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Density matrix formulation of dynamical systems
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Physical systems that are dissipating, mixing, and developing turbulence also irreversibly transport statistical
density. However, predicting the evolution of density from atomic and molecular scale dynamics is challenging
for nonsteady, open, and driven nonequilibrium processes. Here, we establish a theory to address this challenge
for classical dynamical systems that is analogous to the density matrix formulation of quantum mechanics.
We show that a classical density matrix is similar to the phase-space metric and evolves in time according to
generalizations of Liouville’s theorem and Liouville’s equation for non-Hamiltonian systems. The traditional
Liouvillian forms are recovered in the absence of dissipation or driving by imposing trace preservation or by
considering Hamiltonian dynamics. Local measures of dynamical instability and chaos are embedded in classical
commutators and anticommutators and directly related to Poisson brackets when the dynamics are Hamiltonian.
Because the classical density matrix is built from the Lyapunov vectors that underlie classical chaos, it offers an
alternative computationally tractable basis for the statistical mechanics of nonequilibrium processes that applies
to systems that are driven, transient, dissipative, regular, and chaotic.
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I. INTRODUCTION

Whether classical or quantum mechanical, the trans-
port of statistical density is our primary means of making
statistical predictions of macroscopic behavior from micro-
scopic dynamics [1]. Classically, Jacobi’s form of Liouville’s
equation of motion for the phase-space density of me-
chanical systems is the foundation of statistical mechanics
[2]. Through extensive efforts, it has many forms and ap-
proximations, including the Boltzmann equation, the Vlasov
approximation, and the Bogoliubov-Born-Green-Kirkwood-
Yvon hierarchy, which underlie applications across physics
and chemistry [1]. These various mathematical forms lead
to macroscopic predictions with varying fidelity and numer-
ical tractability. In quantum mechanics, the Liouville-von
Neumann equation describes the evolution of the density
operator [3]; it is the fundamental equation of quantum
statistical mechanics and a main ingredient in quantum
computing, tomography, and decoherence [4]. To translate
between the classical and quantum mechanical Liouville
equations, one can use Dirac’s rule [5] of replacing Poisson
brackets by commutators. Here, we establish a density ma-
trix formalism for classical systems that supplants Dirac’s
heuristic with classical commutators and a more direct
correspondence.

There are other classical theories that add weight to the
question of whether formulations of quantum mechanics
might have classical counterparts that could advance statistical
physics [6]. Operator-theoretic methods, such as Frobenius-
Perron and its dual Koopman formalism [7], give a formal
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analogy to quantum mechanics by lifting the description of
classical systems to infinite dimensions [3]. They preserve
global nonlinear features and guarantee exact linearization of
the dynamics, providing useful connections between classical
dynamical systems and statistical physics [8,9]. However, they
can be difficult to apply to systems under active external
control and to find observables representing the nonlinear sys-
tem in the lifted linear space [10]. Symmetries can make the
calculation of the Koopman operator approximation and its
spectral properties more efficient [11] but, in practice [12,13],
the number of variables must be truncated to finite-dimensions
(e.g., through extended [14,15] or kernel [16] dynamic mode
decomposition [17]).

While Liouville’s equation is the formal foundation of
nonequilibrium statistical physics, many theories avoid, ap-
proximate, or subject it to model specific solutions [1]. Here,
we construct a classical density matrix formulation of dy-
namical systems on the local stability of nonlinear dynamics
[19]—Lyapunov exponents and vectors [20]. The infinites-
imal perturbations, Lyapunov vectors, defining the density
matrix have been used to analyze rare trajectories [21], jam-
ming [22], nonequilibrium self-assembly [23], equilibrium
and nonequilibrium fluids [24-26], and critical phenomena
[27]. From these finite-dimensional vectors, we derive a
classical analogue of the von Neumann equation for the
density matrix dynamics. We show this classical density
matrix is similar to the (dual) metric tensor and that its
determinant evolves according to a generalized Liouville
equation and satisfies a generalized Liouville theorem. Im-
posing a norm-preserving dynamics with Lyapunov exponents
not only normalizes the density matrix, it reinstates the form
of the usual Liouville equation for generic, non-Hamiltonian
dynamical systems.

©2022 American Physical Society
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FIG. 1. Snapshots of the strange attractor and an initially random, unit perturbation transported along a chaotic solution of the Lorenz-Fetter
model. Parameters are those originally used by Lorenz [18]: u = 10, 8 = 8/3, p = 28.

To start, we define an unnormalized density matrix from
the linearization of the classical dynamics, Sec. II. The
properties of this density matrix lead to a generalization of
Liouville’s theorem and equation, Sec. IT A. For Hamiltonian
dynamics, Sec. II C, we show the reduction to the usual Li-
ouville theorem and equation and establish a connection to
Poisson brackets. The dynamics of a normalized density ma-
trix, Sec. III, transform the generalized Liouville’s theorem
and equation to the usual form, Sec. Il A. In Sec. III B, we
discuss a basis representation of the density matrix, a common
consideration in quantum mechanics, with another form of
Liouville’s theorem.

