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Entropic exponents of grafted lattice stars
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The surface entropic exponents of half-space lattice stars grafted at their central nodes in a hard wall are
estimated numerically using the PERM algorithm. In the square half-lattice the exact values of the exponents
are verified, including Barber’s scaling relation and a generalization for 2-stars with one and two surface loops
respectively. This is the relation γ211 = 2 γ21 − γ20, where γ21 and γ211 are the surface entropic exponents of
a grafted 2-star with one and two surface loops, respectively, and γ20 is the surface entropic exponent with no
surface loops. This relation is also tested in the cubic half-lattice where surface entropic exponents are estimated
up to 5-stars, including many with one or more surface loops. Barber’s scaling relation and the relation γ3111 =
γ30 − 3 γ31 + 3 γ311 are also tested, where the exponents {γ31, γ311, γ3111} are of grafted 3-stars with one, two, or
three surface loops, respectively, and γ30 is the surface exponent of grafted 3-stars.
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I. INTRODUCTION

The connectivity of a polymer network can be represented
as an abstract graph G of nodes and bonds, where the nodes
are branching points in the network, and the bonds represent
linear polymers joining the nodes into the network. If the
network is embedded in a lattice, then it is a model of the
connectivity and the topology of a polymer network in the
plane or in a thin layer (if the lattice is two dimensional), or in
a good solvent (if the lattice is three dimensional).

If a network with connectivity G is embedded in the
(hyper)-cubic lattice Zd , then the nodes are located on vertices
in the lattice, and the bonds are mutual- and self-avoiding
walks joining the nodes. These self-avoiding walks are the
branches of the network. If G is a star graph, then the branches
are called arms. The embedding is uniform or monodispersed
if all the branches are walks of the same length.

The lattice embedding is a model that quantifies the en-
tropy of the corresponding polymer network. If cn(G) is the
number of distinct embeddings of the network, counted up to
translation (or by fixing a node at the origin), then the usual
scaling assumption is

cn(G) ∼ C nγ (G)−1μn
d , (1)

where γ (G) is the entropic exponent of the network, C is a
constant amplitude, and μd is the self-avoiding walk growth
constant [1,2] (see Refs. [3,4], and for lattice stars Ref. [5]).
The best estimates of the growth constants in the square
and cubic lattices are obtained from simulations of the self-
avoiding walk, and are [6–8]

μ2 =
{

2.63815853035(2), [6]
2.63815853032790(3), [7] (2)

μ3 = 4.684039931(27). [8] (3)
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Uniform lattice star polymers form a particular class of
lattice networks that have received significant attention in the
literature, at least since the 1980s [3–5,9–12]. If s( f )

n is the
number of uniform lattice stars in Zd with f arms (these are
f -stars) with a central node at the origin, then by Eq. (1),

s( f )
n ∼ Cf nγ f −1 μn

d , (4)

where γ f is the f -star entropic exponent and Cf is a constant
amplitude depending on f and d . High quality numerical re-
sults and estimates of the entropic exponents of star polymers
were made in references [13–18].

Lattice networks of connectivity G grafted to a wall have
scaling similar to Eq. (1). In the hypercubic half-lattice Zd

+ =
{(x1, x2, . . . , xd ) ∈ Zd | such that xd � 0} a chosen node of a
network is grafted at the origin. Nodes of the network located
in the boundary (or hard wall) ∂Zd

+ of the half-lattice are sur-
face nodes. Depending on the connectivity G such networks
may have loops (circuits which are lattice polygons) as well
as surface loops (self-avoiding walks with both endpoints in
hard wall ∂Zd

+ of the half-lattice). For example, in Fig. 1 we
show a schematic of a lattice network in Z2

+ with connectivity
to a lattice 3-star without (left) and with (right) a surface loop.

