on the modulus fluctuations, because the fluctuations of
modulus and phase are known to be very weakly coupled to
each other in the broken-symmetry phase [10,20,21]. Finally,
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following the standard ferromagnetic procedure, we introduce
a square gradient term, which embodies ferromagnetic in-
teraction by depressing short-wavelength fluctuations of the
field. By keeping powers up to ¢* (higher order terms are
discussed in Appendix C), we finally obtain the following
Landau free-energy:

F= / d{(VoY +aTe? + cT?0 + 76" +ug*), ()

so that the probability of a field configuration is, Plg] =
exp[—F/T]/Z. In conventional field theories [22], we nor-
mally would ignore the factor 1/7 in the exponential weight,
because near the critical point it contributes a harmless finite
constant 1/7, that can be safely reabsorbed in the field and
in the couplings. In our case, however, we must be careful,
as we are dealing with a critical point at T, = 0, hence T is
not a harmless constant. The temperature is the coefficient
of the quadratic term, and it therefore plays the role of the
bare mass; however, note that powers of T appear also in the
other coefficients, not just in the quadratic one, so that when
approaching the critical temperature, all these coefficients
vanish. For this reason, one cannot reabsorb the temperature
in the other couplings. The most convenient way to deal with
this situation is to define a new field:

¥ (x) = o@)/VT. (8)

This rescaling leads to a theory with a regular coefficient
of the square gradient term, and results in a field amplitude
that does not vanish for T — 0 (see Appendix B). We will
also drop the linear term, which does not change the critical
behavior of the theory (this is justified in Appendix C2),
and set the constant a to 1, which amounts to a harmless
redefinition of the temperature and of the other couplings. We
thus end up with a Landau-Guinzburg theory for i (x) such
that P[] = exp[—H]/Z, with

H = /ddx{(Vlﬁ)z + Ty? +oT 293 +uT vy (9)

Note that in this field theory, powers of 7', which here play
the role of the mass (i.e., of the control parameter), appear in
all the couplings. This is unusual in standard field theories,
where the bare couplings are independent of the temperature
(or mass), and thus remain finite when the bare mass vanishes.

Dimensional analysis of Eq. (9) shows that the naive scal-
ing dimensions are (in momentum units),

d

[kl =1 il = -2 -1 [T]1=2

d

[v]=—5 (u] =2 —d, (10)

where v is the field in momentum space. We immediately see
that for d > 2 the naive scaling dimensions of both v and u are
negative, suggesting that for d = 3 the theory is infrared-free.
However, computing the naive dimensions of the full cubic
and quartic coefficients, vT/? and uT, we find

6

[vT?] = %d, [uT] =4 —d, (11)

so for d =3 their naive scaling dimension is positive,
suggesting therefore that the theory actually conserves its non-

Gaussian couplings in the infrared limit, so it is not free. This
apparently contradictory situation needs to be settled by going
beyond mere dimensional analysis, that is, by calculating the
RG flow equations.

III. RENORMALIZATION GROUP ANALYSIS
A. General RG procedure

We study the zero-temperature critical behavior of the
Hamiltonian Eq. (9) using Wilson’s momentum-shell RG
method [23]. We present in this section the recursion relations
of the RG transformation. The diagrammatic perturbation the-
ory can be carried out using the tuning parameter 7 and the
two composite coupling constants,

p=0T¥? |, a=ul. (12)
Formally, then, all diagrams are the same as in the standard
Landau-Guinzburg theory (with a cubic term). However, after
having worked out the RG flow equations for (7', v, i), it will
be crucial to go back and study the RG flow of the original
parameters (7', v, u) to understand the critical behavior, which
is different from that of standard Landau-Guinzburg in d = 3.
In fact, neglecting the explicit 7 dependence of ¥ and i leads
to physical inconsistencies that are already apparent at the
level of the Landau approximation: If one looks for a constant
solution, ¥ (x) = v (thus setting to zero the gradient square)
and simply minimizes H with respect to ¥, one finds that
for fixed D and # the potential has two minima, one at ¥y = 0
and second one at finite value of ¥y with lower energy, giving
a first-order transition phenomenology. Instead, working with
T — 0 at fixed v and u keeps the appropriate balance among
the coefficients such that the Landau potential always has
just one minimum at ¥, = 0, which is consistent with the
mean-field scenario.