II. DYNAMICS OF THE CLASSICAL UNNORMALIZED
DENSITY MATRIX

Consider a classical dynamical system with state-space
variables {x'}. At any moment in time, these variables to-
gether mark a point x(¢) := [x'(¢), x*(t), ..., x"(¢)]" in an
n-dimensional state space M that evolves according to: x =
F[x(t)]. Perturbations to the system will also evolve under the
flow of the dynamics. Because of their analytical and com-
putational tractability, infinitesimal perturbations [dx(t)) :=
[8x'(2), 8x%(t), ..., 8x"(t)]" € TM and their linearized dy-
namics are a well-established means of analyzing the stability
of nonlinear dynamical systems [20]. These perturbations to
the initial condition stretch, contract, and rotate over time,

16x(1)) = Alx(1)]|x(1)), (D

as they evolve with the phase point under the local sta-
bility matrix A :=A[x(1)] = VF with elements (A); =
0x'(t)/dx/(¢). Figure 1 shows a unit perturbation vector as it
is transported across the Lorenz attractor.

A common approach is to consider an infinitesimal k-
dimensional phase-space volume surrounding the phase point
x(t) that transforms its shape over time. We take the vol-
ume to be spanned by a finite set {|6y;)} of 0 <k < n
linearly independent tangent vectors [20], |§v¥;) € T M with
i=1,2,...,k,thatalso obey the linearized dynamics. Exam-
ples include Gram-Schmidt and covariant Lyapunov vectors
[28,29]. For the present discussion, we assume the elements of
tangent vectors [represented by a ket (column) or a bra (row)]
are real. If the dynamics are Hamiltonian, then according to
Liouville’s theorem, the volume spanned by n of these tangent
vectors is conserved.

Compared to quantum mechanics, Eq. (1) is analogous
to Schrodinger’s equation [5]. The difference is that instead
of infinite-dimensional, complex Hilbert space vectors, here
we are considering classical, finite-dimensional, and real

tangent-space vectors. Continuing this analogy, we can realize
that an alternative representation of quantum states is the
density operator [4,30,31]. The quantum density operator is
used in quantum technology and statistical mechanics and
particularly important for many-body and open quantum sys-
tems [32]. Because of the widespread use of this formulation
in quantum mechanics and to build a statistical-mechanical
theory for open, driven classical systems, we break from tra-
ditional classical dynamical systems by defining the classical
density matrix:

k
E() =) 189 (0O)S¥ (1)) )
i=1

Expressed using tangent vectors |6¥;), the density matrix is
the outer product of tangent vectors (or what Gibbs called
the dyadic product [33]). This unnormalized matrix repre-
sents an alternative state of a classical dynamical system at
a phase-space point. To our knowledge, this classical density
matrix has not been defined previously. For classical many-
body systems in position-momentum phase space, x = (¢, p),
it is a mechanical function of perturbations to positions and
momenta 8¥; = (8¢', 8p;). For example, orthogonal tangent
vectors |8¢,) = +/8¢8p(1,1)" and |8¢,) = /8¢p(1,—1)T,
the density matrix of any Hamiltonian system with one degree
of freedom (e.g., the harmonic oscillator) is & = 8¢ép 1oy,
where 1,,«, is the n x n identity matrix.

The dynamics of the classical density matrix involve a
classical commutator and anticommutator. Partitioning the
stability matrix A = A, + A_ into its symmetric and antisym-
metric parts, Ay = (A £ A7), the time evolution of &,

dé§

5 = AL tIA-EL (€)

is a purely classical analogue of the Liouville-von Neumann
equation in quantum dynamics. Its solution,

E(t) = M(t, 10)Et0)M ' (1, 1o), “

is in terms of the propagator, (M), = dx'(1)/dx/(ty) when
& is built from the tangent vectors {|6x')} evolved by M,
Appendix A. While it is generally nonsymmetric, the stability
matrix A plays the role of the quantum mechanical Hamil-
tonian in the classical commutator [X,Y] =YX — XY and
anticommutator {X,Y} =YX + XY.

What stands out about the evolution of the density matrix is
that its dynamics are entirely computable from standard meth-
ods in dynamical systems theory (viz., Lyapunov vectors)
[20]. Figure 1 shows the evolution of a normalized Lyapunov
vector on the Lorenz attractor that follows Eq. (3). This
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classical density gives a geometric representation of deter-
ministic, mechanical systems that leads to a generalized form
of Liouville’s theorem and equation governing the dynamics
of compressible phase-space volumes. While the dynamics
of the harmonic oscillator are conservative, the connection
between the density matrix and phase-space volume is clear:
the density matrix & = §qép 1,4, has a trace 25¢Sp and de-
terminant (8¢8p)” that are directly related to the phase-space
volume, dV = 848 p.

A. Generalization of Liouville’s theorem

From the equation of motion for the classical density
matrix, we can show the determinant of & is directly re-
lated to both Liouville’s equation and theorem. Liouville’s
theorem and equation are the foundation for nonequilibrium
statistical mechanics [1,8,9] and the point at which statisti-
cal mechanics typically departs from classical Hamiltonian
dynamics. However, the density matrix here leads to gener-
alized forms of Liouville’s theorem and equation that hold for
non-Hamiltonian systems, systems that may be open, closed,
passive, or driven.

