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Work extraction from single-mode thermal noise by measurements: How important is information?
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Our goal in this article is to elucidate the rapport of work and information in the context of a minimal quantum-
mechanical setup: a converter of heat input to work output, the input consisting of a single oscillator mode
prepared in a hot thermal state along with a few much colder oscillator modes. The core issues we consider,
taking account of the quantum nature of the setup, are as follows: (i) How and to what extent can information act
as a work resource or, conversely, be redundant for work extraction? (ii) What is the optimal way of extracting
work via information acquired by measurements? (iii) What is the bearing of information on the efficiency-power
tradeoff achievable in such setups? We compare the efficiency of work extraction and the limitations of power
in our minimal setup by different, generic, measurement strategies of the hot and cold modes. For each strategy,
the rapport of work and information extraction is found and the cost of information erasure is allowed for.
The possibilities of work extraction without information acquisition, via nonselective measurements, are also
analyzed. Overall, we present, by generalizing a method based on optimized homodyning that we have recently
proposed, the following insight: extraction of work by observation and feedforward that only measures a small
fraction of the input is clearly advantageous to the conceivable alternatives. Our results may become the basis of
a practical strategy of converting thermal noise to useful work in optical setups, such as coherent amplifiers of
thermal light, as well as in their optomechanical and photovoltaic counterparts.
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I. INTRODUCTION

Thermal noise, i.e., maximal-entropy fluctuation at a given
temperature, is a ubiquitous source of propagating energy,
ranging from sunlight and cosmic rays to acoustic (e.g.,
seismic) energy. Since the invention of the steam engine,
technology has aimed at harnessing thermal noise (heat) for
the performance of useful work. The definition of work in
the literature is elusive, but it may be loosely phrased as the
most ordered energy, or, more formally, as energy exchange
with the least (ideally zero) entropy exchange. The question
to be posed is, what is the most efficient way of accomplishing
such heat-to-work conversion? Not less importantly, what is
the fastest way of converting heat to work, thereby attaining
the maximal rate of work production, also known as maximal
power?

The conversion of heat to work consists in lowering the
entropy from its highest to its lowest value at a given energy
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within the constraints of the first and second laws of thermo-
dynamics [1]. Such conversion is a central theme that quantum
thermodynamics (QTD) has inherited from its classical pre-
decessor [2–9], the difference being that QTD accounts for
possible effects of coherence and entanglement in heat engine
(HE) designs [10–39]. A conceptual alternative to an HE has
been provided by information engines (IEs) originating from
Maxwell-demon [40] and Szilard engines [41–44], which ex-
ploit information acquired by measurements as a resource
complementary to heat. Both HEs and IEs have merits but
also basic limitations, the central one being power-efficiency
tradeoff: In an HE it is inevitable for power to diminish near
the point of maximum efficiency, which is always bounded by
the Carnot limit in accordance with the second law [1–8,35–
39]. Commonly, IEs have been based on binary measurements
of discrete variables, whose energetic price yields efficiency
bounds well below unity [45–48]. On the other hand, the du-
ration of work extraction from IEs is not intrinsically related to
the efficiency, so that their power-efficiency tradeoff may be
in principle more favorable than in HEs, as indeed is shown
here.

Our goal is to elucidate the rapport of work and information
in the context of a minimal quantum-mechanical setup: a
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converter of heat input to work output, the input consisting
of a single oscillator mode prepared in a hot thermal state. In
particular, we measure the input, and we exploit the measured
results as feedforward for work extraction. Taking account of
the quantum nature of the setup, the acquisition of information
by measurements, its cost and utilization for our purpose raise
the following core issues: (i) How and to what extent can in-
formation act as a work resource, or, conversely, be redundant
for work extraction? (ii) What is the optimal way of extracting
work via information acquired by measurements? (iii) What
is the bearing of information on the efficiency-power tradeoff
achievable in such setups?

To address these questions, we resort to nonequilibrium
heat-to-work conversion in terms of ergotropy (nonpassivity,
Appendix A) [2,7,8,25,28,49–56]. We then compare the effi-
ciency of work extraction and the limitations of power in our
minimal setup by different, generic, measurement strategies of
the hot and cold modes (Secs. II–IV), finding for each strategy
the rapport of work and information extraction and allowing
for the cost of information erasure. The possibilities of work
extraction without information acquisition, via nonselective
measurements, are analyzed (Sec. V). The findings are sum-
marized in the Conclusion (Sec. VI).

Overall, we present, by generalization of a method based
on optimized homodyning we have recently proposed [57],
the following insight: extraction of work by observation and
feedforward (WOF) that only measures a small fraction of the
input is clearly advantageous compared with the conceivable
alternatives. As discussed in the Conclusion, our results may
become the basis of a practical strategy of converting thermal
noise to useful work in optical setups, such as coherent ampli-
fiers of thermal light, as well as in their optomechanical [54]
and photovoltaic [58] counterparts.

II. WORK EXTRACTION BY OBSERVATION
AND FEEDFORWARD FROM A THERMAL MODE

To circumvent the tradeoff between efficiency and power
that is inherent in heat engines, one may consider information
engines (IEs) whose power is determined by the measurement
duration and the detector resetting time.

For the minimal scheme of a single hot mode considered
here, the need for an IE arises since its passive (particularly
thermal) state cannot be used for extracting work by unitary
transformations (Appendix A). Namely, we need to measure
the state and apply feedforward to extract work from the infor-
mation. We shall present our idea concerning work extraction
from a thermal state via quantum measurements that probe
only a small fraction of the input so as to minimize the mea-
surement cost and feedforward of the acquired information in
order to steer the unmeasured (dominant) fraction at low cost.