To do momentum-shell RG, one first rewrites the Hamilto-
nian in momentum space, introducing an arbitrary ultraviolet
cutoff A (of the order of the inverse of the nearest-neighbor
distance) that makes all perturbative diagrams well-behaved
in the UV limit. The Wilson procedure then consists of two
steps [18]. First, one integrates out all the degrees of freedom
in a thin shell k € [A /b, A] with b > 1 but close to 1, defining

Hily(k < A/D)] = —long[l//(A/b <k < A)]e HWI,

(13)
This step is nontrivial because the non-Gaussian terms cou-
ple the on-shell ultraviolet (UV) and off-shell infrared (IR)
modes, and must be carried out perturbatively. Once H,; is
found, in the second step the momentum is rescaled k — k/b
so the original cutoff is recovered, and the coarse-grained
Hamiltonian is rewritten so it has the same form as the original
one, but with new, renormalized field and coupling constants.
As a result of the two steps, we obtain the Landau-Ginzburg
Hamiltonian,

d'k
(2m)?

1 A
vkl = 5 fo (K + Ty (k) — )]

[Mdligdik,
+, /0 o s s — k)
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FIG. 1. The two vertices of the marginal field theory

A Ak d?adk
+17tb/0 W Yk Y (k2) Y (k3)

x Yp(—ki —ky — k3), (14)

which depends on the renormalized couplings Ty, ¥p, ilp, and
the renormalized field v¥,(k). To find these renormalized
parameters, we need to turn to the diagrammatic expansion
at one loop.

B. Relevant diagrams and RG relations

The theory has two vertices (Fig. 1), a cubic one with
coupling © = vT*? and a quartic one with coupling it = uT .
Combining these two vertices, we can make one-loop di-
agrams with an arbitrary number of external legs, but we
evaluate the renormalized couplings only up to the ¥* term
(four external legs). Diagrams with more than four exter-
nal legs give a correction to higher order terms that we
do not include in Hamiltonian Eq. (9) because they are
all RG-irrelevant (see Appendix C). We have two diagrams
that contribute to the renormalization of temperature 7 and
field (Fig. 2), two that enter the renormalization of v7T3/?
(Fig. 3) and three that contribute to the renormalization of uT
(Fig. 4).

Combining the contributions of all diagrams, the renormal-
ized couplings are found to be (details in Appendix C)

T, = B*[T + 12uTA, — 18v>T3A,], (15a)
T, = B~ wT3? = 36uvT>*A,
+36v3T%%A3], (15b)
uT), = b*4[uT — 36u*T>A; + 216uv*T*A;
—162v*T%A4], (15¢)

where

A ddp 1 Ad
A, =/ i ~ Ki— logh, (16)
ap Q) (p~+T) (A2 +T)

K, is the area of the unit sphere in d dimensions divided by
(2)?, and the approximation is valid for a thin shell (b >~ 1).
Finally, from the k£ dependence of the two-legged diagrams

FIG. 2. Diagrams that contribute to the renormalization of T
and field. Dashed lines represent fields with momentum k& < A/b
(off shell), while solid lines represent integrated fields with on-shell
momentum A/b < k < A.

N
N
N -
. g
.
,
~
N
N

FIG. 3. Diagrams contributing to the renormalization of v =
V132,

(Fig. 2), the field renormalization is found as
Vi(k) = by (k/b), (17)

where the scaling dimension of the field is given by the k>
contribution of the diagram on the right of Fig. 2 (for its
detailed expression see Appendix C),

d B
dy = —1 — = + =v’T3A9S, 18
v > + > v (18)
and B is a dimensionless numerical constant whose value we
will not need in the following.

C. The beta functions

We now unpack Egs. (15) to obtain the RG equations for
the original coupling constants, (7, v, u). Moreover, instead
of keeping the RG equations in their iterative form, we will
switch to the fairly more compact differential form, introduc-
ing the standard B functions for each coupling [22]. To do
this, one defines the infinitesimal parameter x < 1, such that
b =1+ x and logb =~ x; in this way the 8 function (or flow
function) of a generic parameter P is defined as

Bpr = dP/d(logh) = aP/dx. (19)

After using Egs. (15) to work out the flow of the original
couplings, their 8 functions become

Br = 2T + 12uTK; A% — 12uT?*K; A4, (20a)
d
» = —=v — 18uvKy; A% + 18uvT Ky A4
2
—36uvT KA, (20b)

By = Q2 —du—120"K; A2 + 12°TK A
—36u’TK; A4, (20c)

where we have written only the leading term and the first
correction in 7.