A. Vertex exponents, and entropic exponents

The entropic exponents of networks of connectivity G, in
the full lattice, or in the half-lattice, can be expressed in terms
of vertex exponents σ f and surface vertex exponents σ ′

g by
[19,20]

γG = 1 +
∑

f

m f σ f +
∑

g

mgσ
′
g − c(G) dν − �(G) ν, (5)

where ν is the metric exponent of the self-avoiding walk
(ν = 3/4 in two dimensions [21], and ν = 0.58759700(40)
in three dimensions [22]). The coefficient mg is the number
of surface nodes of degree g in ∂Zd

+, m f is the number of
nodes of degree f in the bulk lattice, c(G) is the number of
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FIG. 1. Schematic of 3-stars in a half-lattice. The central node of
the star is attached at the origin in the hard wall (the boundary of the
half-lattice). On the right the star has one arm forming a surface loop.
The star on the left has no loops or surface loops.

independent circuits in the network, and �(G) is the number
of independent surface loops. Testing of Eq. (5) is limited to
self-avoiding walks in a half-lattice [23], and for branched
networks, to star polymers in bulk [16–18] and a few cases
of branched acyclic networks in bulk [17,18].

Exact values of the vertex exponents in two dimen-
sions were calculated using conformal invariance techniques
[19,20,24]. These are

σ f = 1
64 (2− f ) (9 f +2), and σ ′

f = 1
32 f (2−9 f ). (6)

Using these expressions, the exact values of γG are known
in the square lattice. For example, putting f = 0 and using
Eq. (5) gives the exact value of the entropic exponent of the
self-avoiding walk γ = 1 + 2σ1 = 43/32 [21].

In three dimensions there are ε-expansion estimates [25]
for the vertex exponents. To first order in ε [19],

σ f = ε
16 f (2− f ) + O(ε2); (7)

σ ′
f = − 1

2 f + ε
16 f (2− f ) + O(ε2). (8)

These approximations deteriorate quickly with increasing
degrees of the nodes (see for example [18]), but can be
used with Eq. (5) to approximate the entropic exponents
γG in three dimensions. In the case of the self-avoiding
walk, the first order ε-expansion estimate γ = 1+2σ1 ≈
1.125 compares relatively well with the best numerical esti-
mates γ = 1.15698(34) [26] and γ = 1.15695300(95) [27].
See Refs. [19,20,28] for O(ε2), and [29] for O(ε4), expansions
for σ f .

In this paper the focus is on a lattice star in the half-lattice
with its central node at the origin, such as schematically illus-
trated in Fig. 1. We first introduce notation to distinguish the
connectivities of f -stars in the half-lattice Zd

+ efficiently.

Let f 1g ≡ f

g︷ ︸︸ ︷
11 . . . 1 denote lattice stars in the half-lattice

Zd
+ with a central node of degree f located at the origin

in the boundary ∂Zd
+ (the hard wall), and with g � f arms

having their endpoints in the hard wall (and so forming g
surface loops). For example, in Fig. 1, the cases 310 ≡ 30
(left) and 311 ≡ 31 (right) are shown. Similarly, 312 ≡ 311
denotes 3-stars with a central node at the origin and with two
arms having their endpoints in the hard wall (and so forming
two surface loops), and 313 ≡ 3111 denotes 3-stars with three
surface loops (see Fig. 2).

FIG. 2. Schematic illustrations of 311-stars (left) and 3111-stars
(right) in a half-lattice. In the half-square lattice, the one arm of the
311-star is “screened” from the hard wall by the other two arms with
endpoints in the hard wall. In the case of 3111-stars, all three arms
have endpoints in the hard wall, and the only way to accommodate
this is by having one arm located inside the surface loop created by
the hard wall and an arm. This makes simulations of 3111-stars in
the square half-lattice very challenging. In our PERM simulations
we rarely observed these states in the 109 iterations done.

The entropic exponents of half-lattice stars with connectiv-
ity f 1g is denoted by γ f 1g . For example, γ311 is the entropic
exponent of 3-stars with two arms forming surface loops, and
for the cases in Fig. 1, we have γ30 (left) and γ31 (right).
In terms of Eq. (5), the entropic exponent of f -stars with g
surface loops in the half-lattice is given by

γ f 1g = γ f 11 . . . 1︸ ︷︷ ︸
g

= 1 + σ ′
f + ( f −g) σ1 + gσ ′

1 − gν. (9)

The vertex exponents are given in Eq. (6) in two dimensions,
and are approximated in the εexpansion in Eqs. (7) and (8) in
three dimensions.

