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Topological origin of the protein folding transition
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In this paper, a geometrical and thermodynamical analysis of the global properties of the potential energy
landscape of a minimalistic model of a polypeptide is presented. The global geometry of the potential energy
landscape is supposed to contain relevant information about the properties of a given sequence of amino acids,
that is, to discriminate between a random heteropolymer and a protein. By considering the SH3 and PYP protein-
sequences and their randomized versions it turns out that, in addition to the standard signatures of the folding
transition—discriminating between protein sequences of amino acids and random heteropolymer sequences—
also peculiar geometric signatures of the equipotential hypersurfaces in configuration space can discriminate
between proteins and random heteropolymers. Interestingly, these geometric signatures are the “shadows” of
deeper topological changes that take place in correspondence with the protein folding transition. The protein
folding transition takes place in systems with a small number of degrees of freedom (very far from the Avogadro
number) and in the absence of a symmetry-breaking phenomenon. Nevertheless, seen from the deepest level of
topology changes of equipotential submanifolds of phase space, the protein folding transition fully qualifies as a
phase transition.
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I. INTRODUCTION

The study of the Hamiltonian dynamical counterpart of
phase transitions (PTs) combined with the geometrization of
Hamiltonian dynamics (where the natural motions are identi-
fied with geodesics of suitable Riemannian manifolds) led to
find that, at the roots of the PT phenomena, there are some
peculiar changes of the topology of certain submanifolds
of phase space. More precisely, the relevant mathemati-
cal objects [1] are the potential level sets (PLSs) �VN

v :=
{VN (q1, . . . , qN ) = v ∈ R} in configuration space, and, equiv-
alently, the balls {MVN

v = V −1
N ((−∞, v])}v∈R bounded by the

�VN
v . Both the geometry and topology of these objects can

affect microscopic dynamics and macroscopic thermodynam-
ics of the modeled physical system. In fact, when the ball
MVN

v=E = {(q1, . . . , qN ) ∈ R|VN (q1, . . . , qN ) < E} is endowed
with the metric tensor gJ = 2[E − V (q)]dqi ⊗ dqk , then its
geodesics are the natural motions given by q̈i = −∇ iV (q),
and the geometry of the manifold (MVN

E , gJ ) determines the
properties of order and chaos of the microscopic dynamics
[1–4]. On the other hand, a relationship also exists between
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macroscopic thermodynamics and the topology of the same
objects, MVN

v and �VN
v . For the latter objects this relationship

is expressed by [1]

S(v) = kB

N
ln

1

N!

∫
�

VN
v

dσ

‖∇V ‖

≈ kB

N
ln

[
vol

(
SN−1

1

) N∑
i=0

bi
(
�VN

v

) +
∫

�
VN
v

dσ
t̃ (v)

N!

]

+ 1

N
ln R(v), (1)

where S is the configurational entropy, v is the potential en-
ergy, and the bi(�VN

v ) are the Betti numbers (in one-to-one
correspondence with topology) of the manifolds �VN

v ; thus in
square brackets the first term is of topological meaning and
the second term is a smooth function of v as well as the term
R(v). On the basis of Eq. (1) one can infer that major topology
changes with v of the submanifolds �VN

v , associated with
sharp changes of the potential energy pattern of at least some
of the bi(�VN

v ), can affect the v-dependence of the entropy
SN (v) and thus of its derivatives.

Therefore, at least for a broad class of physical systems, it
has been hypothesized that PTs stem from a suitable change of
the topology of the PLSs, �VN

v , and, equivalently, of the man-
ifolds MVN

v , when v, playing the role of the control parameter,
crosses a critical value vc. This hypothesis is at the ground of
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a theoretical framework composed of exactly solvable models
[1,5] and two theorems [6–9] stating that equilibrium PTs
are necessarily induced by suitable topological transitions
in configuration space. Actually, the main advantage of the
topological approach is to provide a deeper insight than those
proposed so far in the literature. More specifically, after Lan-
dau theory [10,11], the emergence of PTs has been associated
with a symmetry-breaking mechanism. However, there are
many examples of systems undergoing PTs in the absence of a
symmetry breaking and thus lacking an order parameter. Some
relevant examples are Kosterlitz-Thouless transitions (after
the Mermin-Wagner theorem) [12], systems with local gauge
symmetries (after Elitzur theorem) [13], liquid-gas transitions,
transitions in supercooled glasses and liquids, transitions in
amorphous and disordered systems, folding transitions in ho-
mopolymers and proteins. Another important limitation of
the existing theories consists in the difficulty of providing
a coherent definition of PTs in small-size systems, that is,
very far from the thermodynamic limit. In fact, the diffi-
culty is due to the so-called thermodynamic limit dogma, a
consequence of the Yang-Lee theorems [14,15] showing that
the loss-of-analyticity of thermodynamic observables—which
characterizes PTs—is only possible in the thermodynamic
limit (N → ∞).