To establish this connection between the density matrix and
a generalized version Liouville’s theorem, consider a com-
plete set of linearly independent tangent vectors {§¥;}. The set
spans the entire n-dimensional phase-space volume, d}, and
with an associated unnormalized density matrix & [i.e., k = n
in Eq. (2)]. Regardless of the state space variables, the (square
of the) phase-space volume is determined by the determinant
|&|, which has the equation of motion (Appendix B):

1d ;
Ealn|§(z‘)| =V.x=TrA; = A. (5)
Both this equation of motion and its solution,
6] = [0 o MO, (©)

depend on the divergence of the phase-space velocity x or
the phase-space volume contraction (expansion) rate A =
TrA, = TrA. The determinant |§| of the density matrix, which
is a potentially mechanical function, has an equation of mo-
tion that is similar to the equation of motion for the statistical
density [34]. In both equations, the phase-space contraction
rate A is the sum of the Lyapunov exponents [8], which can
be related to physical quantities. For example, the phase-space
contraction rate is related to the entropy flow rate in fluid
transport [8]. It is also related to the thermodynamic dissipa-
tion for systems in nonequilibrium steady states, provided the
dynamics are subject to a deterministic thermostat [35].

Now, we can identify the absolute value of the density
matrix determinant as the volume of an element of state space,
|€|'/?2 = dV. Because the density matrix is well-defined for
physical systems that are open, both at the microscopic and
macroscopic levels, their phase-space volume element need
not remain conserved with time and will generally evolve
according to Eq. (6). Traditionally, the geometric interpreta-
tion of Liouville’s theorem is that the velocity field x has
zero divergence: V -x = Tr(H) = 0. As a consequence, the
phase-fluid flow is incompressible, phase-space volumes are
conserved dV(t) = dV(ty), and A = 0. That is, from the de-
terminant, we can see Liouville’s theorem and equation from
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FIG. 2. For the Lorenz-Fetter model, the trace of the unnormal-
ized density matrix, &;(¢) [see Eq. (2) for k = 1], as a function of time
fori =1, ..., 100 tangent vectors. Each vector is a local perturbation
with elements sampled from a uniform distribution. The inset shows
the evolution of |&,(¢)|. For each tangent vector, we express §; in
terms of its complete set of linearly independent basis vectors. The
determinant in each case decays at rate given by instantaneous Lya-
punov exponent (A, ). An example of a normalized tangent vector
evolving on the Lorenz attractor in Fig. 1 is shown in blue. The trace
and determinant of the normalized density matrix g (inset) are time
invariant (dashed).

the stability matrix H for a dynamics with Hamiltonian H.
However, in dissipative systems we must account for this
compressibility of the state-space volume, dV(t) # dV(1p).
This observation suggests that Eq. (6) might lead to a general-
ization of Liouville’s theorem for non-Hamiltonian systems.

The volume element dV(t) spanned by a set of
basis vectors has a coordinate transformation: d)V(t) =
M (t, ty)| dV(tp). Combining this fact with the determinant of
Eq. (4), we obtain a generalization of Liouville’s theorem in
terms of the classical density matrix:

£ 2 d V() = E(t0)| 2 dV (10). (7

. _1
Any dynamics conserves the measure, |§]72d) or

e o MOV g V. For dissipative systems with A < 0, volumes
contract at a rate TrA. In the Lorenz-Fetter model, for
example, A is constant, so |&| decays linearly on a semilog
scale with a slope proportional to 2TrA as shown in Fig. 2.
Dynamical systems that are open, exchanging matter or
energy with their environment, or driven by external fields
will have a density matrix that varies in time and a determinant
that satisfies this version of Liouville’s equation. When the
dynamics are Hamiltonian, we recover the conventional form
of Liouville’s theorem for phase-space volumes [2] because
A = 0. That is, for Hamiltonian dynamics, the determinant of
the unnormalized density matrix, |&|, is a constant of motion.

With the determinant of the density matrix giving Liou-
ville’s theorem, we can consider exactly how this matrix is
related to the geometry of phase space. The connection comes
from Riemannian geometry. Equation (7) is the transforma-
tion of a metric determinant on a Riemannian manifold of
an arbitrary curvature and endowed with a covariant metric
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tensor g;. So, we would expect the density matrix to be re-
lated to this metric tensor. As we show in Appendix B, the
determinant |£| is equal to the metric determinant, and the
inverse of the unnormalized density matrix, £, is similar to
the (covariant) metric tensor, g;.

Metrics have been considered previously in nonlinear dy-
namics and the statistical mechanics of non-Hamiltonian
systems [36—41]. However, these previous approaches do not
involve the classical density matrix we define here. Instead,
they require finding the metric factor (the square root of
the metric determinant) by solving a generalized Liouville’s
equation [41], which can be challenging. Again, this metric
factor is used to define a volume form, which is invariant
under the compressible flow. Here, because the inverse of
the determinant of the classical density matrix |&|~! is equal
to the metric factor g¢ (with £! similar to 8;). this density
matrix approach avoids solving Liouville’s equation to obtain
a metric factor compatible with the flow. Instead, one can
compute the matrix & itself to determine the factor over time
from numerical simulations of Lyapunov vectors.