Several methods based on what we have dubbed [57] “work
by observation and feedforward (WOF)” will be compared in
the following subsections.

A. WOF by energy measurement of the entire thermal field

If one performs sufficiently many energy measurements
of the thermal oscillator mode and transforms each time the
postmeasured state to the ground state, the work extracted

from the ensemble is the average energy of the oscillator,

〈E〉 = h̄ωn̄. (1)

The ideal extraction method consists of many quantum
nondemolition (QND) Fock-state measurements, i.e., |n〉〈n|
projectors, each projection followed by displacement (down-
shift) to the ground (vacuum) state |0〉 via the unitary
operation |0〉〈n| + |n〉〈0|. Such operations are hard to imple-
ment, even conceptually. In what follows, we do not discuss
such QND operations, but rather realistic, finite accuracy
measurements that result in dispersion (spread) in the number-
state basis.

We are only concerned here with the fundamental cost of
detector resetting as opposed to the cost of idealized projective
measurement [59] that bears infinite cost and time. According
to Landauer’s erasure principle [42], the energetic cost of re-
setting a detector that is kept in an environment at temperature
TD is given by the amount

QD = kBTDID (2)

that is proportional to its entropy increase ID.
We find (Appendix E) that the detector entropy increase is

the same as the entropy of the input thermal distribution,

S(n̄) = kB[(n̄ + 1) ln(n̄ + 1) − n̄ ln n̄],

ID = S(n̄)/kB = 1 + ln n̄ for n̄ � 1. (3)

The net work gained is therefore bounded by

W = 〈E〉 − QD. (4)

Thus, for TD � Th, WOF by energy measurement of the
entire input is an inefficient method that wastes most of the
gained work on the detector heat up. The only way to gain
work by this method is to lower the temperature TD com-
pared to the input (hot-mode) temperature Th in order to
achieve W � QD. Furthermore, as discussed in this section,
the cost of feedforward that is required to extract work from
the postmeasured state increases with the information gain.
To remedy these drawbacks, we proposed [57] to lower the
entropy increase of the detector (and not only to reduce the
environmental temperature TD to minimize the resetting cost)
by measuring only a small fraction of the input, as shown in
Secs. II B, II C, and IV B.

B. WOF by small-fraction photocount

Here, we study work extraction from a thermal field mode
by detecting a small fraction of the input in the Fock basis and
extracting work from the postmeasured state. For an electro-
magnetic (EM) field mode, this corresponds to photocounts
performed on the sampled (reflected) fraction (Fig. 1) of a
thermal input incident on a beam splitter (BS) with high
transmissivity κ2.

A thermal state at the input temperature Th (with mean
quanta number n̄) in the Fock basis is represented as

ρ(Th) =
∑

n

pn|n〉〈n|, (5)

where pn = e− h̄ωn
kBT (1 − e− h̄ω

kBT ) is the occupancy of the nth
Fock state. Detection of m-quanta of the reflected beam occurs
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FIG. 1. Scheme of work extraction by quanta number detection
(photocount) from a small fraction of a noisy input signal. The input
is incident on a BS with high transmissivity κ2, and the photocount is
done on the reflected part. Work is extracted by unitary manipulation
from the postmeasured transmitted part.

with a probability (Appendix C)

pm = (
1 − e− h̄ω

kBT ′ )e− h̄ω

kBT ′ m
, (6)

where we have introduced the effective temperature of the
reflected beam

exp

(
h̄ω

kBT ′

)
= exp

(
h̄ω

kBT

) − κ2

1 − κ2
. (7)

This m-quanta detection yields the postmeasured (conditional)
state that has transmitted through the high transmissivity BS

ρm = 1

m!

(
1 − e− h̄ω

kBT κ2
)m+1

×
[ ∞∑

n=0

e− h̄ω
kBT n(κ2)n (n + m)!

n!
|n〉〈n|

]

=
∞∑

n=0

p(n|m)|n〉〈n|. (8)

The thermal distribution is modified in the postmeasured state
depending on n̄, κ2, and the measurement outcome m (Ap-
pendix C, Fig. 2). The projection on the m-quanta state of
the reflected beam can be geometrically represented by a ring
in the phase plane that cuts out a hollow crater from the
input thermal (Gaussian) distribution (Fig. 3). We observe the

nonmonotonicity of the postmeasured state distribution, which
attests to nonpassivity in Figs. 2 and 3, as the state, diagonal
in Fock basis, in Eq. (8) is passive iff the probabilities satisfy
[49]

p(n|m) � p(n′|m), ∀n, n′ when En > En′ . (9)

The departure from the thermal character of the input is
also manifested by the second-order coherence function [60]
for the postmeasured state in Eq. (8), which can be evaluated
to be

g(2)(0) = 〈a†2
a2〉

〈a†a〉2

=
∑∞

n=0 p(n|m) n(n − 1)

n̄2
m

= 1 + 1

1 + m
. (10)

Thus, the second-order coherence function is independent of
the input beam temperature and the splitting ratio of the
BS. When no photon is detected, i.e., the entire beam passes
through the BS, the transmitted beam is thermal as expected,
with g(2)(0) = 2. In the limit of a large number of detected
quanta m � 1, g(2)(0) of the transmitted beam converges to
g(2)(0) = 1, indicating Poissonian statistics.