Therefore, transitional phenomena in systems with a fixed
number of constituents, i.e., intrinsically lacking a thermo-
dynamic limit, can hardly be given a definition consistent
with the one for the systems admitting an N → ∞ limit.
This is, for example, the case of filament to globule transition
in homopolymers and of the protein folding transition. Only
recently, Bachmann proposed a consistent and powerful def-
inition of PTs in the microcanonical ensemble for finite-size
systems [16–18]. A complementary microcanonical classifi-
cation of PTs for systems admitting the thermodynamic limit
has been proposed in Refs. [13,19,20]. These classifications
are very useful tools for investigating the thermodynamic
properties of systems in the microcanonical ensemble in-
dependently of the size of a system. However, these are
essentially phenomenological approaches seemingly calling
for further explanatory steps. In this context, the topologi-
cal approach aims at providing a possible explanatory step
forward also on this point. In fact, phase transitions that are
experimentally observed in finite or small systems are the-
oretically at odds with the thermodynamic limit dogma, but
while thermodynamic observables cannot display nonanalytic
energy or temperature patterns at finite N , this is not true
from the topological viewpoint. This is well evident in the
case of systems for which unequivocally sharp signatures of
a phase transition are displayed by an analytically computed
topological invariant (the Euler characteristic), as in the case
of the XY -mf model [21] and of the p-trig model [22]. The
aim of the present work is twofold. On the one side, we aim at
applying the topological approach to PTs occurring in systems
with a constitutively small number of degrees of freedom, that
is, much smaller than the Avogadro number. In fact, PTs are
experimentally observed also in nanoscopic and mesoscopic
systems, that is, at very small numbers of degrees of freedom,
a circumstance which is theoretically at odds with the thermo-
dynamic limit dogma stemming from the Yang-Lee theory.
A representative example of PT in a small-N system is the

protein folding transition. Therefore, this is a reason to tackle
it as a test bed for the topological description of the origin of
PTs in the case of a small number of degrees of freedom.

On the other side protein folding is a very important and
challenging open question in molecular biology, another rea-
son for applying to this phenomenon the new approach. Even
though the present work has no pretense to contribute yet the
protein folding problem with significant advancement—given
also the simplistic model used—the way of looking at the
protein folding transition proposed in our prospective work
could provide an interesting complementary method to exist-
ing ones, worthy of further attention.

The well-known Anfinsen’s dogma [23] states that, for
small globular proteins, the sequence of amino acids uniquely
determines the native state (i.e., the compact configuration the
protein assumes in physiological conditions). For this reason,
understanding how the information contained in the sequence
is translated into the three-dimensional native structure is at
the core of the protein folding problem. All the naturally se-
lected proteins generally fold to a uniquely determined native
state, but a generic polypeptide does not, and is considered a
random heteropolymer.

Following the line of Refs. [24,25], instead of linking the
folding properties to the energy landscape by locating the en-
ergy minima and the saddles joining them, or by undertaking
the folding funnel approach [26], we focus on global proper-
ties of the energy landscape which can be easily numerically
computed through time averages along dynamical trajectories.

In Sec. II we define the simplified model adopted to de-
scribe the protein dynamics and provide information about the
numerical simulations carried on for two different proteins.
In Sec. III we specify the kind of observables computed by
means of molecular dynamics (MD) simulations. In Secs. IV
and V we discuss why the signatures of the folding transition
detected via geometrical observables probe deeper topological
changes of submanifolds of configuration space. In Secs. VI
and VII the results of numerical simulations and their meaning
are discussed.

II. DEFINITION OF THE MODEL AND MOLECULAR
DYNAMICS CALCULATIONS

Two different proteins have been considered in this work:
SH3 and PYP. For both proteins we generated a Cα-based Gō-
model [27] via the SMOG2 [28] implementation, starting from
the experimental structures obtained from the Protein Data
Bank (1FMK [29] for SH3 and 3PHY [30] for PYP). In this
model, only the Cα atom of every amino acid is considered
and the model potential is given by

U (�,�0) =
∑
bonds

Kr (r − r0)2 +
∑

angles

Kθ (θ − θ0)2

+
∑

dihedrals

K (n)
ϕ {1 + cos [n(ϕ − ϕ0)]}

+
∑

i< j−3

εnative
i j

[
5

(
σi j

ri j

)12

− 6

(
σi j

ri j

)10]

+
∑
i< j

εn-nat

(
σnn

ri j

)12

, (2)
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where �0 is the initial experimental structure, and � is the
current system conformation; similarly, r0, θ0, and ϕ0 are the
reference values for all the bonds, angles, and dihedrals in the
model, while r, θ , and ϕ are their value in the conformation
�. In our implementation the dihedral potential is a sum of
two terms for every four adjacent Cα atoms, with periods
n = 1 and n = 3. The force constants for bonded interactions
in our implementation are Kr = 200ε Å−2, Kθ = 40ε rad−2,
Kϕ = ε, and ε = 1 kJ/mol. In nonbonded interaction, native
contacts are defined as all the Cα pairs that have a mutual
distance smaller than a threshold (here defined as 10 Å) in
the reference configuration �0, and a distance along the chain
of three amino acids. All the pairs that do not satisfy these
conditions are considered as non-native contacts and their
interaction is given only by a repulsive term [last term in
Eq. (2)]. σi j is chosen so that the minimum of the potential
is at the distance ri j measured in the reference conformation
�0, while σnn = 4 Å. Energy terms for nonbonded interaction
are εnative

i j = ε and εn-nat = ε.
We emphasize here that we chose two small globular pro-

teins consisting of a single domain to obtain with a Gō-like
model a satisfactory approximation of their folding transition.
For more complex systems (disordered and/or multidomain
proteins) a finer-grained and more accurate representation
would be needed.

To compare this protein-like model with a polymer model
that does not have a well-defined folding minimum, we gen-
erated two random heteropolymer models starting from the
initial Gō models. We removed from the original potential
almost all the bonded interaction (keeping only the bonds
between the residues), and we scrambled the nonbonded in-
teraction matrices, namely,

URMD(�,�0) =
∑
bonds

Kr (r − r0)2

+
∑

i< j−3

ε̃native
i j

[
5

(
σi j

ri j

)12

− 6

(
σi j

ri j

)10]

+
∑
i< j

εn-nat

(
σnn

ri j

)12

, (3)

where ε̃native
i j is the scrambled interaction matrix.