In the case of a self-avoiding walk γ = 1+2σ1, and for
a walk from the origin in Zd

+, γ1 = 1+σ ′
1+σ1 (since f = 1

and g = 0). If both endpoints are in ∂Zd
+, then f = g = 1 and

thus γ11 = 1+2σ ′
1 − ν. Eliminating σ1 and σ ′

1 gives Barber’s
scaling relation [30,31]

2 γ1 − γ11 = γ + ν. (10)

In d = 2 the sum of the exact values γ = 43/32, ν = 3/4
[21] on the right hand side equals the sum of the exact values
γ1 = 61/64 [32] and γ11 = −3/16 [24] on the left hand side.
Numerical results are in agreement with these results, namely
γ1 = 0.945(5) and γ11 = −0.19(3) [31], and γ1 = 0.9551(3)
[33]. This shows that 2 γ1 − γ11 = 2.08(4) while the exact
value is γ+ν = 67/32 = 2.09375 . . ..

In three dimensions, early estimates γ1 = 0.687(5) and
γ11 = −0.38(2) [34,35], and γ1 = 0.697(2) and γ11 =
−0.383(5) [36], gave way to the more accurate results γ1 =
0.6786(12) and γ11 = −0.390(2) in Ref. [23]. The best
available estimates can be found in Ref. [37] where γ1 is
estimated, and γ11 is estimated from the bridge entropic ex-
ponent γb using the relation γb = γ11 + ν [12]. These are
γ1 = 0.677667(17) and γ11 = −0.389245(28). These values
give 2γ1−γ11 = 1.744579(62) and using the best estimates
γ = 1.15695300(95) [27] and ν = 0.58759700(40) [22,38],
γ+ν = 1.7445500(14). This confirms the Barber scaling re-
lation to very high accuracy. The mean field values of these
exponents are γ = 1, ν = 1/2, γ1 = 1/2, and γ11 = −1/2
[39,40].
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TABLE I. PERM simulations of f -stars.

Dimension f Length Threads Iter/Thread Iterations

d = 2 1 10000 4 2.5 × 108 109

2 16000 4 2.5 × 108 109

3 15900 4 2.5 × 108 109

d = 3 1 10000 4 2.5 × 108 109

1a 10000 8 1.25 × 108 109

2 10000 4 2.5 × 108 109

3 9900 6 1.666 × 108 109

4 10000 4 2.5 × 108 109

5 12500 4 2.5 × 108 109

aPanneton generator [46].

More generally, one may notice that when f � 2, then the
vertex exponents in Eq. (9) can be eliminated by using an
alternating sum and binomial coefficients so that

f∑
g=0

(−1)g

(
f

g

)
γ f 1g = 0. (11)

This shows, for example, that γ20 − 2 γ21 + γ211 = 0 and
γ30 − 3 γ31 + 3 γ311 − γ3111 = 0. The identity

γ20 = γ − 1 (12)

was noted in Ref. [19], and from it and Eq. (11) with f = 2 it
follows that

2 γ21 − γ211 = γ − 1. (13)

This is a generalization of Barber’s scaling relation
[Eq. (10)]. Noting that γ −1 = 2σ1, γ1 −1 = σ1 + σ ′

1, and
γ20 = γ −1 = 1+σ ′

2 +2σ1 (see also Ref. [20]) allows one to
solve for {σ1, σ

′
1, σ

′
2} from the best numerical estimates in

Refs. [12,27] to obtain very accurate estimates for grafted
2-star exponents:

γ20 = 0.15695300(95),

γ21 = −0.909930(17),

γ211 = −1.976813(33). (14)

These estimates are consistent with Eq. (11).

II. NUMERICAL RESULTS

The numerical approaches developed in Ref. [23] based
on the PERM algorithm [16–18,41,42], and in particular the
flat histogram [43] and the parallel implementations [44] of
PERM, can be used to estimate lattice star entropic exponents
in Zd (and in Zd

+) efficiently (see Ref. [23] for half-space self-
avoiding walk sampling using PERM). In this paper similar
approaches are used, except that in addition to self-avoiding
walks grafted at one endpoint in ∂Zd

+, f -stars are sampled
with their central nodes at the origin in Zd

+. The details of
our simulations are shown in Table I. An iteration is a started
PERM sequence (which may be pruned and enriched by the
algorithm). In these simulations, the Mersenne Twister ran-
dom number generator [45] was used, except in one case as
noted in Table I where the Panneton generator in reference
[46] was used instead. In each simulation, the data were sieved

by collecting data on stars separately by number of surface
loops. Thus, the algorithm produced data on s( f )

n (g), the num-
ber of stars with a central node of degree f at the origin in the
half-lattice Zd