Work cannot be extracted by displacing the postmeasured
state in Eq. (8), as its mean quadratures are zero (Ap-
pendix A). Instead, one can perform a (unitary) permutation
in the Fock-basis such that the modified probabilities satisfy
the passive-state condition Eq. (9). The average energy of the
postmeasured state,

Em = h̄ω
(1 + m)κ2

e
h̄ω

kBT − κ2
, (11)

can always be lowered to E ′
m by the permutation that renders

the state passive, thereby extracting the amount of work

Wm = Em − E ′
m. (12)

FIG. 2. The probabilities p(n|m) (blue dots) of occupying the nth Fock state in the postmeasured [Eq. (8)] state when the measurement
outcome is m quanta for a thermal input with a mean number of quanta n̄ = 20, and a BS with transmissivity κ2 = 0.9. The plots clearly show
that the occupation probabilities are nonmonotonic and therefore the postmeasured state is nonpassive. The green dots represent the quanta
number distribution of the thermal input with a mean number of quanta n̄ = 20.
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FIG. 3. The P-distribution of the postmeasured state for a thermal input with n̄ = 20 when the measurement outcome is m quanta
(Appendix C): m = 1 (left) and m = 10 (right). The BS transmissivity κ2 = 0.9. The plots clearly show the nonmonotonicity of the energy
distribution, which implies nonpassivity.

Upon averaging over all outcomes m, the net work gain can
be obtained as

W =
∑

m

pmWm. (13)

The efficiency of this photocount WOF and other WOF con-
sidered in this article is given by

η = W

h̄ωn̄
, (14)

which is the ratio of work extracted to the hot mode energy.
However, the efficiency must account for the resetting cost
[Eqs. (2)–(4)].

We show in Sec. III C that the detector heat-up cost
QD = kBTDID [Eq. (18)] for small-fraction WOF can be made
lower than its counterpart for entire energy measurement in
Sec. II A. This cost can further be suppressed by choosing
a much lower environmental temperature TD for the detector
than that of the hot mode. The practical merit of small-fraction
photocount is that it is much easier to implement than the
perfect QND measurement required in Sec. II A.

Our numerical results confirm that WOF by photocount
of a small fraction can have higher efficiency than the entire
energy measurement for a suitable BS transmissivity κ2 and a
given TD. However, the inability to fully sample the phase-
space distribution of the input in the Fock basis limits the
efficiency. Practically, simple operations such as displacement
cannot extract work in this scheme, as noted above. We there-
fore resort to WOF homodyning in Sec. III C.

C. WOF via phase-sensitive (homodyne) measurement of a
small fraction

In the quantum domain, joint position and momentum mea-
surements cannot be done perfectly and are limited by the
quantum uncertainty. Nevertheless, we have shown that [57] a
passive (thermal) signal can be used to efficiently extract work
via homodyne measurements of its noncommuting orthogo-
nal quadratures performed on a small fraction of the input
and followed by information feedforward of the unmeasured
dominant fraction. The open issue we address is, what is the
rapport between work output and information gain in this
scheme?

We first briefly present this scheme where the hot field
mode is incident on a BS with high transmissivity κ , and a
vacuum mode is incident on the other port of the BS (with

low reflectivity
√

1 − κ2). Finite-temperature input instead of
vacuum has been fully analyzed in the supplementary infor-
mation of Ref. [57], the result being weak modification of the
vacuum input case for low-temperature input.

A homodyne measurement is performed on the orthogonal
quadratures of a small split fraction of the incoming field by
mixing it with an equally small fraction of a local oscillator.
The remaining (unmeasured) part of the hot-mode field is
projected onto a state from which work can be extracted by
a unitary transformation (displacement). We stress that the
goal is not to remove as much heat as possible but to ex-
tract maximal work by maximizing ergotropy. This process is
not equilibration with a zero-temperature bath but a maximal
change in the state passivity by information acquisition, as
detailed below.

A thermal state of a harmonic oscillator can be represented
as a random mixture of coherent states |α〉. Assume first
that a coherent state |α〉 with complex coherent amplitude
α = 1√

2
(x + ip) enters the setup in Fig. 4. After the first BS

with splitting ratio κ2/(1 − κ2), the state |κα〉 is transmitted
and the state |√1 − κ2α〉 is reflected towards the homodyne
detectors for estimating the quadratures x̂ and p̂ of the input
state. We resort to a local oscillator in a coherent state with

FIG. 4. Scheme of the setup for WOF by small-fraction homo-
dyning: an unknown state (here labeled as coherent state |α〉) enters
a beam splitter, which transmits a fraction κ2 of the input energy and
reflects

√
1 − κ2. On the reflected part, a homodyne measurement is

performed to estimate the quadratures x and p.
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FIG. 5. The P-distribution of the postmeasured state for a thermal input with n̄ = 16 when the measurement outcomes are �nx and �np.
The BS transmissivity κ2 = 0.75 and β = 1.4.

real quadrature-amplitude β and to its imaginary quadrature
counterpart with amplitude iβ. The modes 0,1,2,3,4 behind
the BS are in a multimode (product) coherent state. The photo-
count differences �nx ≡ n1 − n2 and �np ≡ n3 − n4 in Fig. 4
carry information on the input-field quadratures x and p [57].