We named the two systems obtained from the initial SH3
and PYP models RMDa and RMDb, respectively.

All the molecular dynamics simulations were then per-
formed using GROMACS [31] version 2019.6 (compiled in
double precision), with a Langevin integrator, with γ =
1 ps−1, and a time step of 0.5 fs. We initially performed a short
equilibration run (10 ns) to relax and thermalize the structure
at the target temperature. After this initial equilibration, we
performed a 100-ns-long simulation with the same parame-
ters. To exhaustively explore the folding curve, we performed
a large number of simulations at different temperatures (note
that, in a Gō model, energy units, and consequently tempera-
ture units, are arbitrary), namely,

(i) for SH3 we performed one simulation every 0.25 K
between 135 and 161 K, every 1 K between 75 and 135 K
and from 161 to 200 K, and every 2 K from 200 to 250 K for
a total of 229 simulations;

(ii) for PYP we performed one simulation every 0.25 K
between 145 and 160 K, every 1 K between 75 and 145 K and
from 160 to 200 K, and every 2 K from 200 to 250 K for a
total of 196 simulations;

(iii) for the two random energy models, we performed one
simulation every 5 K from 75 to 250 K, for a total of 36
simulations.

From these production runs we computed the gyration ra-
dius using PLUMED 2.5 [32,33], and all the other observables
needed using the GROMACS suite. From the potential energies
at different temperatures we computed the system heat capac-
ity Cv with a multiple histogram method [34].

III. GEOMETRICAL SIGNATURES OF TOPOLOGICAL
CHANGES

To get information on the topology of the manifolds of
interest one has to resort to theorems in differential topology
relating total geometric quantities of a given manifold with
its topology. With “total” it is meant the integral of a given
quantity over the whole manifold. One of the theorems in dif-
ferential topology that can be constructively used is Pinkall’s
theorem which states that [35]∫

�v
V

[σ 2(ki )]
ndη � Vol(Sn)

n∑
i=1

( i

n − i

)n/2−i

bi
(
�v

V

)
, (4)

where dη := dμ/
∫
�v

V
dμ and Vol(Sn) is the volume of the

unit n sphere and, given the potential function of a system,
σ 2(ki ) can be easily computed (see Appendix C) as

σ 2(ki ) = 1

(n − 1)2

(
Tr[(HessV )2]

‖∇V ‖2
+ 〈∇V, HessV ∇V 〉2

‖∇V ‖6

− 2
‖HessV ∇V ‖2

‖∇V ‖4

)
− 1

n − 1

( �V

‖∇V ‖ − 〈∇V, HessV ∇V 〉
‖∇V ‖3

)2

, (5)

where �V and HessV are, respectively, the Laplacian and the
Hessian of the potential function V .

Then, exploiting the equality in Ref. [12], we obtain

〈σ 2(ki )〉η =
[

Vol(Sn)
n∑

i=1

( i

n − i

)n/2−i

bi
(
�v

V

)] 2
n

− r
(
�v

V

)
,

(6)

where r(�v
V ) is a small remainder, we notice that the dis-

persion of principal curvature is related to the sum of Betti
numbers.

Another theorem that can be used is Overholt’s theorem
which states that the range of variability of the scalar curvature
can be used to estimate the range of variability of the sectional
curvatures and it is given by [36]

�(sectional) �
[

Vol
(
SN

1

) ∑N
k=0 bk

(
�v

V

)
2 Vol

(
�v

V

) ]2/N

. (7)

Hence, it turns out that the variations of the topology of �v
V

detected by the Betti numbers can shape the potential energy
profile of �(sectional). By being the scalar curvature of a
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manifold, the sum of all the sectional curvatures, thereby, the
variance of the scalar curvature R(�v

V ) is

�2(scal) =
〈
R2

(
�v

V

)〉 − 〈
R
(
�v

V

)〉2
N (N − 1)

� �(sectional), (8)

where 〈·〉 is the geometric average over the PLS and will be
defined in the upcoming section. The scalar curvature of any
PLS can be written in terms of derivative of the potential
function, i.e.,

R
(
�v

V

) =
( �V

‖∇V ‖ − 〈∇V, HessV ∇V 〉
‖∇V ‖3

)2

−
(

Tr[(HessV )2]

‖∇V ‖2
+ 〈∇V, HessV ∇V 〉2

‖∇V ‖6
− 2

‖HessV ∇V ‖2

‖∇V ‖4

)
. (9)

In the upcoming section, we discuss how to compute, through
molecular dynamics simulations, the dispersion of the princi-
pal curvature and the variance of the scalar curvature.

IV. AVERAGES OF GEOMETRIC OBSERVABLES

In this section, we show how to observe a topology change
computing numerically the geometric average of the disper-
sion of the principal curvature (5) and scalar curvature (9) so
as to prove Pinkall’s (6) and Overholt’s (7) theorems. After
Pinkall’s theorem, the relevant geometric quantity is

〈σ 2(ki )〉geo =
∫
�v

V
σ 2(ki )dμ∫
�v

V
dμ

, (10)

that is, the average of the dispersion of the principal curvatures
on a given PLS, �v

V . Instead, Overholt’s theorem invokes the
following geometric quantity:

〈
Rn

(
�v

V

)〉 =
∫
�v

V
Rn

(
�v

V

) dμ

‖∇V ‖∫
�v

V

dμ

‖∇V ‖
. (11)

A proper combination of this quantity with n = 1, 2, allows
us to compute �2(scal) which is a probe of the topological
variations of the �v