+, and with g arms forming surface loops. The
scaling of s( f )

n (g) is

s( f )
n (g) ∼ nγ f 1g−1 μn

d (1 + B/n + C/n� + · · · ), (15)

where � is the (first) self-avoiding walk confluent correction
exponent which has value � = 3/2 if d = 2 [21,47,48] and
� = 0.528(8) if d = 3 [22]. Dividing by μn

d nγ f 1g−1 and taking
logarithms give

log

(
s( f )

n (g)

μn
d nγ f 1g−1

)
=

⎧⎨
⎩

A + B/n + · · · , if d = 2;

A + B/n� + · · · , if d = 3,

(16)

where the logarithms on the right hand side were expanded
assuming n is large. The best value of γ f 1g and a confidence
interval on it can be determined by plotting the left hand side
against 1/n if d = 2, and against 1/n� if d = 3. This approach
was developed in Ref. [23] where it was used effectively for
estimating γ1 and γ11 using PERM simulations in the cubic
half-lattice. See also Refs. [16–18].

Two dimensions: In the square half-lattice, the best esti-
mate of μ2 [see Eq. (2)] was used in Eq. (16). The top panel
of Fig. 1 shows the data for self-avoiding walks grafted to the
hard wall (these are 10-stars in our notation) with entropic
exponent γ1 ≡ γ10. The middle curve shows the confidence
interval on the data as a shaded envelope. There are odd-even
parity effects in these plots, but they were dealt with by only
plotting data for even values of n.

The best estimate of γ1 was obtained fixing its value to
straighten the graph in Fig. 3. An error bar on the best estimate
was determined by varying the value of γ1 to produce the other
curves in the figure. These curves are either convex or concave
as the y axis is approached, and this curving becomes apparent
when γ1 is changed by ε = 0.00020 in either direction. Thus,
we select as our error bar on γ1 this value of ε, giving our best
estimate

γ1 = 0.95325 ± 0.00020. (17)

The estimate for γ11 was similarly obtained using the data
of grafted self-avoiding walks with their endpoints in the
hard wall forming a surface loop (these are 11-stars in our
notation). The results of the analysis are shown in the bottom
panel of Fig. 3. Our best estimate is

γ11 = −0.1875 ± 0.0020. (18)

With these results, one may test Barber’s scaling relation. This
gives

2γ1 − γ11 = 2.094 ± 0.003. (19)

The exact value is γ + ν = 43/32 + 3/4 = 67/32 =
2.09375. The absolute difference from the estimate above
is 0.00025, a factor of 10 smaller than the stated error bar
of 0.003. This result is a strong numerical verification of
Barber’s scaling relation in two dimensions. The remaining
data for 2-stars and 3-stars were similarly analyzed to obtain
estimates of the exponents γ21g and γ31g . The results are shown
in Table II. Observe that there are no numerical estimates
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FIG. 3. Determining γ1 and γ11 in the square lattice by plotting
the left-hand side of Eq. (16) as a function of 1/n. The middle curve
is obtained by selecting that value of the exponent giving a straight
line. In each panel a shaded envelope (more visible in the top panel)
on the middle curve gives the confidence interval on the raw data.
(Top panel) The middle curve is plotted with γ1 = 0.95325 against
1/n. A confidence interval σ = 0.00020 is obtained by adding and
subtracting σ from γ1. The top two curves have an increasing up-
wards tendency as the y axis is approached, and the bottom two
curves similarly have a downwards tendency. This gives the best
(rounded) estimate γ1 = 0.9533 ± 0.0002. (Bottom panel) A similar
analysis to determine γ11. This gives γ11 = −0.188 ± 0.002.

in the literature for these exponents. These estimates are
consistent, within error bars, with the (known) exact values
in two dimensions. This both confirms, on the one hand,
that the exact results are correct, and on the other hand, that
the numerical methods in this paper produce high quality
estimates of the entropic exponents. Testing Eq. (13) using
our numerical values give

2 γ21 − γ211 = 0.348 ± 0.034, (20)

and the exact value of γ−1 = 11/32 = 0.34375 is well inside
the stated error bar. The estimate for γ20 also verifies the
identity in Eq. (12).