Let us now take the input state to be a mixture of coherent
states,

	̂ =
∫ ∫

P(α)|α〉〈α|d2α. (15)

For a thermal input state with a mean number of quanta n̄, the
Glauber-Sudarshan phase-space distribution is Gaussian in the
quadratures,

P(α) = 1

π n̄
exp

(
−|α|2

n̄

)

≡ P(x, p) = 1

2π n̄
exp

(
−x2 + p2

2n̄

)
. (16)

The distribution of α (see Fig. 5), conditioned on the detection
of quanta number differences �nx and �np, is [57]

P(α|�nx,�np) = p(�nx,�np|α)P(α)

p(�nx,�np)
. (17)

The unmeasured (transmitted) field mode has the state
(conditional on the detection of �nx and �np)

	̂(�nx,�np) = 1

κ2

∫ ∫
P
(α

κ
|�nx,�np

)
|α〉〈α|d2α. (18)

This state has in general nonvanishing mean values of quadra-
tures x̂ and p̂,

〈x̂〉 = κ

∫ ∫
xP(α|�nx,�np)d2α,

〈p̂〉 = κ

∫ ∫
pP(α|�nx,�np)d2α. (19)

A great merit of this scheme is that one can extract most of
the stored work (albeit not fully [57]) by simply downshift-
ing (displacing to the origin) the state [Eq. (18)] such that
the mean quadratures of the final state are zero. The mean
work obtained in this process can be found by averaging
h̄ω
2 (〈x̂〉2 + 〈p̂〉2) over all values of �nx, �np, and subtracting

the invested energy of the two local oscillators 2h̄ωβ2. The

extractable work is then found to be

W ≈ h̄ω

2

∫∫
(〈x̂〉2 + 〈p̂〉2)p(�nx,�np)d�nxd�np−2h̄ωβ2

≈ 2h̄ωβ2

[
κ2(1 − κ2)n̄2

2β2 + (1 − κ2)(1 + 2β2)n̄
− 1

]
. (20)

The expression can be optimized with respect to β and κ

(Appendix E). The resulting maximal work gained by using
the information as feedforward to downshift the unmeasured
part is

Wmax ≈ h̄ω(
√

n̄ − √
n̄ + 1 − 1)2

(
1 − 1√

n̄

)
. (21)

For large n̄, the optimized values of the BS transmissivity
and local oscillator energy read as 1 − κ2 = 1√

n̄
and 2β2 =√

n̄, respectively, and the maximal extractable work is given
by

Wmax ≈ h̄ω

[
n̄ − 4

√
n̄ + 6 + O

(
1√
n̄
,

1

n̄

)]
. (22)

In Fig. 6 we compare the efficiency in the small-fraction
WOF homodyning scheme with that of small-fraction pho-
tocount in Sec. II B. In photocount we do not obtain phase

FIG. 6. Efficiency η = W/h̄ωn̄ of extractable work by small-
fraction photocount WOF compared to small-fraction homodyne
WOF as a function of the mean input quanta number n̄. The BS
transmissivity for the photocount scheme is κ2 = 0.75.
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information, only number-state probabilities, hence the work
extraction and its efficiency are expected to be lower than
by homodyning. However, this turns out to be true only for
large n̄. This is due to the local oscillator energy invested in
homodyning WOF, whereby much of the work is wasted for
small n̄, in contrast to photocount.

III. WOF INFORMATION ERASURE
AND FEEDFORWARD CONSIDERATIONS

The work information tradeoff in any realistic IE [45,46] is
dependent on the cost of information erasure (resetting) dis-
cussed in Secs. IV C–IV E and feedforward cost in Secs. IV A
and IV B. The latter, however, is specific to the concrete
implementation and cannot be generally quantified. Yet, the
lower bound on the feedforward cost is determined by the in-
formation gained by the measurement, also known as mutual
information.

A. Mutual information and feedforward cost bound

Let us calculate the information gain, characterized by the
mutual information [45,46], that needs to be processed for
feedforward in this WOF. If the input is in a state n and we
get a measurement outcome m with probability p(m), then the
pointwise mutual information

Imn = ln p(m|n) − ln p(m) (23)

quantifies the uncertainty reduction or equivalently informa-
tion gain by the measurement outcome m [61]. Here p(m|n)
is the conditional probability, and − ln p(m) quantifies the
uncertainty in the measurement outcome m. If we average this
pointwise mutual information over the joint probability dis-
tribution p(m, n), we get the total mutual information which
quantifies the correlation between the input statistics of the
measured system and the outcomes [61], i.e.,

I =
∑
m,n

p(m, n)Imn. (24)

Equivalently, the mutual information can be expressed in
terms of the corresponding entropies as (Appendix F)

I = −
∑

n

p(n)S(p(m|n)) + S(p(m)). (25)

This information gain needs to be processed for work extrac-
tion via feedforward. The feedforward cost associated with the
information gain has the lower bound [62]

EF � kBTDI (26)

when the information is processed at an environmental tem-
perature TD.

B. Mutual information and feedforward cost bound for
small-fraction homodyne WOF

Let us calculate the information gain, characterized by
the mutual information [45,46], that needs to be processed
for feedforward in this small-fraction homodyne WOF. The

average mutual information can be expressed as (Appendix F)

I =
∫∫∫ ∫

ln
P(x, p|�nx,�np)

P(x, p)
P(x, p|�nx,�np)

× p(�nx,�np)d�nxd�npdxd p

= 〈Ix〉 + 〈Ip〉, (27)

as the joint probabilities factorize in x and p, where

〈Ix〉 =
∫∫

ln
P(x|�nx )

P(x)
P(x, |�nx )p(�nx )d�nxdx = 〈Ip〉.