V . At a first glance, it is apparent that these
quantities can be directly computed in the microcanonical
ensemble since dμ/‖∇V ‖ is the microcanonical statistical
measure, i.e., it is the natural ergodic invariant measure for
the microscopic Hamiltonian dynamics. Thus, for any phase-
space-valued function A invoking the ergodic theorem, the
average in Eq. (11) rewrites as [19]

〈A〉 = lim
t→∞

1

t

∫ t

0
A(τ )dτ. (12)

However, our MD simulations have been performed through
GROMACS software in the canonical ensemble. This means that
the numerical computations of averages of the geometric ob-
servables should be performed by evaluating the observables
along the solutions of the simulations, which is equivalent to
computing canonical averages. Hence, from our MD simula-
tions, we have access to the following average:

〈A〉C (n, T ) = 1

Z(n, T )

∫ ∞

0
n e−nv̄/kBT

(∫
�v

V

A
(
�v

V

)
‖∇V ‖ dμ

)
d v̄,

(13)

where the configurational canonical partition function has
been rewritten as follows:

Z(n, T ) = n
∫ ∞

0
e−nv̄/kBT

(∫
�v

V

dμ

‖∇V ‖
)

d v̄, (14)

where dμ is the induced metric on the PLS, �v
V , and V̄ = nv̄,

i.e., v̄ is the value of the potential per degree of freedom.
Let 〈σ 2[ki, X (t ), P(t )]〉t be the time average of the dispersion
of the principal curvatures obtained evaluating Eq. (5) along
the numerical trajectories in our canonical simulations. Then
〈σ 2〉t in turn coincides with the canonical average defined
in Eq. (13) due to the ergodic theorem. Hence, the best ap-
proximation of Eq. (10) in terms of 〈σ 2〉t can be obtained
by recasting the microcanonical measure in Eq. (13) into the
geometric measure. In practice, the numerator in Eq. (10) is
approximated by

〈‖∇V ‖σ 2〉C = 1

Z(n, T )

∫ ∞

0
n e−nv̄/kBT

(∫
�v

V

σ 2dμ

)
d v̄,

(15)
similarly, for the denominator we have

〈‖∇V ‖〉C = 1

Z(n, T )

∫ ∞

0
n e−nv̄/kBT

(∫
�v

V

dμ

)
d v̄, (16)

Now, dividing Eq. (15) by Eq. (16), we get

〈‖∇V ‖
2〉C

〈‖∇V ‖〉C
=

∫ ∞
0 n e−nv̄/kBT

(∫
�v

V

2dμ

)
d v̄∫ ∞

0 n e−nv̄/kBT
(∫

�v
V

dμ
)
d v̄

, (17)

At this step, it is worth noting that, for large values of n,
the canonical measure concentrates around a given potential
level set �v̄(T ), where v̄(T ) is the average potential function
per degree of freedom, and so the largest contribution to
the canonical partition function is given by �v̄(T ), which is
nothing but the equivalence of ensembles.

Hence, this means that, heuristically, in the thermodynamic
limit, the partition function reduces to

Z(n, T ) ≈ n e−nv̄(T )/kBT
∫

�v̄(T )

dμ�v̄(T )

‖∇V ‖ , (18)

and the average in Eq. (17) reads

〈‖∇V ‖
2〉C

〈‖∇V ‖〉C

n→∞−→
∫
�v̄(T )


2dμ�v̄(T )∫
�v̄(T )

dμ�v̄(T )
≈ 〈σ 2(ki )〉geo. (19)

Of course, when the number of degrees of freedom is not
very large, the support of the measure in Eq. (17) is not well
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concentrated, and we can expect some blurring of the curves
〈σ 2(ki )〉(v). It should be stressed that this occurs since we are
evaluating “microcanonical” observables [see Eqs. (10) and
(11)] with “canonical” trajectories. This effect can be simply
eliminated by performing molecular dynamics simulations in
microcanonical ensemble. As we shall see in the following
section, the concentration around the average potential value
v̄(T ) can be observed by comparing Figs. 7 and 8 relative to
the SH3 protein and PYP protein, respectively, considering
that the number of degrees of freedom are nSH3 = 171 for the
SH3 protein and nPY P = 375 for the PYP protein. A further
contribution to the mentioned blurring can also come from the
quantity 〈‖∇V ‖〉C in the denominator.

Instead, the averages of the scalar curvature in Eq. (11) are
given by

〈R〉C (n, T ) =
∫ ∞

0 n e−nv̄/kBT
(∫

�v
V

R
‖∇V ‖dμ

)
d v̄∫ ∞

0 n e−nv̄/kBT
(∫

�v
V

dμ

‖∇V ‖
)
d v̄

, (20)

and for a large number of particles, we have

〈R〉C (n, T )
n
1−→

∫
�v

V

R
‖∇V ‖dμ∫

�v
V

dμ

‖∇V ‖
≈ 〈R〉. (21)

As we shall see in the next section, the outcomes of 〈R〉(v)
are not blurred, and since the denominator 〈‖∇V ‖〉C is here
absent, this seems to confirm the above comment on the
role of this term in blurring the outcomes of the geometric
averages, rather than attributing the blurring to an insufficient
concentration of the statistical measure.