The exceptional case is for 3111-stars, namely 3-stars with
their central node at the origin in the square half-lattice and
with each arm from the central node having its endpoint in the
hard wall (see Fig. 2). In this case, the data were too sparse to

TABLE II. Half square lattice entropic exponents.

γG Exact Literature This work

γ1 0.953125 0.945(5) [31] 0.9533(2)
0.9551(3) [33]

γ11 −0.1875 −0.19(3) [31] −0.188(2)
γ20 0.34375 0.344(1)
γ21 −0.796875 −0.796(2)
γ211 −1.9375 −1.94(3)
γ211 −1.9375 −1.94(5)a

γ211 −1.9375 −1.93(4)b

γ30 −0.828125 −0.827(2)
γ31 −1.96875 −1.969(4)
γ311 −3.109375 −3.11(1)
γ3111 −4.25 −4.25(5)a

aCalculated by Eq. (11).
bCalculated by Eq. (13).

analyze. In general, very few 3111-star conformations were
encountered in our simulation because one arm will have to
be accommodated inside a surface loop formed by another and
the hard wall (as illustrated schematically in Fig. 2). Plotting
the few data points obtained for 3111-stars gave a graph which
is not inconsistent with the exact value γ3111 = −4.25.

A numerical estimate of γ3111 can be obtained from the
other three 3-star exponents using Eq. (11), namely

γ3111 = γ30 − 3 γ31 + 3 γ311 = −4.25 ± 0.05, (21)

where we used the results in Table II, and added the error bars
to find a confidence interval.

Overall, one can conclude that Eq. (9), and the exact values
of the entropic exponents in two dimensions, are supported by
our numerical results.

Three dimensions: In the cubic lattice, corrections to scal-
ing are dominated by the confluent correction term which is of
the form C/n� [see Eq. (15)]. There is a competing, faster de-
caying, analytic correction B/n, or even higher order confluent
corrections, which may impact an analysis using Eq. (16), in
particular at small values of n. Our approach here is based on
the methods developed in Ref. [23], and we will be plotting
the left hand of Eq. (16) against n−� where � is fixed at its
best estimate � = 0.528(8) [22]. Unlike in the square lattice,
the confluent correction decays slowly, and competing higher
order corrections may impact the analysis at small values of n.
Therefore, the aim here is to find a linear plot at large values
of n, discarding data at small n. In addition, there are, like in
the square lattice, odd-even parity effects in the data, and we
dealt with these by only plotting data for even values of n.

Plotting Eq. (16) to determine γ1 gave graphs which were
typically first concave (at small values of n) and then turning
convex at large values of n. A linear graph can be obtained by
making minor changes in the estimate of μ3 and this gives the
best estimate

γ1 = 0.6745 ± 0.0008. (22)

This estimate was obtained by determining that value of γ1

that straightens the graph when Eq. (16) was plotted using
the data. In this case, its final value was insensitive to small
changes in the value of μ3 from its best estimate in Eq. (3), and
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FIG. 4. Determining the best value of γ1. In the top panel,
Eq. (16) was plotted with � = 0.528 and μ3 = 4.684039931 − δ,
where δ = 2.3 × 10−6. The effect of minor changes in the plots due
to changes in μ3 are shown in the bottom panel. The top curve is for
μ3 equal to its best value in Eq. (3), the middle curve for μ3 − δ, and
the bottom curve for μ3 − 2δ.

also with small changes in � within its error bars. However,
it was not possible to find a straight graph of the data without
changing the value of μ3 in minor ways from that in Eq. (3).
Following the approach in Ref. [23], the effects of these small
changes in μ3 are shown in the bottom panel of Fig. 4, where
our data are plotted with γ1 fixed at its best value in Eq. (22),
but with the growth constant fixed at μ3−k δ where k = 0, 1, 2
and δ = 2.3 × 10−6. If k = 0, then the curvature is upwards as
the y axis is approached. The bottom downwards curvature is
seen for k = 2, while the best fit is for k = 1.