(28)

Using the optimized values of β and κ for maximum work
extraction (Appendix E), we obtain for n̄ � 1

〈Ix〉 ≈ −1

2
ln

(
1 − n̄

n̄ + 2
√

n̄

)
. (29)

The total mean mutual information in this approximation is
thus

I = 〈Ix〉 + 〈Ip〉 ≈ 1

2
ln

n̄

4
. (30)

The corresponding cost of signal processing (feedforward)
has the lower bound [62]

EF � kBTD
1

2
ln

n̄

4
. (31)

Therefore, the bound on the cost of feedforward is much lower
for large n̄ compared to the work gain that scales with n̄.
One can further lower the cost by reducing the environment
temperature TD.

C. Resetting cost following photocount of entire thermal input

The increase in detector entropy discussed in Sec. II A
sets a bound on WOF efficiency by photocount of the entire
thermal input

η � h̄ωn̄ − kBTDID

h̄ωn̄
. (32)

Here the average information stored in the detector that needs
to be erased after WOF is

ID = −
∑

m

pm ln(pm). (33)

For n̄ � 1, this bound becomes

η � 1 − kBTD[1 + ln(n̄)]

h̄ωn̄
. (34)

The condition for nonzero WOF efficiency in this scheme is
thus

kBTD � h̄ωn̄

1 + ln(n̄)
. (35)

This bound on TD will be compared in what follows to its
counterpart by small-fraction WOF. The above bound for
nonzero efficiency can also be expressed as

n̄ � n̄D + 1

1 − ln n̄D
ln(n̄D+1)

, (36)

where n̄D is the mean number of quanta in the detector when
it is kept in an environment at a temperature TD.
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D. Resetting cost for small-fraction photocount WOF

For the small-fraction photocount scheme in Sec. II B,
the tradeoff between the detection cost (energy and entropy)
and the amount of extracted work obviously depends on the
reflected fraction 1 − κ2. Inspired by the optimization for ho-
modyne WOF (Appendix E), we choose the reflected 1 − κ2

fraction to be

1 − κ2 = 1/
√

n̄. (37)

In this case, the detector uses (absorbs, in the case of photons)√
n̄ mean quanta for detection, instead of n̄ without BS. The

mean energy used for detection is 1/
√

n̄ fraction of the input.
The entropy increase of the detector is given for n̄ � 1 by

ID = 1 + ln(
√

n̄). (38)

Therefore, the detector heat-up cost is then

QD = kBTD[1 + ln(
√

n̄)] (39)

for large n̄. The corresponding upper bound of WOF effi-
ciency is

η � (1 − 1/
√

n̄)h̄ωn̄ − kBTD[1 + ln(
√

n̄)]

h̄ωn̄
. (40)

Hence, for n̄ � 1 the condition of nonzero WOF efficiency is
modified to

kBTD � 2h̄ωn̄

2 + ln(n̄)
. (41)

Therefore, by resorting to the small fraction photocount in
Sec. II B, we can almost double the upper limit on TD for work
extraction, which is a considerable advantage.

E. Resetting cost for small-fraction homodyne WOF

In this scheme, the entropy increase of the detectors factor-
izes for x and p, yielding

IDx = IDp = −
∫

P(�nx ) ln P(�nx ) = 1

2

[
1 + ln

(
2πσ 2

�n

)]
,

(42)
where

P(�nx,�np) ≈ 1

2πσ 2
�n

exp

[
−�n2

x + �n2
p

2σ 2
�n

]
,

2σ 2
�n = 2β2 + n̄(1 − κ2)(2β2 + 1)≈ n̄ + 2

√
n̄. (43)

The total entropy increase is then

ID = 2IDx = 1 + ln
(
2πσ 2

�n

)
(44)

= 1 + ln π (n̄ + 2
√

n̄). (45)

Therefore, by following the same procedure as for the pho-
tocount scheme, we find the upper bound on TD for nonzero
WOF efficiency to be

kBTD <
h̄ωn̄

1 + ln(π n̄)
(46)

for n̄ � 1.

FIG. 7. Resetting the detectors with energy gap h̄ω (in units of
h̄ω0): The evolution is marked by a red line in the (ω, n̄D ) plane.
(1) Starting with n̄D = 3, adiabatically decrease ω to reach the initial
temperature. (2) Isothermally increase ω to reach n̄D = 0. (3) Adia-
batically return the frequency to its initial value. Broken blue lines
are isotherms at various temperatures.

If, instead of small-fraction homodyne one performs ho-
modyning on the entire field, one has

P′(�nx,�np) ≈ 1

2πσ 2
exp

[
−�n2

x + �n2
p

2σ 2

]
, (47)

where

2σ 2 = 2β2 + n̄(2β2 + 1) ≈ n̄
√

n̄ + n̄ + √
n̄ (48)

for large n̄. The entropy increase of the detector in this case,

ID = 1 + ln π (n̄
√

n̄ + n̄ + √
n̄), (49)

assuming the same local oscillator energy as for small-fraction
homodyning. The upper bound on TD for nonzero WOF effi-
ciency is then given by

kBTD <
h̄ωn̄

1 + ln(π n̄3/2)
(50)

for n̄ � 1. This implies that one can increase the upper bound
on TD almost by a factor of 3/2 by resorting to small-fraction
homodyne WOF, instead of the entire field homodyne scheme.
If we choose to reduce the environmental temperature of the
detector by �TD, the extra invested energy is �QD = CD�TD,
where CD is the heat capacity of the setup.