V. THERMODYNAMIC OBSERVABLES AND
METHODOLOGY

The thermodynamic and geometrical observables are
evaluated along the trajectories run at fixed temperatures.
Indicating with 〈·〉 time averages along the trajectories, we
analyze: (i) the radius of gyration Rgyr as a function of the
temperature T ; (ii) the specific heat at constant volume,

CV =
〈
E2

tot

〉 − 〈Etot〉2

N2kBT 2
, (22)

as a function of the temperature, where Etot is the total energy
and kB is the Boltzmann constant; (iii) the relation between
the temperature T and the energy density is

ε = kBT/2 + 〈V 〉/N, (23)

where we recall that V is the total potential field. The units
are the standard GROMACS ones, i.e., [T ] = K, [Etot] = [V ] =
kJ/mol, [Rgyr] = nm, and [k̃B] = kJ mol−1 K−1. We analyze
the src-Src homology 3 protein domain (SH3, PDB code
1FMK) (see left-hand panel of Fig. 1), of 57 amino acids, two
random sequences of the same 57 amino acids (RDMa,b), and
the photoactive yellow protein (PYP, PDB code 2PYP) (see
right-hand panel of Fig. 1) composed of 125 amino acids. We
remark that the simulations are run also for several random
sequences yielding very similar results and only two of them
are reported here for the sake of simplicity. The randomiza-
tion is implemented using the SH3 coarse grained potential
described in Ref. [37] and randomly permuting the parameters

FIG. 1. Cartoon representation of SH3 and PYP.

involved in the model: this way, we can get a sort of random
heteropolymer starting from the good folding sequence of
SH3.

The simulations are performed using the GROMACS soft-
ware [38–43]. Averages and fluctuations are evaluated over
2000 frames for each fixed temperature simulation. The run
temperatures are taken, after some tests, in the folding range
with an interval of 5 K between each trajectory.

VI. RESULTS

In Fig. 2 the radius of gyration is reported for the differ-
ent sequences of the SH3 and PYP proteins, respectively. It
is evident that only the sequences of the good folders SH3
and PYP exhibit the bifurcation pattern typical of the folding
transition. In Fig. 3 the specific heat and the caloric curve are
reported for the SH3 protein and display the typical patterns
of a phase transition. Bachmann’s criterion [16,17] identifies
a phase transition point with the inflection point of the caloric
curve. In our case, the caloric curves are obtained by averag-
ing the total energy of the system, and, the temperature being
an error-free input parameter, after a sufficiently long integra-
tion time, the error on the averaged value of energy can be
made arbitrarily small. In so doing, the inflection point is very
well located. The caloric curve in the upper panel of Fig. 3
displays an inflection point which is absent in the lower panel,
again of Fig. 3, reporting the caloric curve of the random-
ized sequence of the SH3 protein. In particular the inflection
point of the caloric curve is typical of a second-order phase
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FIG. 2. Plots of the gyration radius for the different sequences. It
is evident that only good folders as SH3 and PYP show a temperature
dependence typical of the folding transition (upper panels) that is lost
for randomized sequences (lower panels). TfSH3 and TfPY P identify the
folding transition of the SH3 and PYP proteins, respectively.

FIG. 3. The specific heat and the caloric curve for the SH3 pro-
tein show patterns typical of a phase transition (upper panels). These
features are lost in the case of the randomized version of the correct
sequence of the SH3 protein (lower panels).
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FIG. 4. The specific heat and the caloric curve for the PYP pro-
tein show patterns typical of a phase transition (upper panels). These
features are lost in the case of the randomized version of the correct
sequence of the PYP protein (lower panels).

transition as discussed in Refs. [16,17]. In Fig. 4 the specific
heat and the caloric curve are reported for the PYP protein
and also, in this case, they display the typical patterns of a
phase transition. However, the pattern of the caloric curve—in

concordance with the sharp drop of the gyration radius shown
by Fig. 2—could be compatible with a first-order phase tran-
sition [16–18]. Remarkably, the thermodynamic signatures of
a phase transition, independently of its order, are lost in the
case of the randomized sequences of amino acids, as shown in
the same figures.

In Fig. 5 the total scalar curvature and the total variance
of the scalar curvature of the equipotential level sets in con-
figuration space are reported as functions of the temperature,
normalized to the folding transition temperature, for the SH3
protein. Both quantities show a kink in correspondence to
the folding transition which disappears in the randomized
sequence. The same phenomenology is shown in Fig. 6 for
the PYP protein. By looking at Figs. 5 and 6 where the geo-
metrical quantities 〈σR(�v )〉 and 〈R(�v )〉 are reported, one is
tempted to identify inflection points for the SH3 and jumps
for the PYP as a second-order and a first-order transition,
respectively. However, even though the temperature patterns
of these quantities are neat, these are numerical outcomes
and it is hard to make a clear-cut assessment. From a the-
oretical viewpoint, of course there would be the possibility
of inferring the order of the transition: Eq. (1) suggests that
the behavior of the sum of the Betti numbers as a function
of v affects the order of the derivative of S(v) becoming
singular, and thus the order of the transition. But one would
need the analytic computation of quantities of topological
meaning.

Finally, Figs. 7 and 8 show the dispersions of the principal
curvatures of the equipotential level sets in the configuration
space for SH3 and PYP proteins and randomized sequences,
respectively. This quantity shows peculiar patterns that are
well evident when plotted as a function of the value of po-
tential energy per degree of freedom. These patterns are less
clear when plotted as a function of temperature, although
the presence of cusps can be guessed by means of several
polynomial fits of the points below and above the folding
transition temperature, respectively.