B. Generalization of Liouville’s equation

Several results follow from our identification of the rela-
tionship between the density matrix and the metric tensor.
Most immediate is that Eq. (7) becomes the transformation of
the metric determinant: ,/g:(t)dV(t) = ,/g:(to)dV(to) with
gt = |E7!|. This is a general form of Liouville’s theorem,
which is general in the sense that it is valid for non-
Hamiltonian systems, relating the metric determinant [37,41]
to a geometric property of phase space.

What traditionally follows from Liouville’s theorem is Li-
ouville’s equation, a formally exact equation of motion for the
probability density in phase space [1]. This equation derives
from another statement of Liouville’s theorem: the density of
representative points in the phase space is conserved along
the trajectories of Hamiltonian systems, d,p(x) = 0 [2]. By
contrast, we have defined a classical density matrix—a func-
tion of mechanical variables—in terms of Lyapunov vectors
that describes the time evolution of phase space volume, not
the statistical density [34]. Nevertheless, the classical density
matrix gives a generalization of Liouville’s equation, as we
show in Appendix B.

With the similarity of the unnormalized density matrix and
the metric tensor, the flow compressibility accounts for the
metric’s compatibility with the dynamics [41], —d; In V8 =
(n/2)d; In Trg‘,;I = V . x. By identifying the density matrix
as similar to the dual metric tensor, gg', we can also find
this compatibility condition as the equation of motion for the
metric determinant, Eq. (5), and TrA ;. Therefore, |§|’% obeys
the generalized Liouville’s equation

d . 1 1o
5'8 +V.-(l§72x) =0, 3)

for the evolution of the classical density matrix |£|, defined in
terms of the perturbations of state-space variables.

While this Liouville equation applies to non-Hamiltonian
systems, the equation of motion reduces to a simpler form
if the dynamics are Hamiltonian. For Hamiltonian dynam-

ics, the metric determinant |§|~! is time independent and the
divergence of the flow vanishes, dV(t) = dV(ty) from Eq. (7).
We also find:

8 1 1
g2+ x-VI|E[ 2 =0, 9

an equation that is similar to the well-known form of the
Liouville equation, with statistical density replaced with the
determinant of &.

The metric tensor, & and the density matrix, 5_1, are
related by a similarity transformation, so their determinants
are equal. The determinant |&| can be a mechanical function
because the matrix & is determined by linearly independent
tangent vectors forming a complete basis set at a given phase
space point. It is the phase space volume squared |&| =
(8¢8p)* for two-dimensional Hamiltonian systems described
by & = 3g5p 1,42, where 1,4, is the n x n identity matrix.
The basis tangent vectors define a locally conserved phase
space volume at each of the phase-space point. We discuss
an important set of basis vectors for Hamiltonian systems
in Sec. IIIB. As the density matrix & can be constructed
locally using the tangent vectors, it makes the metric tensor
numerically computable (up to a similarity transformation)
and avoids having to solve the generalized version of the
Liouville equation [41]; preserving time-reversibility of the
Liouville equation can be a challenge in numerical solutions
[42].

C. Poisson brackets

While we have focused on the determinant of the un-
normalized density matrix, its trace also appears in the
compatibility condition, Appendix Eq. (B17). Analyzing the
trace, we also find connections to classical dynamics, well-
known quantities in dynamical systems. Because of their use
in quantum-mechanical expectation values, one might expect
traces to also quantify useful observables in this classical
setting. Here, the dynamics of & = Zf;l [8Y;{8;| are not
trace preserving, but if & is built from a perturbation to a phase
point, its trace yields the magnitude of the perturbation. So,
the trace over & does give us a new perspective on a well-
known quantity with physical implications, such as Lyapunov

exponents.
The rate of change of Tré,
ldT«S 1T{A £} =Tr(§A;) = (A4) (10)
——Trf = -Tr{A,, & =Tr = ,
2dr 2 " e

is set by (Ay)s, a quantity related to the instantaneous
Lyapunov exponents [20], which are a measure of local
(in)stability. We show in Appendix A that Tr(§A ) = (A4 )e.
Defining (A, ) = (A)¢/Tré, the solution to this equation of
motion is

Teé(t) = Tré(tg )& oA+ 4" (11)

(In the next section, we identify the quantity (A;) as the
instantaneous Lyapunov exponent.)

To numerically verify this result, and others, we simu-
lated the dynamics of Hamiltonian and dissipative dynamical
systems. As a prototypical dissipative system, we chose the
Lorenz-Fetter model. Figure 2 shows the time evolution of
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FIG. 3. (a) The trace of the unnormalized density matrices for a regular (blue) and a chaotic orbit (red) for the Hénon-Heiles system.
The trace of the normalized density matrices is time invariant (gray). The inset shows the equipotential surface (and lines) for the potential
V= %(x2 +y2 4+ 2x%y — §y3). Line colors in (a) correspond to those of the equipotential lines. (b) Schematic illustration of the neighborhood
of point P along a trajectory I'(¢) through phase space M with the associated tangent space 7 M and conjugate vectors, VH and x. (c) Pair of
instantaneous Lyapunov exponents (ILE) for the regular with £ = 0.0833 (blue) and a chaotic orbit with E = 0.1667 (red).

the trace for a chaotic orbit for 100 random perturbation states
drawn from a uniform distribution. The rapid increase in Tré,
(on the semilog scale) is indicative of the chaotic nature of the
chosen orbit.