F. Energetically optimal resetting cost

Let us consider an energetically optimal strategy to reset
the photodetectors. A photodetector that consists of N identi-
cal two-level atoms that collectively absorb a few quanta may
be described by cooperative Dicke states [63–68], which can
be approximated for N → ∞ by harmonic-oscillator states.
We assume that we can control the detector frequency (energy
gap) (see Fig. 7) and implement the following steps:
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(i) Adiabatically decrease the frequency ω′ of the detector
mode until the detector equilibrates with the environment at
temperature TD. This requires

ω′ = kBTD

h̄
ln

(
1 + 1

n̄D

)
. (51)

During this step one can get work in the following amount
from the four detectors in homodyne WOF,

W1 = 4h̄(ω − ω′)n̄D

= 4h̄ωn̄D − 4kTDn̄D[ln(n̄D + 1) − ln n̄D]. (52)

(ii) Isothermally increase their frequency to such a value
that the mean photon number in the mode vanishes, i.e.,
h̄ω f � kBTD. To this end, one has to perform the work

W2 = 4h̄ω′ ln(1 + n̄D)

ln
(
1 + 1

n̄D

)
= 4kBTD ln(1 + n̄D). (53)

The heat dissipated to the environment by the four detectors
is then

QD = 4h̄ω′
[

n̄D + ln (1 + n̄D)

ln
(
1 + 1

n̄D

)
]

= 4kBTD

[
n̄D ln

(
1 + 1

n̄D

)
+ ln (1 + n̄D)

]
= 4kBTD[(n̄D + 1) ln(n̄D + 1) − n̄D ln n̄D]. (54)

(iii) Adiabatically bring the frequency of the oscillator to
its initial value. Since no quanta are present at this stage, this
action requires no work.

Thus, the work required for resetting the detectors is

WR = W2 − W1

= 4kBTD[(n̄D + 1) ln(n̄D + 1) − n̄D ln n̄D] − 4h̄ωn̄D. (55)

From Eqs. (54) and (56), we have

QD = 4h̄ωn̄D + WR. (56)

Equation (56) shows that the heat dissipated by the detector re-
setting is partly covered by the energy stored in the detectors,
4h̄ωn̄D, and partly by additional work, WR, that needs to be
invested in the resetting. This additional work can, however,
be zero for n̄D satisfying

h̄ω

kBTD
=

(
1 + 1

n̄D

)
ln(n̄D + 1) − ln n̄D. (57)

For n̄D higher than this value, the net work WR is negative.
Namely, one can get useful work by resetting the detectors to
zero by manipulating the detector frequency.

While the outlined method may, in principle, save us en-
ergy or work on the detector resetting, it suffers from some
drawbacks. It is adiabatic, i.e., extremely slow, and requires
frequency manipulation of the detectors modeled as oscilla-
tors. Yet, it is preferable to reset the detectors by continuously
cooling them at the highest rate possible, since the work
consumption is modest provided the initial detector temper-
ature is low enough. It is particularly important to maximize
the WOF power, which is limited by the detector cooling

time. State-of-the-art superconducting photodetection allows
ns-scale detector resetting by cooling [69,70].

IV. WORK EXTRACTION FROM PARTIAL
INFORMATION: COARSE-GRAINING EFFECTS

A. Why consider coarse-graining?

For practical reasons, detectors may not have sufficient
resolution to record the full information available on the input
state, either by photocounts or homodyning. This situation
prompts a conceptual question: how does the tradeoff be-
tween resolution and information affect the extractable work
efficiency?

The distribution of photocounts in each detector, for
large quanta numbers, can be well approximated by the
Gaussian distribution. The question is, how does this distribu-
tion change under coarse-graining? The Gaussian distribution
of a random variable x has the form G(x) = 1

σ
√

2π
e− 1

2 ( x−μ

σ
)2

.
We take, as is customary, the continuous limit of the photo-
count probability function (although the counts are discrete).
We assume the coarse-grained detector to be such that it can-
not differentiate between counts of photocounts in blocks of
size R. We set the blocks such that the mean of the distribution
is in the middle of a block. As an example, The probability
that an outcome is in a block which is, say, M blocks to the
right from the mean is given by∫ r2

r1
G(x)dx = π

(
Erf

[
μ − r1√

2σ

]
− Erf

[
μ − r2√

2σ

])
, (58)

where r1 = μ + (M + 1/2)R, r2 = μ + (M + 3/2)R and the
error function Erf(x) = ∫ x

0 e−t2
dt . The protocol is then as

follows:
(i) Assume the resolution of the detectors is R; for the

�nx/p records assume the values 0, R, 2R, . . . , NR.
(ii) Calculate the average postmeasured state and the corre-

sponding work extractable by displacement from each block
of area R × R to get the average work gain from the coarse-
grained WOF.

B. Extremely coarse grained homodyning:
WOF via sign measurements

Let us consider an extreme coarse-grained situation in
which the detected signal (�nx or �np) is positive (+) or
negative (−). There are four distinct possibilities for sgn(�nx)
and sgn(�np), corresponding to work gain by displacement
W++, W+−, W−+, W−−: For, e.g., W+− we get

W+− = h̄ω

2
(〈x̂〉2

+− + 〈p̂〉2
+−) = h̄ω

κ2

16γ 2

2σ 2
�n

π
. (59)

Here we have used

〈x̂〉+− = κ

∫ −∞

−∞
dx

∫ −∞

−∞
d p

∫ 0

−∞
d�np

∫ ∞

0
d�nx

× xP(x, p|�nx,�np)P(�nx,�np)

= κ

4γ

√
2σ 2

�n

π
,
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FIG. 8. Efficiency η = W/h̄ωn̄ plotted vs the mean number of
input quanta n̄ for the scheme of sign measurement WOF. The red
line represents the maximal η = 1/2π .