To understand what do we learn from the patterns of the
geometrical quantities reported as functions of the potential
energy and of temperature, let us first consider that the shape
of the specific heat depends on the shape of the entropy
according to the relation Cv = −(∂S/∂E )2(∂2S/∂E2)−1 stem-
ming from Cv = [∂T (E )/∂E ]−1 with T (E ) = (∂S/∂E )−1.
Then, related with the formula reported in Eq. (1), we also
have [1]

SN (E ) = kB

N
ln

∫
�N

E

dμ

‖∇H‖

� kB

N
ln

[
Vol

(
SN−1

1

) N∑
i=0

bi
(
�N

E

) + r1(E )

]
+ r2(E ),

(24)

where r1(E ), and r2(E ) are smooth functions, bi(�N
E ) are the

Betti numbers of the energy level sets, dμ is the measure on
the level set, and SN−1

1 stands for a hypersphere of unit radius.
From this formula it can be understood that some “abrupt”
change in the topology of the energy level sets can affect
both the shape of the caloric curve T = T (E ) and of the
specific heat through the energy variation of SN (E ). Now, the
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FIG. 5. The total scalar curvature and its variance, of equipoten-
tial level sets, are reported as functions of temperature for the SH3
protein (upper panels) and for its randomized sequence of amino
acids (lower panels).

scalar curvature R is the sum of sectional curvatures so that its
variance σR contains the variance of the sectional curvatures

FIG. 6. The total scalar curvature and its variance, of equipoten-
tial level sets, are reported as functions of temperature for the PYP
protein (upper panels) and for its randomized sequence of amino
acids (lower panels).

[13], so that the quantity

�(sec ) >

[
Vol

(
SN

1

) ∑N
k=0 bk (�E )

2 Vol(�E )

]2/N

, (25)
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FIG. 7. The variance of the principal curvatures of the equipo-
tential level sets is reported as a function of temperature (left panel)
and of the potential energy per degree of freedom v for both the SH3
protein (upper panels), and for its randomized version (lower panels).

in strict analogy with Eqs. (7) and (8), detects topology
changes of the energy level sets in phase space. Therefore,
the jumps in the patterns of the total scalar curvature and the
total variance of the scalar curvature reported in Figs. 5 and

FIG. 8. The variance of the principal curvatures of the equipo-
tential level sets is reported as a function of temperature (left
panel) and of the potential energy per degree of freedom v for
both the PYP protein (upper panels), and for its randomized version
(lower panels).

6 just probe some kind of abrupt change in the topology of
the energy level sets. Similarly, and complementary to this,
the potential energy patterns of the dispersion of the principal
curvatures of the equipotential level sets reported in Figs. 7
and 8 probe some kind of “abrupt” change in the topology of
these submanifolds of configuration space, and thus also of
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phase space, after Pinkall’s theorem relating the dispersion of
the principal curvatures of a manifold with a weighted sum of
its Betti numbers, as given in Eq. (6).

Remark

As already mentioned throughout this paper, the precise
relationship between geometry and topology is given by the-
orems in differential topology but only a few number of them
can be constructively used (essentially the Gauss-Bonnet-
Hopf, Chern-Lashof, and Pinkall theorems [35]). However,
sharp changes of various geometrical observables signaling
PTs have been also reported within a purely geometrical
theory [20,44] based on the work in Ref. [45]—also in the
absence of any known theorem connecting geometry and
topology. Sharp changes of geometry of the leaves of a family
of manifolds foliating configuration space can be generically
supposed to stem from their topological changes even when
this fact cannot be proved. Anyway, the use of simple geo-
metrical observables, easier to compute with respect to the
Gauss-Kronecker curvature or with respect to the dispersion
of principal curvatures, can be of practical interest to de-
tect PTs in the absence of symmetry breaking or in small-N
systems. On the other side, recent constructive methods de-
veloped in algebraic topology, namely persistent homology
[46] in the framework of topological data analysis (TDA)
[47], provide a different strategy to constructively detect the
topological origin of phase transitions [48]. TDA and persis-
tent homology have recently been used also in the context
of protein folding [49] to capture the formation of tertiary
structures, thus providing a topological approach to the dy-
namics of protein folding. This is a complementary problem
to the “static” description of protein folding, seen as a phase
transition at equilibrium that occurs as a control parameter
changes.

VII. CONCLUSIONS

By considering a minimalistic model of the SH3 and PYP
proteins, besides the standard signatures of the folding tran-
sition, the computation of suitable geometric quantities of
the equipotential hypersurfaces in configuration space and of
the energy hypersurfaces in phase space of these molecules,
respectively, allows us to probe topological changes of both
families of hypersurfaces. The computation of the same ge-
ometric quantities for randomized versions of the correct
sequences of the SH3 and PYP proteins yielded monotonic
patterns as functions of the potential energy density, or of
the total energy density, manifestly discriminating between
proteins and random heteropolymers. Remarkably, the pecu-
liar geometric signatures found in correspondence with the
protein folding transition are the “shadows” of some peculiar
and sharp topological change of the mentioned submanifolds
of configuration space and of phase space. The protein folding
transition takes place in systems with a small number of de-
grees of freedom (very far from the Avogadro number) and in
the absence of a symmetry-breaking phenomenon, however,
considered from this topological perspective, the protein fold-
ing transition fully qualifies as a phase transition.
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APPENDIX A: TOPOLOGICAL THEORY OF PHASE
TRANSITIONS IN A NUTSHELL

Let us sketchily present the basic conceptual origin of the
topological theory of phase transitions. The theory stems from
the geometrization of Hamiltonian dynamics which proceeds
as follows: Given a generic system of N degrees of freedom
described by a Hamiltonian H = 1

2

∑N
i=1 p2

i + V (q1, . . . , qN ),
or equivalently by the corresponding Lagrangian function L =
1
2