These results do not imply that the estimate in Eq. (3)
is suspect, but instead expose limitations in the data in this
paper—if the purpose was to estimate μ3 from the data ob-
tained here, then one would at best expect to do this to an
accuracy of O(2.3 × 10−6). In addition, changing μ3 from
its best value introduces an extra degree of freedom in the
analysis, and may give biased estimates of the exponents. In
order to avoid this possibility, we fixed the value of μ3 at its

FIG. 5. Determining the best value of γ1. The middle curve
is a plot of Eq. (16) as a function of 1/n� ∈ [0.007, 0.03] with
� = 0.528 and μ3 = 4.684039931. This gives the estimate γ1 =
0.6785(8). The top two graphs are plotted using γ1 + kε with k =
1, 2 where ε = 0.0008, while the bottom two are plots with k =
−1, −2.

best known estimate, and then proceeded with curve fitting
while discarding data at small values of n.

The analysis giving the estimate in Eq. (22) relies almost
exclusively on data with 0.02 � n−� � 0.10 (as seen in the
bottom panel of Fig. 4). This corresponds to 78 � n � 1650,
while data with n > 1650 are compensated by the small
change in the value of μ3. This, however, cannot be the best
way of extracting a good estimate of γ1, and more care is
needed. In particular, one should rely on large values of n
in the analysis, since corrections to scaling are reduced with
increasing n. In addition, changes in the value of μ3 introduces
an additional degree of freedom in the analysis, and it primar-
ily affects data at large n. Thus, the analysis was repeated, but
without changes in the value of μ3, and discarding data with
n � 766. This gives the results in Fig. 5. The middle curve
corresponds to the best estimate of γ1:

γ1 = 0.6785 ± 0.0008. (23)

The two top curves are convex, while the two bottom curves
are concave, and give the estimated error bar above. Since this
estimate is based on data for larger values of n, it is taken as
the best estimate of this exponent.

We have listed our best estimate for γ1 = 0.6785(8) in
Table III, where we also compare it to earlier estimates in
the literature. The best available estimate is in Ref. [37]. This
estimate excludes our best estimate from its (very small) error
bar. Conversely, that estimate is well within the error bar in
Eq. (23). Sources of a systematic error in our estimate may
be due to the choice of the random number generator (in this
paper we used the mersenne twistor for 64 bit architecture
[45]), or due to limitations in carrying significant digits along
in the simulation [we used long double (80-bit) precision in
the C programming language]. We also used gnuplot [49] to
analyze the data, and it also has finite precision. We avoided
large numbers in our simulation by only storing the ratio
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TABLE III. Half cubic lattice entropic exponents.

γG ε1-approx Literature This work

γ1 0.625 0.679(2)[36] 0.6785(8)
0.687(5)[34,35]
0.6786(12) [23] 0.6765(8)c

0.677667(17) [37]
γ11 −0.463 −0.383(5) [36] −0.389(3)

−0.38(2) [34,35]
−0.390(2) [23] −0.390(3)c

−0.389245(28) [37]
γ20 0.125 0.15698(34)d [19,26] 0.154(3)

0.15695300(95)d [27]
γ21 −0.963 −0.918(8)
γ211 −2.050 −2.02(8)
γ211 −2.050 −1.99(2)a

γ211 −2.050 −1.99(2)b

γ30 −0.500 −0.521(2)
γ31 −1.588 −1.59(2)
γ311 −2.675 −2.68(7)
γ3111 −3.763 −3.9(6)
γ3111 −3.763 −3.8(2)a

γ40 −1.250 −1.325(4)
γ41 −2.338 −2.406(8)
γ411 −3.425 −3.48(4)
γ4111 −4.513 −4.6(2)
γ41111 −5.600 −5.8(1.1)a

γ50 −2.125 −2.243(4)
γ51 −3.213 −3.318(7)
γ511 −4.300 −4.41(4)
γ5111 −5.388 −5.5(2)

aCalculated by Eq. (11).
bCalculated by Eq. (13).
cPanneton random number generator [46].
dEstimations using Eq. (12).

s( f )
n (g)/μn

3 in our programs and data files. Repeated division
by μ3 during the simulation may also introduce rounding
errors which accumulate during the simulation.