〈p̂〉+− = − κ

4γ

√
2σ 2

�n

π
,

γ = β
√

1 − κ2

[
1 + 1

n̄(1 − κ2)
+ 1

2β2

]
,

σ 2
�n = β2 + n̄(1 − κ2)

(
β2 + 1

2

)
. (60)

The total average work obtained by downshifting the postmea-
sured state following a sign measurement is evaluated to be

W = W++ + W+− + W−+ + W−− − WLO

= h̄ω
κ2

4γ 2

2σ 2
�n

π
− 2h̄ωβ2

= h̄ω

2π

2β2κ2(1 − κ2)n̄2

2β2 + (1 − κ2)(1 + 2β2)n̄
− 2h̄ωβ2. (61)

The positive part (work gain) of Eq. (61) is similar to its
counterpart Eq. (52) for the work gain by fine-grained homo-
dyning, but in Eq. (61) the work is smaller by a factor of 1

2π
,

since the phase is not recorded by sign measurement.
The minimum mean number of quanta for nonzero effi-

ciency by sign measurement is n̄ = 2π as opposed to n̄ = 1
for fine-grained homodyne WOF. For large n̄, W is optimized

when 2β2 ≈
√

n̄
2π

and 1 − κ2 ≈ 1√
n̄
, the extractable work then

being

W ≈ h̄ω

2π

[
n̄ − 2(1 +

√
2π )

√
n̄ + 1 +

√
2π + O

(
1√
n̄
,

1

n̄

)]
.

(62)

The efficiency of this scheme is bounded by 1
2π

(see Fig. 8).
The mutual information gain by sign measurement is given

by (Appendix F)

I = −
∫∫

P(x, p)S(p(a, b|x, y))dxd p + S(p(a, b)), (63)

FIG. 9. The cost of erasing the detector information (solid lines)
after the completion of WOF [Eqs. (44), (33), and (64)] and feed-
forward (dashed lines) [Eqs. (30), (25), and (63)] are plotted upon
normalization by kBTD, where TD is the environment temperature at
which the detector is kept. The red, green, and blue correspond to
the small-fraction homodyne, photocount, and sign WOF schemes,
respectively. For small-fraction photocount, BS transmissivity κ2 =
0.75 has been considered. Clearly, QD, EF  W for h̄ω = kBTD.

where a, b ∈ {+,−}. Here the entropy gain by the detectors
for the sign measurement is S(p(a, b)) = ln 4, i.e.,

ID = ln 4. (64)

This mutual information is evaluated by taking the loga-
rithm of the probabilities,

p(+,−|α) =
∫ ∞

0

∫ 0

−∞
P(�nx,�np|α)d�nxd�np

= 1

4

(
1 + Erf

[
μx√
2σα

])(
1 − Erf

[
μp√
2σα

])
,

(65)

where μx =
√

2(1 − κ2)β Reα, μp =
√

2(1 − κ2)β Imα, and

σα = [ (1−κ2 )|α|2
2 + β2]1/2.

Similarly,

p(+,+|α) = 1

4

(
1 + Erf

[
μx√
2σα

])(
1 + Erf

[
μp√
2σα

])
,

p(−,+|α) = 1

4

[(
1 − Erf

[
μx√
2σα

])(
1 + Erf

[
μp√
2σα

])
,

p(−,−|α) = 1

4

(
1 − Erf

[
μx√
2σα

])(
1 − Erf

[
μp√
2σα

])
.

(66)

We find numerically that the lower bound of feedforward cost,
EF � kBTDI, is much lower compared to the fine-grained
homodyne case (see Fig. 9).

These results for work extraction from sign measurements
may be compared to those of the recently proposed Szi-
lard/Maxwell Demon binary measurement engines [45]: a
scheme where two thermal fields with n̄ photons each are
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incident on two highly transmitting BS. A photon click or
no-click is registered for the reflected part in two detectors
resulting in two bits of information at most. If a detector
clicks with probability 1/2, then n̄ of the corresponding output
field increases to (3/2)n̄. For no click, the mean decreases to
(1/2)n̄. Only events where one detector clicks and the other
one does not (in 50% of the cases) produce a net photocurrent
that charges a capacitor, with (1/2)n̄ photons convertible to
photocurrent. Since the two beams have in total 2n̄, only 1/4
of the input energy contributes to work, so that the efficiency
bound is 1/4. Optimization of the click probabilities yields an
efficiency bound to ∼0.3 as compared to near-unity efficiency
for n̄ � 1 by our small-fraction homodyne WOF in Sec. II C.

The comparison of the efficiency bound obtained by such
binary methods with fine-grained WOF shows the clear supe-
riority of the latter. In contrast, the sign measurement provides
comparable performance to Maxwell-Demon binary measure-
ment engines.

V. CAN NONSELECTIVE MEASUREMENTS
YIELD WORK?

Since WOF relies on selective measurements that provide
mutual information on the input state, a basic question is
whether NSMs, which do not provide mutual information,
can yield work. In Sec. V A we show that NSMs are indeed
useless for WOF. By contrast, in Sec. V B we show that NSMs
in a basis that does not commute with the Hamiltonian can
yield not only heat (as shown in Ref. [71]), but also ergotropy.
Finally, in Sec. V C we show that NSMs of correlated modes
can also yield work.