∑N
i=1 q̇2

i − V (q1, . . . , qN ), its dynamics can be identified
with a geodesic flow of an appropriate Riemannian differ-
entiable manifold. This differential geometric framework is
given by configuration space ME = {q ∈ RN |V (q) < E} en-
dowed with the non-Euclidean metric of components [1]
gi j = 2[E − V (q)]δi j , whence the infinitesimal arc element
ds2 = 2[E − V (q)]2dqi dqi; then the Newton equations are
retrieved from the geodesic equations

d2qi

ds2
+ �i

jk

dq j

ds

dqk

ds
= 0,

where �i
jk are the Christoffel connection coefficients of the

manifold. Then, in this context, the natural question is whether
the mechanical manifolds (ME , g) undergo some peculiar ge-
ometrical change when E crosses a critical value Ec that
corresponds to a phase transition. And it has been discov-
ered that this is actually the case [1]. Moreover, the peculiar
geometrical changes associated with phase transitions were
discovered to be also the effects of deeper topological changes
of the potential level sets �VN

v := {VN (q1, . . . , qN ) = v ∈ R}
in configurations space, and, equivalently, of the balls {MVN

v =
V −1

N ((−∞, v])}v∈R bounded by the �VN
v . In other words,

given a Hamiltonian system undergoing a phase transition, let
vc = vc(Ec) be the average potential energy corresponding to
the phase transition point, a topological change means that the
manifolds �VN

v<vc
and �VN

v>vc
are not diffeomorphic, that is, they

cannot be transformed one into the other with a differentiable
application with differentiable inverse. Topological changes
of these manifolds are related with the presence of critical
points of the potential function V (q) in configuration space.
To get an intuitive idea of the relationship between critical
points of a function in a given space and the topology of
its level sets, let us consider a low-dimensional and intuitive
case. Given a smooth function f , bounded below, such that
f : RN → R. Its level sets �u = f −1(u) are diffeomorphi-
cally transformed one into the other by the flow [50]

dx

du
= ∇ f

‖∇ f ‖2
,
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FIG. 9. The function f is here the height of a point of the bent
cylinder with respect to the ground. In P1 it is df = 0. The level
sets �u = f −1(u) below this critical point are circles, whereas above
are the union of two circles. The manifolds Mu = f −1((−∞, u]) are
disks for u < uc and cylinders for u > uc.

where x ∈ RN , i.e., the points of a hypersurface �u0 with
u0 ∈ [a, b] ⊂ R are mapped by this flow to the points of
another �u1 with u1 ∈ [a, b], provided that ∇ f never vanishes
in the interval [a, b]. In other words, if in the interval [a, b]
the function f has no critical points, all the level sets �u =
f −1(u), with u ∈ [a, b], have the same topology. Conversely,
the appearance of critical points of f at some critical value
uc breaks the diffeomorphicity among the �u<uc and �u>uc .
This is illustrated by one of the simplest possible examples in
Fig. 9. A systematic study is developed within Morse theory of
the relationship between topological properties of a manifold
and the critical points of a suitable class of real-valued func-
tions (Morse functions) defined on it. In particular, if f ≡ V ,
Morse theory tells us that the existence of critical points of
V is associated with topological changes of the hypersurfaces
{�v}v∈R, and also of the {Mv}v∈R, provided that V is a good
Morse function (that is, bounded below, with no vanishing
eigenvalues of its Hessian matrix). In general, finding either
analytically or numerically all the critical points of a potential
V (q) is a very hard task, often an unfeasible one. Thus, in
order to get information on the topology of the manifolds of
interest, one has to resort to the available theorems in differen-
tial topology, like the Chern-Lashof theorem mentioned in the
next Appendix, or the Pinkall theorem used in the main text.
These theorems relate some total (that is integrated over the
whole manifold) geometric property of a manifold with some
information on its topology. Note that Morse indexes μk (M )
of a manifold M count the number of critical points of degree
k (i.e., the number of negative eigenvalues of the Hessian of
the Morse function). Betti numbers are related with Morse
indexes by the inequalities μk (M ) � bk (M ). The bk (M ) are
dimensions of some groups (i.e., homology and cohomology
of M) invariant under diffeomorphisms of M.

APPENDIX B: DERIVATION OF EQ. (1)

In this Appendix, we sketch the proof of formula (1). Any
details about the rigorous proof can be found in Ref. [1].

We note that the relation in Eq. (1) relates thermodynamic
entropy, defined in the microcanonical configurational en-
semble, with quantities of topological meaning (the Morse
indexes) of the configuration-space submanifolds Mv =
V −1

N ((−∞, v]) = {q = (q1, . . . , qN ) ∈ RN |VN (q) � v}.
Let us consider the definition of the configurational micro-

canonical entropy SN (v) (kB = 1):

SN (v) = 1

N
ln �N (v), (B1)

with

�N (v) = 1

N!

∫
�v

dσ

‖∇VN‖ , (B2)

where �v is the potential level set (PLS) defined by �VN
v :=

{q ∈ RN |VN (q1, . . . , qN ) = v ∈ R}. By exploiting Federer’s
derivation formula,

dk

dvk

∫
�v

α dσ =
∫

�v

Ak (α) dσ, (B3)

where α is any configuration space-valued function and

A(α) := 1

‖∇VN‖∇ ·
(

α
∇VN

‖∇VN‖
)

, (B4)

Eq. (B2) reduces to

d�N

dv
(v) = 1

N!

∫
�v

M∗

‖∇VN‖
dσ

‖∇VN‖ + O

(
1

N

)
, (B5)

where we defined M∗ := ∇(∇VN/‖∇VN‖). Now, integrating
(B5) and then, at large N , considering that the volume measure
dμ := dσ/‖∇VN‖ concentrates on the boundary �v , we get

�N (v) = 1

N!