FIG. 4. Diagrams contributing to the renormalization of & = uT .
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IV. FIXED POINT AND CRITICAL EXPONENTS

From the zeros of the g functions Eq. (20), we find that the
RG flow has only one physically meaningful (i.e., with T > 0
and u > 0) fixed point, namely,

T*=0 , v'=u"=0. @21)

The Jacobian matrix at this fixed point is

Wibebd_ (o ap o =[5 v o
a(T, v, u) 0 0 2—d 0 0 Yu
(22)

from which we see that T is an unstable direction, as expected,
given that T is the tuning parameter, while both u and v are
stable in d = 3. The critical manifold is the T = 0 plane, and
T is the (relevant) control variable that takes the system away
from the critical point. The critical point is 7, = 0, indepen-
dently of the (bare) value of u# and v, and independently of
the cutoff A. Notice that, consistently with the physics of the
problem, there is no negative shift of the mass, as there is
instead in the standard Landau-Ginzburg theory [22]: the zero
temperature bare critical point cannot be reduced further by
fluctuations under renormalization.

A. Critical exponents

Critical exponents can be found as usual from the eigenval-
ues of the Jacobian, once we linearize the RG transformation
near the fixed point [24]. In particular, to calculate the ex-
ponent v, defining the divergence of the modulus correlation
length,

E~T77, (23)

we use the fact that &, = £/b, which gives 0&/dx = —& (the
correlation length has always scaling dimension —1), so v™!
is the scaling dimension of the control parameter, namely, it
is the coefficient of the linear term 7 in the 8 function of the
temperature,

—1 a,BT
Vo= —/—

=2+ 12u*Ky;A 2 =2, 24
oT + 12u* Ky (24)

w*,v*
where we have used the fixed point value, u* = 0. We con-
clude that the divergence of the modulus correlation length
is ruled by the same critical exponent as the free theory,
v = 1/2. It is important to note that this result is due to the
fact that the coefficient of the linear term 7 in the 8 function
of the control parameter depends on u and not on i. This is
the reason why the exponent is free, even though the effective
coupling &# = Tu is not asymptotically zero. Notice that, had
we kept hidden into # the dependence on the temperature
in the function By, we would have found a fixed point at a
negative value of T, which is clearly unphysical.

The second exponent we are interested in is the anomalous
dimension of the space correlation function, 7, defined by its
scaling form near the critical point [24]:

Clk) = k> f(k§). (25)
From the renormalization of the field thorough the RG trans-

formation, we can write a self-consistency equation for the
correlation function,

(W &Y K)) = b5 (Y, (b)Y, (PK)), (26)

and by using the standard relation, (27)¢8(k + k')C(k) =
(¥ (k)y (k')), we obtain

C(k) = b~ 24 =4C(bk), (27)
from which we can read the anomalous dimension,
n=2+d+2d:;, (28)

where dj, is the dimension dy evaluated at the fixed point.
From Egq. (18), we find then

n=2+4+d—-2—d+ B0’T*A3)2

e =0 (29)
We conclude that both critical exponents take their free-theory
values,

It might seem surprising to obtain these values in d = 3,
where it is known that the cubic and quartic Landau-Ginzburg
terms are relevant in the RG sense. However, our result is
a consequence of the peculiar way in which the quadratic,
cubic, and quartic coefficients are tied together in this theory.
If one goes back to look for fixed points in the composite
couplings, Egs. (15), one does find a Wilson-Fisher-like fixed
point, but it is nonphysical for this case because—as we have
already noted—it would require 7* < 0. One can verify that,
for any starting point (7', 9, &) with positive couplings and
near T = 0, the flow always stays in the region with 7 > 0,
which is evident considering the flow in (T, u, v) space, where
T = 0 is the critical manifold.

We should remark that, unlike the usual A¢4 theory, here
the critical exponent n does pick up corrections at one loop,
coming from the diagram built by combining two v/ vertices
(which has two external legs and a nonzero external momen-
tum on internal lines, see Appendix Fig. (C1)). However, this
correction vanishes due to the Gaussian nature of the fixed
point that rules the critical exponents in this case. For this
reason, higher order corrections to the anomalous dimension
n will also vanish.