The value of the surface loop exponent γ11 was similarly
estimated (Fig. 6). The best estimate consistent with our data
is

γ11 = −0.389 ± 0.003. (24)

Barber’s scaling relation can be tested in three dimensions
by the results in Eqs. (22) and (24). The best available es-
timate of the numerical estimate of the metric exponent of
self-avoiding walks is ν = 0.58759700(40) [22,38] and of the
entropic exponent γ = 1.15695300(95) [27]. Adding these
gives γ+ν = 1.7445500(14). Our results give

2 γ1 − γ11 = 1.746(5). (25)

This result includes the sum γ + ν inside its error bar, and so
is consistent with the Barber scaling relation in three dimen-
sions.

These results were retested by performing simulations us-
ing an alternative random number generator (the Panneton
generator [46]). The results are shown in Table III where
γ1 = 0.6765(8) and γ11 = −0.390(3). This gives 2γ1 − γ11 =

FIG. 6. Determining the best value of γ11. The middle curve is
a plot of Eq. (16) as a function of 1/n� with � = 0.528 and μ3 =
4.684039931. This gives the estimate γ11 = −0.3893. The top two
graphs are plotted using γ11 + kε with k = 1, 2 where ε = 0.0030,
while the bottom two are plots with k = −1, −2.

1.743(5), again consistent with the Barber scaling relation and
with Eq. (25).

Plotting our data for grafted f -stars with 2 � f � 5 pro-
duced graphs which do not straighten at the best value of γ f 1g .
Instead, the locus of the data points were typically concave
at small values of n, even as it straightens as n increases.
This again suggests that higher order corrections to scaling
are complicating the analysis. Since the slowest decaying
correction is C/n�, and it becomes dominant as n is increased,
the exponents were estimated by focusing on the largest values
of n as before. That is, by using Eq. (16), the exponent is
estimated by setting it to straighten the curve at the largest
values of n, even if there is a remaining curvature seen at the
smallest values of n.

In Fig. 7, the result for γ20 is shown. These graphs were
obtained by using the best estimate obtained from our data

FIG. 7. Estimating γ20 by plotting the left hand side of Eq. (16)
as a function of n−� for 206 � n � 10000. The middle graph cor-
responds to the best esimate γ20 = 0.154 ± 0.003, while the top
two curves and the bottom two curves, are used to determine the
confidence interval.
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FIG. 8. Plotting Eq. (16) against n−� for 573 � n � 10 000 to
determine γ21.

and give

γ20 = 0.154 ± 0.003. (26)

The best estimate of γ20 in the literature is obtained by noting
from Eq. (12) that γ20 = γ−1 and using the best estimate γ =
1.15695300(95) [27]. This shows that γ20 = 0.15695300(95),
and this is well within the stated error bar of the estimate in
Eq. (26). Conversely, these results also support the identity in
Eq. (12) in three dimensions.

The analysis for γ21 is shown in Fig. 8. These graphs are
for 573 � n � 10000. Observe that there remains a minor
concavity in the middle curve at the largest values of n−�

but that the curves straigthen as n−� decreases when n ap-
proaches n = 10, 000. The top two curves are convex, and
the bottom two curves are concave. This gives the best value
of γ21:

γ21 = −0.918 ± 0.008. (27)

The estimates of γ20 and γ21 in Eqs. (25) and (27) can be
used to predict γ211 using Eq. (11). This gives

γ211 = 2 γ21 − γ20 = −1.99 ± 0.02. (28)

Determining γ211 directly from the data is complicated by
poor sampling at large n. Examination of the data shows
reasonable sampling for n � 2500, and poor sampling for
n � 3000. Plotting Eq. (16) for 37 � n � 2846 gives Fig. 9,
which unambiguously gives the estimate

γ211 = −2.02 ± 0.08 (29)

with a conservatively determined error bar (there is significant
curvature present in the second and fourth curves in Fig. 9).
This result is consistent with the estimated value in Eq. (28).
Using this result with the estimate of γ21 gives 2γ21 − γ211 =
0.18(10). Within its large error bar, this result is consistent
with γ = 1.15695300(95) [27] as shown by Eq. (13).

The estimates for grafted 2-star exponents are listed in
Table III.