∫
�v

M∗

‖∇VN‖dμ � δv

N!
〈‖∇VN‖−1〉

∫
�v

M∗dμ,

(B6)
where δv is the length of a small energy interval around the
value v and where we have used that ‖∇VN‖ is positive and
only very weakly varying at large N . By means of Hölder’s
inequality for integrals we get∫

�v

M∗dμ �
(∫

�v

|M∗|N dμ

) 1
N
(∫

�v

dμ

) N−1
N

, (B7)

the sign of equality being better approached when M∗ is
everywhere positive. Then, by making use of Eqs. (B2) and
(B6), we have

�N (v) � [�ν (v)]
N−1

N

(
1

N!

∫
�v

|M∗|dμ

) 1
N δv

〈‖∇VN‖〉 , (B8)

and introducing a suitable deformation factor d (v), we can
reach the following equality:

�N (v) = [d (v)]N (δv)N

〈‖∇VN‖〉2N

1

N!

∫
�v

|M∗|N dμ. (B9)

Noticing that M∗ is proportional to the mean curvature, and
the latter being the sum of the principal curvatures {κ}i∈N , we
can write

(κ1 + · · · + κN )N = (ε0|κ1 + · · · + κN |)N

= |κ1|N + · · · + |κN |N + t (v), (B10)
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where t (v) contains all the terms of the multinomial expansion
that one have passing from the second to the third equality but
that one with n1 = n2 = · · · = nρ = 1. Then, we also defined
ε0 = sign(κ1 + · · · + κN ). Now, applying the multinomial ex-
pansion (ρ ∈ N ),

(x1 + · · · + xρ )ρ =
∑

{ni},
∑

nk=ρ

ρ!

n1! · · · nρ!
xn1

1 · · · xnρ

ρ . (B11)

Recalling that the Gauss-Kronecker curvature of �v is KG =∏N
i=1 κi, we get

|M∗|N ≈ N!|KG| + t̃ (v), (B12)

and we obtain

�N (v) ≈ [d (v)]N (δv)N

〈‖∇VN‖〉2N

∫
�v

(
|KG| + t̃ (v)

N!

)
dσ, (B13)

where again we have disregard the term ‖∇VN‖−1 in the
integration measure since it is very weakly varying at large
N . Finally, according to the Chern-Lashof theorem, we can
rewrite ∫

�v

|KG| dσ = 1

2
Vol

(
SN−1

1

) N∑
i=0

μi(�v ), (B14)

where μi(�v ) are the Morse indexes of �v .
Finally, the entropy per degree of freedom reads

S(v) = kB

N
ln �N (v)

= 1

N
ln

[
Vol

(
SN−1

1

) N∑
i=0

μi(�v ) +
∫

�v

dσ
t̃ (v)

N!

]

+ 1

N
ln

[d (v)]N (δv)N

〈‖∇V ‖〉2N
. (B15)

The meaning of (B15) is better understood if we consider that
the Morse indexes μi(M ) of a differentiable manifold M are
related to the Betti numbers bi(M ) of the same manifold by
the inequalities

μi(M ) � bi(M ). (B16)

At large dimension we can safely replace (B16) with μi(M ) ≈
bi(M ).

Equation (B15), rewritten as

S(v) ≈ kB

N
ln

[
Vol

(
SN−1

1

) N∑
i=0

bi(�v ) +
∫

�v

dσ
t̃ (v)

N!

]

+ 1

N
ln

[d (v)]N (δv)N

〈‖∇V ‖〉2N
, (B17)

links topological properties of the microscopic phase space
with the macroscopic thermodynamic potential S(v).

APPENDIX C: DISPERSION OF PRINCIPAL CURVATURE
AND SCALAR CURVATURE

The Weingarten operator is a tensor containing the most
relevant information about the extrinsic geometry of a hyper-
surface such as �v

V and it is defined by [12,44,45]

Wν(X ) = ∇Xν, (C1)

where ν is the unit normal vector to the hypersurface

ν = ∇V

‖∇V ‖ , (C2)

whereas X is any vector tangent to �v
V and ∇ :=

(∂q1 , . . . , ∂qn ) is the gradient operator. The topological ob-
servables that we want to compute are the dispersion of the
principal curvatures σ (ki )2 and the scalar curvature R of �v

V .
The dispersion of principal curvatures is defined by [12]

σ (ki )
2 = Tr

[
W2

ν

]
n − 1

− (Tr[Wν])2

(n − 1)2 , (C3)

whereas the scalar curvature is [51]

R�v
V

= Tr[Wν]2 − Tr
[
W2

ν

]
. (C4)

Although Eqs. (C3) and (C4) seem to be just formal relations,
it can be shown [44,45,51] that they simply correspond to
specific combinations of derivatives of the potential function.
The trace is

Tr[Wν] = �V

‖∇V ‖ − 〈∇V, HessV ∇V 〉
‖∇V ‖3

, (C5)

where �V and HessV are, respectively, the Laplacian and the
Hessian of the potential function V whereas the trace of the
square of the Weingarten operator is [12,44,45]

Tr
[
W2

ν

] = Tr[(HessV )2]

‖∇V ‖2
+ 〈∇V, HessV ∇V 〉2

‖∇V ‖6

− 2
‖HessV ∇V ‖2

‖∇V ‖4
. (C6)

It should be stressed that Eqs. (C5) and (C6) can be easily
computed in a molecular dynamics simulation. In fact, it
requires to know the forces acting between all the particles
composing the system and the Hessian of the potential func-
tion. It is apparent that Fi := ∇qiV and HessVi j = ∇qi∇q jV
are well-posed quantities that can be easily defined in a simu-
lation.
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