B. Critical region

The critical point of this theory is rather pathological, since
at T = 0 all but the gradient terms vanish. Hence, we wish
to understand whether there is some finite neighborhood of
the critical point where the free critical exponents calculated
above can actually be observed. In other words, we must
estimate the size of the critical region, i.e., the region outside
which one expects noticeable departures from the power laws
with the fixed-point values of the exponents. To do this, we
need to go beyond the linear approximation of the flow near
the fixed point. Hence, we go back to the 8 functions Egs. (20)
and rewrite them keeping terms up to O(7),

dT

— = Br =2T(1 + 6ur?™?),

dx

dv d d2

a = ﬂv = —EU — 18uvA , (31)
du 2 Ad—2

— =B.=Q2—d)u—12u" A",

dx
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where we have set K; = 1 to simplify the notation. These
equations can be solved exactly. In d = 3, we obtain

T(x) = To(12Aug + 1)e* — 12ATyupe",

) e
v(x) = s
(12Aug + 1 — 12Auge—)*"?
upe
ulx) = 32)

12Aug + 1 — 12Auge>’

where Ty, vg, and ug are the physical (i.e., bare) values of the
theory’s parameters, that is, the starting points, at x = 0, of the
RG transformation.

The critical power-law behavior ruled by the RG fixed
point can actually be observed only if the flow carries the
irrelevant (stable) variables close enough to their fixed point
while still remaining in the region of T where the linear
approximation is valid; therefore, to estimate bounds for the
critical region, we follow the flow using Eqgs. (32) and check
whether or not at the end of the flow the linear approximation
is still valid. We start the flow at vy ~ O(1) and uy ~ O(1),
thus selecting a particular theory, and at some 7; such that
the physical correlation length is much larger than the lattice
spacing, & > 1/A. The flow cannot be continued beyond
the point where the correlation length approaches the lattice
spacing, so we require £ (xgop) 2 1/A. If we are in the critical
region, then &y ~ Tofl/ 2, s0 the stop condition implies

Ty ~ A%e Foo or enor ~ ATO_I/Z. (33)

We now require that at T (Xsop), U(Xstop)> V(Xstop), the linear
approximation remains valid, which we can check by eval-
uating the g functions Eqgs. (31) and comparing them with the
linear approximation. From Eqs. (31), we see that this needs
u(Xs0p) < 1, which inserting the value of xyop in Eqgs. (32)
gives the condition

To < uy”. (34)

For the validity of the result » =0 we need that dy from
Eq. (18) at xyop does not differ from dl’;. This requires

Uz(xstop)TS(xstop) << 1, that iS,
T < vy *"”. (35)

Conditions Eqgs. (34) and 35) tell us that, for any reasonable
value of physical couplings vy, ug, we can choose a small
enough—but finite—physical temperature 7y, below which
the theory will be in the critical regime with free exponents.
Considering that any reasonable values of the bare physical
parameters will always be of order one, conditions Egs. (34)
and (35) tell us that the theory will have a rather comfortable
critical region above 7, = 0. These calculations can be gen-
eralized for any d > 2, hence we conclude that the marginal
theory is infrared-free [21] with an upper critical dimension
d. =2.

To check if the conditions Egs. (34) and (35) are reasonable
for actual finite-size implementations of the marginal model
and compare the results with experiments, see Ref. [15]. With
just a single set of parameters with a low enough temperature,
it is possible to reproduce scale-free correlations for all the
experimental systems, obtaining also a magnetization (that in

Ref. [15] is called polarization) which is compatible with the
experimental ones [15]. The actual critical exponents may be
influenced by nonequilibrium dynamical effects [31] but the
scale-free phenomenology is the same for data, self-propelled
particle imulations [15], and the equilibrium model here pre-
sented.

V. FINITE-SIZE SCALING AND NUMERICAL
VALIDATION

To check the validity of the theoretical calculations, we
resort to simulations and finite-size scaling to investigate the
marginal critical point at 7 = 0. We first recall the basic
results of finite-size scaling theory above the upper critical
dimension, since this case is different from the more usual
situation where finite-size scaling is applied, i.e., below the
critical dimension.

For conventional ferromagnetic critical points in three di-
mensions, the finite-size scaling for the susceptibility has the
general form [25]

x =L""f(T — T.)L'"), (36)

where f(x) is a scaling function and 7 is the critical temper-
ature. y and v are the usual critical exponents [20]. However,
since our theory is infrared-free for d = 3, hyperscaling does
not hold [26] and Eq. (36) is not valid. To find the correct scal-
ing, we start, following Ref. [27], from the Landau-Ginzburg
Hamiltonian Eq. (9) in its Landau approximation for a finite
system,

H = LYTyd +vT**y5 + uTyy ), (37)

where 1 is a space-homogeneous field which represents the
zero mode of the theory. This amounts to neglecting diagrams
with loops, which can be shown not to contribute to the scaling
[27]. At zero loops, the susceptibility is given by

/Dy e
wao 677{ '

Since we want to evaluate the integrals above via a
saddle point, it is convenient to change variable ¥y —
Vo/(LY>T /%) and write the action Eq. (37) as

(38)

u 4

v
H =0+ 775V + ag Vo- (39)
Then the susceptibility can be written as
=714 (L L) (40)
X - f Ld/za LdT .