For Hamiltonian systems, the equation of motion for the
trace can be expressed as a Poisson bracket. In classical
statistical mechanics, a dynamical variable, f(q, p), can be
expressed as f = {f, H}p, in terms of the Poisson bracket,
{.}p. Combined with our result above, this fact gives a corre-
spondence,

Tek = 2(H. )¢ = {Tik, H}p, (12)

between the Poisson bracket and an average (H,)g of the
symmetric part of the stability matrix H ... For example, for
an arbitrary perturbation (8¢, 8p)", in the phase space of the
harmonic oscillator, Tr& = §q2 + 8p? [where & here is from
Eq. (2) with k = 1] and Tré = {Tr€, H}p = 28¢8p(1 — w?),
where o is the oscillation frequency. As another example,
Figure 3(a) shows Tr & for the classical Hénon-Heiles system
on a regular and chaotic orbit (with & built from a single
perturbation vector).

III. DYNAMICS OF THE CLASSICAL NORMALIZED
DENSITY MATRIX

So far, we have shown that the density matrix is similar to
the phase space metric, thus defining the underlying geometry,
with its determinant being the phase space volume element.
However, the key results differ in some respects from their
analogues in quantum mechanics. For example, the dynam-
ics of & are not norm-preserving, while the norm-preserving
dynamics of Hilbert state vectors are a basic postulate of quan-
tum mechanics. To sharpen the correspondence with quantum
mechanics, we can derive a norm-preserving dynamics for
the classical density matrix. These dynamics for the normal-
ized density matrix (and its properties) have implications for
classical statistical physics. In particular, this normalization
permits the definition of averages that define observables, such
as instantaneous Lyapunov exponents.

To derive the dynamics of general, classical systems, we
consider a unit tangent vector to the state-space variables
|6u) = |6x)/||6x||, where ||.|| is the £, norm. The vector has

the equation of motion

%I&t) = (A4 +A_)[0u) — r|du), 13)
containing a source (sink) term with the instantaneous rate:
r:=r(t) = (Su|A;|du) = d; In||6x(¢)||. This rate is the in-
stantaneous Lyapunov exponent (or local stretching rate) for
a linearized dynamics, which is related to the finite-time Lya-
punov exponent,

t
M) = A, 1) = |t —to] 7" / r(t)dt. (14)
to
The maximum instantaneous Lyapunov exponent is also re-
ferred to as reactivity—the maximum amplification rate over
all perturbations [43]. Even asymptotically stable systems
with this instability can exhibit transient behavior [44] in
response to external stimuli [45]. In the long-time limit, the
time average of this expansion rate is the Lyapunov exponent,
A = lim;_, » A;(¢), which is independent of initial conditions
[46].
As before, we represent the state of the dynamical system
x = F as a density matrix. But now, we express it in terms of
a unit tangent-space basis {|6¢);}). Normalizing each |5¢);) =
¢i|6¥;), we can define the pure states with the expected prop-
erties: @7 = @;, Tro; = 1, Tr@? = 1, symmetric, o; > 0, i.e.,
0; 1s positive semidefinite. Proving these properties requires
the dynamics of g; to be norm preserving. We refer to this
normalized density matrix g as a perturbation state,

_ D iy
€0 = gy =€ L ARV (19

which is directly related to the unnormalized & with
Tré = Zle ¢} = C, so Trg = 1. The tangent-space average
(6@|lo|d¢) over the unit basis is analogous to the quantum-
mechanical probability of finding the system at |§¢) given
that its state is g; for example, if all tangent space directions
contribute equally then (5¢|o|6¢) = k~!.

With these normalized states, we can define tangent space
averages that are physical observables. For instance, the en-
tropy production for thermostatted systems [35] is related to
the phase-space contraction rate, which derives directly from
the density matrix. Consider a maximally mixed state o™ for
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k = n and n phase space dimensions. If the state is maximally
mixed [4] with ¢; =1 Vi, then Tré = k. The phase-space
volume contraction rate can be expressed as a tangent-space
average of A over g,

A=A =TiA Q") =n"" ) TrAre).  (16)
i=1

where each of the instantaneous Lyapunov exponents is also

a tangent space average of A over pure basis states g;: r; =
(A),, = Tr(A 0)).

The normalized state (pure or maximally mixed) evolves in
time according to
de

i {Ay, 0} +[A_, 0] —2ro, a7

another classical analogue of the von Neumann equation in
quantum mechanics. From this equation, we see that the av-
erage of A, at each instant of time, i.e., the instantaneous
Lyapunov exponent, is crucial to norm preservation. It offsets
the stretching and contraction of |§u) due to A along a given
trajectory. Solving this equation of motion, we find the density
matrix g at time #y and at a later time ¢ are similar:

o(t) = M1, 10)a(te)M (1. 19), (18)

when g is composed of vectors {|su’)} evolving in time under
M. Regardless of the underlying dynamics, we can define
the norm-preserving evolution matrix M := MT. It is gen-
erally non-orthogonal with |M| = 1, making it a unimodular
matrix that generates volume-preserving transformations, Ap-
pendix A. The matrix I' has the inverse expansion factors
16 (to)|I /118x(2)|| = e~ %~ on the diagonal.