Data for grafted 3-, 4-, and 5-stars were similarly analyzed
and the results appear in Table III. In the case of grafted 3-

FIG. 9. Plotting Eq. (16) against n−� for 37 � n � 2946 to de-
termine γ211.

stars, the estimates are

γ30 = −0.521 ± 0.002,

γ31 = −1.59 ± 0.02,

γ311 = −2.68 ± 0.07,

γ3111 = −3.9 ± 0.6. (30)

The estimate for γ3111 is based on data for 206 � n � 1080.
These results are consistent with Eq. (11). Using Eq. (11) and
the estimates for γ30, γ31, and γ311 gives a better estimate of
γ3111 instead:

γ3111 = γ30 − 3 γ31 + 3 γ311 = −3.8 ± 0.3, (31)

and this result is still consistent with the estimate of γ3111 in
Eq. (30).

The data for grafted 4-stars give

γ40 = −1.325 ± 0.004,

γ41 = −2.406 ± 0.008,

γ411 = −3.48 ± 0.04,

γ4111 = −4.6 ± 0.2. (32)

The estimate for γ4111 is based on 206 � n � 1650. By
Eq. (11),

γ41111 = −γ40 + 4 γ41 − 6 γ411 + 4 γ4111 = −5.8 ± 1.1.

(33)
Finally, for grafted 5-stars

γ50 = −2.251 ± 0.003,

γ51 = −3.333 ± 0.007, (34)

γ511 = −4.41 ± 0.04,

γ5111 = −5.5 ± 0.2.

Our sampling of 51111- and 511111-stars were too poor to
allow estimates of the entropic exponents.

III. CONCLUSIONS

The purpose of this paper was to estimate the entropic
exponents of half-space grafted f -stars, and to numerically
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FIG. 10. Estimating the effect of the uncertainty in �. The data
in Fig. 7 is replotted here, but now with � ∈ {0.520, 0.528, 0.536}.
In each case, the shift in the curves are very small compared to
changes when the data are plotted using γ20 = 0.254 ± ε for ε ∈
{0.003, 0.006}. This shows that any change in the estimate of γ20

due to the uncertainty in � is small compared to the stated error bar
in Table III.

verify some relations involving these exponents. Our results
are shown in Tables II and III, Barber’s scaling relation is
tested in Eqs. (19) and (25), and Eqs. (12) and (13) were tested
in Eqs. (20) and (26). The relation in Eq. (13) was similarly
tested for grafted 2-stars and 3-stars in the half cubic lattice
[Eqs. (28), (29), (30), and (31)]. In all respects, the general
framework using vertex exponents σ f and surface vertex ex-
ponents σ ′

f in Eq. (5) is strongly supported by the numerical
results here.

The estimates of exponents in three dimensions listed in
Table III were obtained by assuming that the confluent ex-
ponent has value � = 0.528, giving the curves shown in
Figs. 4–9. The best numerical estimate of the confluent ex-

ponent is � = 0.528(8) [22], and the uncertainty in this
estimate may have an impact on the estimated exponents in
Table III. This was investigated by replotting those graphs
for values of � at the boundaries of its confidence interval.
For example, in Fig. 10, the data in Fig. 7 are replotted
but using three values for the confluent exponent, namely
� ∈ {0.520, 0.528, 0.536}. The graph shows that the result-
ing curves corresponding to � = 0.520 and � = 0.536 are
displaced in minor ways from the curve corresponding to the
central value � = 0.528. The displacements of the curves
are small when compared to the distance separating the five
curves in Fig. 7 corresponding to γ20 = 0.154 ± ε, where ε ∈
{0,±0.003,±0.006}. This shows that the size of the effect
due to the uncertainty in � is small when compared to the size
of the uncertainty in our estimate of γ20 in Table III. Similar
results were obtained for the other exponents in Table III.

The results in two dimensions are consistent to good
accuracy with the exact (conformal invariance) values of
the exponents. This not only provides strong evidence
supporting the theoretical analysis of the surface entropic ex-
ponents for uniform branched networks in two dimensions in
Refs. [19–21,32], but also shows that the numerical methods
used in this paper (and in Refs. [14,16,23,36]) are sound. This
enhances confidence in the cubic lattice results shown here,
which cannot be verified against a list of exact values. On the
contrary, few of the surface exponents of grafted lattice stars in
three dimensions have been calculated before (as can be seen
in Table III), apart from the O(ε)-expansion estimates which
give good, but not excellent, agreement with the numerical
estimates obtained in this paper.
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