For fixed v and u, and for L large enough such that we can
ignore the dependence of the function f on its first argument,
we obtain

x = LFLAT). 41)

We therefore conclude that the marginal theory has an anoma-
lous finite-size scaling behavior due to the fact that its critical
point is on the basin of attraction of an infrared-free fixed
point. In general, infrared-free theories (e.g., k¢4 ford > 4,
which is studied, for example, in Ref. [28]) have an anomalous
scaling that is usually x = LY/2f((T — T,)L%/?) [27]. For the
marginal model, however, the peculiar dependence on T of the
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FIG. 5. Marginal model modulus susceptibility. The modulus susceptibility of the marginal model, computed from Monte Carlo via
Eq. (42), is shown for various sizes. Left panel: Susceptibility x versus temperature. Right panel: Rescaled susceptibility versus the scaling
variable LT [Eq. (41)] . Error bars are smaller than the symbol size. The collapse is very good, confirming that the T = 0 critical point is
infrared-free and that the marginal field theory, Eq. (9) correctly describes the modulus mode of the microscopic model Eq. (1).

couplings leads to a different scaling form, Eq. (41). One can
include in this discussion higher order terms of the marginal
field theory Hamiltonian, but it can be easily verified that their
contribution is subleading with respect to 1/(L?T).

Having obtained the correct scaling form for the marginal
model [Eq. (41)], we can test it numerically. We performed
Monte Carlo (MC) simulations [29] on a three-dimensional
cubic lattice with periodic boundary conditions, using the
microscopic Hamiltonian Eq. (1), together with the classic
Botzmann weight [29]. We used lattices with side L ranging
from 10 to 60 and temperatures 7 from 1073 to 1078, while
the parameters of Eqs. (1) and (2) were fixed to A =J = 1.
We performed standard Metropolis MC with a temperature-
dependent Cartesian displacement for the spins (since their
length is not fixed) such that the acceptance probability of
each move is around 50%. We discard the first 2 x 10° MC
steps of every simulations, checking every time that we are
well above the equilibration time for that specific simulation.
The modulus susceptibility is computed via the fluctuation-
dissipation relation [30],

1
X =ﬁ;(ﬂaillwn—(IGiI)(IGjI)), (42)

averaging over the MC trajectory. The soundness of the
numerical estimates is checked by using the error analysis
presented in Ref. [30], which makes use of time blocking data
to figure out the adequate simulation length to prevent error
underestimation. We make a small remark for clarity’s sake:
one might be confused by the fact that in the above equa-
tion we have included a prefactor 1/7T, while we omitted it in
the computation of the anomalous finite-size scaling [Eq. (38)
and following]. This prefactor is harmless in the usual case,
but here, since the critical point is 7 = 0, it is crucial to get
it right. However, if we look at the definition of the fields, we
find that there is no inconsistency, since the field of Eq. (38)
was already rescaled by the square root of T' [see passage from
Eq. (7) to Eq. (1)]. Hence, if we compute the susceptibility
from the field v, we do not have to include the prefactor 1/T

while it must be included when computing it from the original
spins o.

We show in Fig. 5 the susceptibility for the various system
sizes. Using the scaling variables (right panel), the collapse is
quite satisfactory. This result not only strongly supports the
theoretical RG calculations, but also confirms that indeed the
Landau-Ginzburg Hamiltonian Eq. (9) is the correct effective
field theory to describe the modulus mode of the microscopic
theory Eq. (1), validating the approximations we made to
obtain the field theory.

VI. CONCLUSIONS

The marginal theory has been introduced as a form of
speed control in highly polarized animal groups, where scale-
free correlations of both orientation and speed clash with the
standard O(n) ferromagnetic scenario in the ordered phase,
according to which the correlation length of the modulus of
the order parameter is finite in the whole symmetry-broken
phase. Marginal speed control solves this problem and it re-
produces all the experimental phenomenology [15] by using a
bare potential which has zero second derivative with respect
to the modulus of the order parameter, thus giving a zero-
temperature fixed point. The relative equilibrium field theory
has both cubic and quartic vertices, so a one-loop RG analysis
of the critical exponents is nontrivial; moreover, the peculiar
nature of the T = 0 critical point demands that the explicit
role of the temperature be treated with care. In the end, the RG
flow shows that the critical exponents regulating correlation
length and correlation function have the free values v = 1/2
and n = 0. This is supported by the anomalous finite-size
scaling of the susceptibility found in MC simulations, which
confirm that the marginal theory is free for d = 3.