A. Generalized Liouville’s theorem and equation

Imposing a norm-preserving dynamics not only normal-
izes the density matrix, it also reinstates the original form of
Liouville’s equation for non-Hamiltonian dynamics. To see
this result, we again take the basis to span the phase space
k — n, i.e., a complete basis. As must be the case for a norm-
preserving dynamics, the magnitude of perturbations do not
evolve with time and Tro(¢) = Tro(fy) = 1. The preservation
of the trace Tr ¢ follows from Eq. (17), which shows Tro = 0
because Tr{A ., o} = 2r. However, both the trace and the de-
terminant

le(®)] = le(1)] 19)

are similarity-invariant constants of motion, Figs. 2 and 3.
Defining the metric tensor g, such that its determinant g, =
lo~!], the conservation of the determinant is another form of
Liouville’s equation for non-Hamiltonian systems,

0 . 1
5""_% L%-V]e|: =0, (20)

in terms of @. The compatibility condition of the metric
is 8,@4—5: . Vﬁ = 0. For Hamiltonian dynamics, this
condition has the same form as that of g¢, Appendix B,
and the well-known Liouville equation for statistical density.
However, this generalization using the normalized matrix @
(and the compatibility condition for g,) is valid regardless of

whether the dynamics are Hamiltonian or not and has a form
that is similar to the usual Liouville’s equation.

Imposing norm-preserving dynamics and normalizing the
density matrix also reinstates the form of the traditional Li-
ouville theorem for non-Hamiltonian dynamics. With these
norm-preserving dynamics, the generalized Liouville theorem
in Eq. (7) becomes |T'|dV(t) = [M||T|dV(ty) = |M|dV(ty) =
dV(ty) and we can recognize |T'|? = |&(to)|/|&(t)|. Geo-
metrically, the generalized Liouville theorem here is that
scaled phase-space volumes are conserved under the norm-
preserving evolution of a perturbation state with a basis that
spans the n-dimensional phase space. This generalization of
Liouville’s theorem is not limited to Hamiltonian dynamics,
however. In the phase space of non-Hamiltonian systems, any
part of the initial volume lost (or gained) in the course of the
dynamics is continually and entirely compensated for by the
expansion (contraction) of the volume. As a result, the scaled
volume |I'|dV is conserved for the n-dimensional phase space
of any dynamical system.

B. Basis representation

In quantum statistical mechanics, the choice of basis pro-
vides an explicit matrix representation of the quantum state.
Here, there are also natural sets of vectors one might choose
for the classical state in the tangent space: @ and &. In dynami-
cal systems theory, it is common to analyze Lyapunov vectors,
such as Gram-Schmidt vectors [47,48]. More recently, how-
ever, there has been an interest in covariant Lyapunov vectors
[28]. Based on early work [49], Lyapunov vectors with small,
but finite, exponents are hydrodynamic modes that charac-
terize macroscopic transport [50,51]. Any of these sets of
(possibly dimensionless) vectors can be used to construct
classical density matrices.

There are other choices for basis vectors that are natural
to the nonlinear dynamics and give another connection to
Liouville’s theorem. For example, Hamiltonian systems have
special tangent space directions associated with conserved
quantities. On a constant energy manifold, for example, there
are two conjugate tangent directions: the phase velocity x
and the gradient of the Hamiltonian VH, Fig. 3(b). They are
related as x = RV H through the Poisson matrix €, orthogo-
nal to each other, VH - VH = 0, and have equal magnitude
lx|l = IVH|| through Hamilton’s equations. The vector VH
is also orthogonal to the constant energy manifold and used
to define the invariant measure [8]. In general, the vector
sets defining the density matrices here need not span the
whole phase space. So, forming density matrices from each
conjugate vector, we can find the pure states, 0; and ggvy-
These conjugate pure states in the tangent space for a two-
dimensional Hamiltonian system are

.2 ..
12 q pPq
xlfor=13:. “3),
1“0y <pq pz)
.2 ..
VH|?ovy = .. _!"1). 21
I I"evy (—pq qz 2D
These states are formed from the outer product of the
unit tangent vectors, |[8¢;) = [x[|7'(¢, p)" and |S¢yy) =
IVH| " (—p, )T, where |ik]? = [VHIP = j* + 4. Both
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density matrices have a unit trace and are related by o, =
Qoyy .

These particular density matrices also have a (lower dimen-
sional) parallel with Liouville’s theorem. Liouville’s theorem
can be thought of as an equivalence of the divergence of the
phase flow, the trace of the Jacobian, and the intrinsic rate:
d;1IndY =V -x =nTrleHx)], for g =n~' Y7 [5¢; )51
There is a similar equivalence for the instantaneous Lyapunov
exponents of x and VH. For a two-dimensional Hamiltonian
system, these take the form

din|x|| _ g-p (p)
:_—V' . :Tr XH )
dt ||x||2 q (Q +)
din|[VH|| _ —q-p p
- vapY (§) =T, e

denoting the dimensionless phase point point x = (¢, p). Un-
like, the intrinsic rate of the volume element §) = §gdp that
appears in Liouville’s theorem, these instantaneous Lyapunov
exponents are not zero—they are related to the divergence in
a common direction (p, ¢)" that is a reflection about p = 4.
Instead, they are conjugate, so they sum to zero. To illustrate,
we show the instantaneous Lyapunov exponents in the tangent
space directions computed from Eq. (22) for the Hénon-Heiles
systems in Fig. 3(c). A vanishing sum of instantaneous Lya-
punov exponents corresponds to conservation of phase space
volume.