Assuming that our theoretical results also hold in the
off-equilibrium case (which is not certain, despite the weak
off-equilibrium effects in starling flocks), one interesting
question is whether or not one may observe the free critical
exponents in real instances of bird flocks. As a matter of
fact, this may be quite tricky, at least with the current type
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of available data. Previous investigations [31] have shown
that the ever-changing dynamical inflow of information at
the boundary of the flocks may change significantly the bulk
decay form of the correlation function, in such a way to screen
completely the underlying critical exponents v and 1. Hence
the power law decay of the correlation function (which is
linked with n [30]) computed in the previous studies of scale-
free correlations in starling flocks [6] is not reproducible with
the model we present in this paper, which does not take into
account dynamical out-of-equilibrium effects on the boundary
of the system [31]. Moreover, it is not possible to measure
independently v or y directly from the data [15,32] since it
is not clear how to change the temperature (or an equivalent
control parameter) of a single flock. Hence, to test the critical
exponents of the marginal model in the wild, one would need
a different kind of data, possibly obtained in less perturbed
environments than the currently available ones.

From a field-theoretical point of view, it would be
interesting to investigate further the coexistence of the zero-
temperature critical point, 7 = 0, which makes the modulus
fluctuations scale-free, and the standard finite critical point,
T =T., where all modes are scale-free. In the symmetry
broken phase, the standard transverse correlation length is
infinite due to the Goldstone mode; however, there is a finite
length scale in this phase, which regulates the scaling relations
below T, namely, the Josephson correlation length, &;, which
diverges at T, but decreases when lowering the temperature
below T, [33]. At the same time, the modulus correlation
length, &, increases in the marginal model when going deeper
in the ordered phase. The interplay of these two length scales,
which have opposite behaviors in 7', and their impact on the
scaling properties of the theory, remains unclear to us and it is
possibly worth further investigation.
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APPENDIX A: MEAN FIELD APPROXIMATION

1. Starting point and general idea

We generalize the theoretical analysis of Ref. [16] for a
model with n-component spins o;. We want to obtain a closed
approximation for the Gibbs free energy [16],

1
g(m) = —Jm* —m - xo(m) — E ln/da e PIS(@)+xo(m)-0]

(A1)
where S(0') = Jo? + V(o) and xo(m) is an auxiliary variable,
defined by the saddle-point equation for N — oo [16], which
reads

f do ge BlS©@)+xo-0]

" T de e PS@ral

(A2)

This equation and the integral in Eq. (A1) can be solved nu-
merically for any value of 8 [16], but here we are interested in
the asymptotic form of the free energy for large 8 (or T — 0),
hence we perform the integrals in Egs. (A1) and (A2), using
once again the saddle-point method, this time for g — oo.
Since we want all the corrections up to O(T?), we have to
expand the exponential in each integral up to that order. The
saddle-point equation for the integrals in o introduces a new
player, the saddle point value o (m):

VS(a)|, ) +Xolm) = 0. (A3)

ao(m)

Now we have to solve Eq. (A2), which will give us an ex-
pression for a¢(m), then use Eq. (A3) to find an expression
for xo(m), and eventually plug everything into Eq. (Al) to
express the explicit dependence of the Gibbs free-energy on
the magnetization [Eq. (5)]. If we look at Egs. (A2) and (A3),
we can see that m, 0, and x( are parallel (or antiparallel).
Hence it is convenient to write them as m = m, oy = oy,
and xp = xow, where || = 1. This simplifies our saddle-
point calculations, transforming many gradients and Hessian
matrices into simple derivatives.