IV. CONCLUSIONS

Liouville’s equation and theorem are the foundation of
statistical mechanics established by Gibbs, Maxwell, and
Boltzmann. Boltzmann, for example, approximated Liou-
ville’s equation to derive his H theorem for irreversible
processes, making an assumption of molecular chaos. Here,
we have established a density matrix formulation of dynam-
ical systems that explicitly and quantitatively accounts for
measures of local instability and chaos, Lyapunov exponents,
and the phase-space contraction rate associated with dissi-
pation. The classical density matrix defines a phase-space
geometry of the deterministic dynamics and gives a means
of computing statistical mechanical observables such as en-
ergy dissipation. Through this connection, we could derive
generalizations Liouville’s theorem (equation) for any differ-
entiable dynamical system. Many dynamical systems are not
Hamiltonian, including those that are dissipative, nonsteady,
and driven, for which the Liouville’s equation (theorem) here
still apply. And when the dynamics are Hamiltonian, these
generalizations reduce to the traditional forms of the Liou-
ville theorem and Liouville’s equation. We have shown they
derive from the properties of classical density matrices, which
themselves evolve under an equation of motion akin to the
von Neumann equation at the foundation of quantum statisti-
cal mechanics. From these results, the generalized Liouville
equation becomes numerically computable and, thus, a new
basis for analyzing classical speed limits on observables [52],
the spread of perturbations, and the transport of density in
dynamical systems.
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APPENDIX A: EQUATION OF MOTION FOR LYAPUNOV
VECTORS

Consider the time evolution equation of a generic, infinites-
imal perturbation |8x) € T M,

d
77 10% (@) = A(x)[0x(1)), (AL)

governed by the stability matrix of the system, A. Using the
time-ordering operator 7, perturbations propagate as
8x(1)) = M(t, 1)|8x(t0)) = Toela* " 5xt0)).  (A2)

The evolution operator or Jacobian matrix [M(t, to)]ij =
0x'(t)/dx/ (ty) has the equation of motion:

aM M
— =AM or A=—M"" (A3)
dt dt
The determinant obeys Jacobi’s formula:
d aM
—IM| = M|Tr( —M ") = |M|TrA. A4
7 tl | = M| r( 7 ) |M|Tr. (A4)

Each |6x) € T M has a corresponding (6x| € T .M. To find the
dynamics of the dual vector (§x(¢)|, we partition the stability
matrix A = A} +A_ into its symmetric and antisymmetric
parts, AL = %(A +AT). Dual vectors then evolve according
to

%(SX(I)I = (8x()I(AL —A-).
Together, the equations for the motion of tangent vectors
and their dual define the nonunitary dynamics of |6x) in the
tangent space, (8x(t)|8x(t)) # (5x(t)|5x(ty)).

The time evolution of a unit Lyapunov vector |§u) in the
phase space of a dynamics system,

(AS5)

d

Z|8u) = A, |Su) +A_|du) — r|éu), (A6)
has an additional source (sink) term with the instantaneous
Lyapunov exponent r = (A, ) = (Su|A|Su). The solution is

|8u) = (MT)|8u(ty)) =: M(t, 10)|8u(ty)). (AT)

For any dynamics through the state space, the norm-
preserving evolution operator M := MT is not necessarily
orthogonal but |[M| = 1. The matrix T has the inverse expan-
sion factors [|8x;(to) ||/ ||6x;(t)|| = e~ on the diagonal.

The equation of motion for (Su|,

d
(Ou| = (5ulA 4 — (SulA_ — (A, )dul,

o (A8)
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has the solution
(Su| = (Su(ty)|(MT)" =: (5u(to)|MT(t, f)- (A9)

The equation of motion for density matrices follow from
these results for tangent vectors. In the main text, we consider
basis sets that span the n-dimensional phase space, defining
the unnormalized

k k
E=D 18YN0¥ =) c]log )Xo, (A10)

i=1 i=1
evolving as

k

d§ d d
=2 (Gewa ) ow + v (5w

i=

k
= ZA+|8¢[(t)><8¢i(t)l

i=1

k
+ DAY NS 0)]

i=1

k
+ ) 18YONSY ()AL

i=1

k
— ) Y ONSY()IA -

i=1
—AE+A E+EA, —EA_
={A, & +[A_,8],

where we used Eq. (A5) and Eq. (A1).
Normalizing &, we obtain the matrix:

k k
o) =C""Y clo;=C"" > cF1sp )l (AlD)
i=1 i=1

Here, C = Tré = Zf: , ¢7. Each pure state g, evolves as

de; _ i
2 = 7, 18981

dt
d d
=18\ — (5. —180.) | (5.
| ¢’><d;< ¢l|> + (dtl ¢,>>< &l
=0AL —QA_+A, 0 +A 0 —2rg

={AL,0;} +[A_, 0] — 2ri0;. (A12)

APPENDIX B: GENERALIZED LIOUVILLE THEOREM
AND EQUATION

For the unnormalized density matrix &,
In|é| =Trlné& (B1)

follows from the identity In |C| = TrInC between the trace
and the determinant |.|. Assuming & is invertible, taking the
time derivative

AP Y
Eln|§|_Trdtln§_Tr<§ dt>’ (B2)

and using Eq. (3), we find the generalized Liouville’s equa-
tion in the main text:

%111 & =Teg (A, &} +[A_. &) =2TrA,.  (B3)
To see that this result is a generalization of Liouville’s equa-
tion requires recognizing that the phase-space volume element
is dV =dx' A--- Adx". The determinant of the Jacobian
M governs its coordinate transformation under the action
of the dynamical equations: dV(t) = |[M(t, ty)|dV(ty). Equa-
tion (7) follows from the determinant of Eq. (4): |&(¢)| =
IM(t, 10)|*|&(10)].

Treating the phase space as a general Riemannian manifold
endowed with a (contravariant) metric tensor g; ', we identify
this metric tensor as similar to the unnormalized density ma-
trix &. To see this relationship, consider two arbitrary ordered
bases |6¥;(fo)) and |§¢,(¢)) stacked in matrix columns,

W= W(t) = (189 (t0), - -, |89,(t0)] (B4)
V(@) =8¢, (1)), -+, 18Y,(D)], (BS)

and related by W' = MW. In these bases, we can represent the
transformation of the unnormalized density matrix:

E) =WV =MWV 'M" = ME(to)M . (B6)

However, the linear transformation ¥ — ¥’ is also obtained
by a change-of-basis matrix P as W' = WP. The Jacobian M
and P are related by a similarity transformation:

P=Vv"'MV. (B7)

One can then view P and M as propagators expressed in
different bases that represent the linear transformation of
W — W forward in time. The Jacobian matrix M comes with
a natural coordinate basis, {3/dx'}. By constructing another,
more convenient basis through the density matrix, the dynam-
ics are governed by P. That P is similar to M implies P — M
when the density matrix is expressed in the coordinate basis.
The contravariant metric tensor ggl transform as

ggl(t) =V =P ¥ WP =PTg;1(z0)P, (B8)
and the covariant metric tensor gg(t) transforms as
(1) =P~ 'gg(t)P™". (B9)

It follows from these relationships that & and g;l are similar:

Ve W =W T = g;‘(t). (B10)
If W = MW = WP with P = ¥~'MV, then
&) =V EO) W =P g (10)P. (B11)

The linear independence of the basis vectors in ¥ guarantees
it is invertible.

For a general Riemannian manifold, the volume n form
determines the invariant volume element dV in an arbitrary
coordinate system: d V= \/g_gd V), where g; is the determinant
of the covariant metric tensor g;. From Eq. (B10), g is similar

to &1
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Furthermore, Eq. (5) provides the compatibility condition
of the metric tensor with the flow:

d

“In|§| =2V %,

- Inlgl X

d

— & = 2|£|V - %,

61 =21V x

1 s d i
—1&7—|&| = |&]2V - X,
SIEIE el = 18]V -
Lt = gty s (B12)
dt o ’

We can express this relation in terms of the metric determinant
[37]:

d .
V8= /&Y X,

/8 . .
\a/_l‘_+xV\/g_§:—\/g_§Vx’

9
S VE V() = 0.

Replacing g¢ by |&|~!, we obtain the generalized Liouville
equation:
9 .1 _1.
E(ISI )+ V- (§72x) =0. (B13)
For Hamiltonian dynamics, the metric is time independent
because of the vanishing flow divergence:
i _1
E(IEI 2)+x- Vg2 =0. (B14)
By introducing a norm-preserving dynamics and a nor-
malized density matrix, the form of the generalized Liouville
equation is identical to the traditional Liouville equation.

Defining the metric determinant g, = lo|~", the conservation
of the normalized density matrix g,

d
—1 =0,
7 n|g|

is equivalent to the generalized Liouville equation:

d | d

_— T2) = — :O’
dt(lel 2) dt«/gg

9 oI5 + - VioI~t =0
ar 0o 0 =0,

0 ;

g(x/gg') +x-V. /g8, =0. (B15)
The Liouville equations for & and g are related. Taking the

determinant of Eq. (15), we find

8l _ -
lo| = (TE)"’gQ = g¢ (Tr&)",

V8 = /8 (Tit)*.

n
In /g, =1n /g + 3 In(Tré). (B16)
Recalling that g, is time independent, the ratio |&|/Tr&" is a
constant of motion for any dynamical system.
It is also possible to express the compatibility condition
using the trace of ggl:

d nd
——1 =—-—In(Trg;) =V - x. B17
dt n8: 2 dt n(Tige) ¥ B17)
For the normalized density matrix @ of the form o(¢) =
n~! Y i, 0;(t), we have averages similar to those in quantum
mechanics. For example, the average

Tr(Ai0)=n"')Y Tr(Are)=n""> ri=n""TA,,
i=1 i=1

(B18)

where r; is the instantaneous Lyapunov exponent for the ith
basis state. This average is related to the divergence of the
flow: V- x = nTr(A ).
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