2. Computation of necessary terms

We want to expand the Gibbs free-energy Eq. (A1) up to
O(T?) (that is, 1/8?). To accomplish that, we write Eq. (A1)
expanding the integral in o, using the saddle-point method,
which reads

) J 5 1 | e BSo+x000) - 1B
m)=—-Jm"—xym— —In| ———— —
§ "B [ detlSap 001\ B

= —Jm* + xo(o9 — m) + So+

1 1
+ ﬁ In det[Saﬂ(O'())] — EBQ,
where Sy = S(0y), Sop is the Hessian matrix of S, and By =
B(oy) is the first coefficient of the expansion in 1/8 of the
integral in Eq. (A1), which will be computed later. If we look
at Egs. (A2) and (A3), we can write oy and x( as expanding
around m,

(A4)

1
oo =m+ —C, + 0(1/B%),

A5
8 (A5)
Xo= =5, — % wCn +0(1/8%), (A6)

where C,, = C(m) is the first coefficient of the expansion in
1/8, coming from Eq. (A2), that will be computed later; S/, =
S’(m) and S = S”(m) are, respectively, the first and second
derivatives of S—from now on, this notation will be used for
derivatives. If we plug Egs. (AS) and (A6) into Eq. (A4) and
keep all terms up to order 1/8%, we find

1
g(m) =V(m)+ 5 In det [Sy5(m)]
— L Bom) + L57emyc2am)
ﬂz m 2 m m

_ COm)[det Sup(m)]'
2det [Sup(m)] |

(AT)
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Even if we want to compute the free energy up to O(1/82),
we do not need to compute the corresponding terms in the
expansions Eqgs. (A5) and (A6), because they cancel out once
we substitute them into the free energy. To compute the term
of order 1/8 in Eq. (A7), we just need to evaluate the determi-
nant of the Hessian of the function S at m; the Hessian matrix
is diagonal and gives

S/(m)i|n—l (AS)

det S,p = s”(m)[—
m

If we take the logarithm and expand near m?> ~ 1, we find
In det [Sup(m)] ~ (m* — 1), (A9)

which is the term of order T in Eq. (5). Going to next order,
we can compute the terms B(m) and C(m) by expanding the
integrals of Egs. (A1) and (A2) using the saddle-point method.
After some calculations, we find that the leading order in
(m* — 1) for the term of order 1/8? of Eq. (A7) is given by
the term B(m), which reads

Saﬂ;u)(m) 1 S
_Tb’ayﬁyuyv) _gl:w-f—]

~ const + O(m2 — 1),

B(m) ~

(A10)

where S,p,,, is the fourth-order derivative tensor of S and y,
are Gaussian distributed variables with

(ya> =0,

s o /" S -

(A12)

(Al1)

therefore we can compute the expected value (y,ygy,y») in
Eq. (A10) using Wick’s theorem [34] and the above equa-
tion for the covariance. In the end, we obtain that the first
nonvanishing term of order T2, apart from the constant, is of
order (m*> — 1), as we can read in Eq. (5).

APPENDIX B: INITIAL RESCALING OF FIELDS

We now spell out the initial rescaling of fields that links the
free energy Eq. (7) with the free energy Eq. (9). If we compute
with the mean-field approximation the single-particle variance
of the spin modulus s; = |o;|, we obtain

Gy = <s12> — ()2~ T, (B1)

which can also be obtained by computing the connected cor-
relation function in the Gaussian approximation of Eq. (7):

(U)K = 8(k +K)

’ CO

~8(k+k )m.

(B2)
We see that the T prefactor is problematic, since in the limit of
vanishing temperature the correlation function’s amplitude Cy
vanishes. We want to investigate the regime of small 7 where
the modulus correlation length is large, but we do not want the
amplitude of the correlation function itself to vanish. For this
reason, it seems natural to define a new field,

v =—= (B3)

k% +aT

such that the correlation function of ¢ has a fixed amplitude
for every temperature,

WY E ). =k +k') : (B4)

k? +aT

at least in the Gaussian and mean-field approximations. We
do not expect great deviations of C, from the mean-field
behavior, given the finding discussed in the main text that the
zero-temperature critical point is ruled by the Gaussian fixed
point.

APPENDIX C: RENORMALIZATION GROUP
CALCULATIONS

1. Diagrams at one loop

The marginal field-theory Hamiltonian Eq. (9) has two
non-Gaussian vertices: a cubic one with coupling v73/% (A)
and a quartic one with coupling uT (e) (see Fig. 1). We can
combine these two vertices to form all the possible one-loop
diagrams with an arbitrary number of external legs. Since we
evaluate the renormalized couplings only up to the term 4,
we stop at four external legs. All the diagrams with more than
four external legs give a correction to higher order terms that
we do not include in Eq. (9) because they are RG irrelevant.
The diagrams that give a contribution to the renormalization
of temperature 7' are

q
k-q (C1)
A gd 1
= —36uvT5/2/ Cld 5 5
ap Q) (> + Tk —q)* +T]
(C2)
The renormalization of vT3/? comes from
q ké
k_]_ _G\\\
ki-q kiks
5 A ddg 1
= —36uvT"/? /
A/b (271_)11 (q2 +T) [(kl - q)2 + T]
(C3)
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k
\\1\ q+k1 kg

q

q+k;+ky
-k,
A d
= 36057/ / i !
A (2m)3(¢® +T) (k1 + q)* + T
y 1
(k1 + k2 +q)2 + T (C4)

finally the renormalization of uT is due to

ke g hpkok
klg k] +k2’q \kg
A d
d 1
— —36u>T? / 7 _ 5
A 2m)4 (2 + 1) [(k1 + k2 — q)* + T
(&%)
b
ZQk‘ﬁkﬁks-q
k5 kFErq .
ks
A d
d%q 1
= 216uv*T* /
A (2m)% (g2 + T) [(k1 + k2 — q)* + T
y 1
(k1 + ket ks —q)2+ T
(Co)
k\/\ q ‘k/z:kz‘kx/
ki+q ki +k2+k3+q
,’/kﬁLkz*&\
ks
A d
d%q 1
= —1620*T° /
o 2m)4(q* +T) [(k1 + q)* + T
y 1
(k1 + ko4 q)? +T][(k1 + k2 + k3 +q)% + T
(C7

Dashed lines represent fields with momentum k£ < A/b (off
shell), while solid lines represent integrated fields with mo-
mentum A/b < k < A (on shell). Since we are interested in
the corrections to the couplings of momentum-independent
terms (Y2, ¥, and ¥*), we can compute all these diagrams
at zero external momentum and obtain the corrections of
Egs. (15a)-(15c).

2. The linear term

We have ignored in the Landau-Ginzburg free energy
Eq. (9) a linear term in ¢ that would have read cT3/?vy
[following the mean-field Gibbs free energy Eq. (6) and using
the rescaling ¥ = ¢/+/T, where ¢ is a constant independent
of temperature. We made this choice because the linear term
can be removed with a simple shift of the field by a constant
value. If we include the linear term in the theory, we find that
the packed constant ¢T%/2 is corrected by the diagram

e [t
k= A (2m)4 (2 +T)

After the same calculations that we did for the other terms,
the B function of the parameter c is

(C8)

Be = —% +3vA972 — 18ucA972, (C9)

which tells us that at the Gaussian fixed point v* = u* = c* =
0, the parameter c is also irrelevant. We also note that the
linear term does not produce any diagram which could con-
tribute to the renormalization of the other couplings, Eq. (15).
Hence, the phenomenology that we have described in the main
text does not change, even if we add the linear term. Also, in
this case, the differential equation Z—i = B.(c, v, u) is exactly
solvable and it reads (for d = 3)

coe™? +3Avge™ /(1 — ™)

W=y 12Au0(1 — )]

; (C10)

which means that for any starting condition the parameter ¢
flows to 0.

3. Higher order couplings

To check for the relevance of terms of order higher than
¥*, we need to know the naive scaling dimension of their
T -independent couplings. To see that, go back to Eq. (6),
which gives the dependence on T of each coupling, based
on the mean-field Gibbs free energy. We find that, before the
rescaling ¥ = ¢/~/T, the higher order terms can be written
as

1
Hhigh = T / dx{usg® + usp® + - - + ugp® + ugT ¢’

FuiTe + - 4+ u,Te" + -}, (C11)

where every u; is a constant independent of 7. We find this
dependence on T from Eq. (A7), where we can see that the
lowest order (in 7') that generates the terms from (m — 1y
up to (m — 1)3 is the first term (the bare marginal potential),
hence their couplings do not depend on 7. On the other hand,
the lowest order term that generates powers from (m — 1)° and
above is the logarithm of order T'. Upon rescaling the field, we
have

Hhigh = fddx{usTS/zlﬂs o ugT3y®

+uoT? % + -+ u, Ty + ...}, (C12)
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which can be expressed as

Tn/2—1
u " — {Tn/Z

for4 <n<9

forn > 9. (C13)

Using the expressions above, we can compute the naive scaling dimensions of the u, couplings, which are

= {a 2y

for4 <n<9

forn > 9. (C14)

Ford = 3, we see that [u,] < 0 for all n > 4, hence the Gaussian fixed point v* = u* = u;, = 0 remains stable even after adding

higher-order terms.
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