A. NSM of a small fraction: No work

Consider an arbitrary generalized positive operator valued
measurement (POVM), represented by Kraus operators K†

i Ki

for different outcome i, that satisfies
∑

i K†
i Ki = I, where I

denotes the identity operator [61]. If we measure the reflected
part (see Fig. 4) and find the ith outcome corresponding to the
Kraus operator K†

i Ki, then the postmeasured transmitted state
is given by

ρ(i) =
∫ ∫

p(i|α)P(α)

p(i)
|κα〉〈κα|d2α, (67)

where p(i|α) = Tr[K†
i Ki|α〉〈α|]. Therefore, the postmeasured

state for NSM state is

ρ(NSM) =
∫ ∫ ∑

i

p(i)
p(i|α)P(α)

p(i)
|κα〉〈κα|d2α

=
∫ ∫

P(α)|κα〉〈κα|d2α

= 1

κ2

∫ ∫
P(

α

κ
)|α〉〈α|d2α. (68)

This holds true for any complete set of measurements, as

∑
i

p(i|α) = Tr

[∑
i

K†
i Ki|α〉〈α|

]
= Tr[I|α〉〈α|] = 1 (69)

using the linearity of the trace. From Eq. (68), we see that
the form of the input P-distribution remains unaltered for
NSM, and thus the distribution remains thermal with modified
mean quanta n̄ → κ2n̄. Therefore, NSM is a no-go strategy
for WOF, where feedforward of the measurement result is
essential.

B. NSM in a noncommuting basis with the Hamiltonian:
Heat and ergotropy

If we perform a NSM in a basis {|i〉} that does not commute
with an energy basis, the state becomes diagonal in this basis,

ρNSM =
∑

i

pi|i〉〈i|. (70)

Since this basis is off-diagonal in energy eigenbasis,

|i〉 =
∑

n

cn,i|En〉, (71)

where |En〉’s are the energy eigenstate. Therefore, the
postmeasured state following a NSM in a basis that is non-
commuting with H ([ρNSM, H] �= 0) is nonpassive, since a
passive state is always diagonal in an energy basis (Ap-
pendix A).

In [71], the authors showed that work can be extracted
from a single-temperature thermal resource and measurement
without feedforward in a four-stroke engine by a protocol,
which we modify here to account for the possible nonpassivity
of the postmeasured state:

(i) The system, which is initially in equilibrium with a
heat bath at temperature T [and thus in a diagonal state in
the energy basis ρI (λi ) = ∑

n peq
n (λi )|En〉〈En|], undergoes an

adiabatic transformation by changing its energy level spac-
ings from λi to λ f without changing the population. Work is
thereby done on the system, in the amount

WI =
∑

n

[En(λ f ) − En(λi )]peq
n (λi ). (72)

(ii) The system is then measured in a basis other than
the energy eigenbasis: While keeping the Hamiltonian H (λ f )
fixed, an impulsive measurement with possible outcomes Mj ,
j = 1 → N , of an observable that does not commute with
H (λ f ) is performed on the system. This state change im-
plies a change of the occupation probabilities of the energy
eigenstates:

ρI (λ f ) → ρNSM =
∑

j

M†
j ρI (λ f )Mj . (73)

This measurement acts as a hot bath that imparts heat into the
system in the amount

QM =
∑
m,n

[Em(λ f ) − En(λ f )]Tmn peq
n (λi), (74)

where Tmn = ∑
j |〈Em|Mj |En〉|2 denotes the transition prob-

ability from |En〉 to |Em〉. One can view the heat QM to be
provided by a hot bath at temperature TM .

As opposed to Ref. [71], we find that the NSM can yield
not only heat but also ergotropy, �WNSM, whose upper bound
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can be obtained as

�WNSM � E (ρNSM) − E (ρT ′ ), (75)

where ρT ′ is a thermal state with Hamiltonian H (λ f ) at tem-
perature T ′, such that S(ρNSM) = S(ρT ′ ). Thus, in contrast to
a four-stroke engine, where a hot bath renders the system in a
higher energy but still passive state, such an NSM can change
the character of the energy state distribution.

(iii) In the second adiabatic step, the parameter changes
from λ f back to the initial value λi. The work done by the
system is then given by

WII =
∑

n

[En(λi ) − En(λ f )]pNSM
n , (76)

where pNSM
n , the probability of finding the nth eigenstate in

the postmeasurement state [Eq. (73)], is given by

pNSM
n ≡ 〈n; λ|ρNSM|n; λ〉. (77)

(iv) The final step is thermalization with a cold bath at
temperature Tc.

The efficiency of this scheme in Ref. [71] is given by

η = −(WI + WII )

QM
. (78)

As noted above, the treatment in Ref. [71] has not allowed
for the possibility that the measurement may also impart er-
gotropy �WNSM to the system, as does a nonpassive (e.g.,
squeezed) bath [25]. The appropriate efficiency bound then
becomes

ηmax � 1 − Tc

TM

QM

QM + �WNSM
, (79)

which can be evaluated by Eq. (75). This efficiency may
exceed the Carnot bound, thus proving that this machine is
not a heat engine.

C. NSM in a mode-correlated cycle

Here we consider work via NSM from two oscillator
modes, hot (h) and cold (c), that are correlated by their in-
teraction, unlike the input modes in Sec. II. Let us consider a
brief QND measurement that decorrelates modes, thus alter-
ing their correlation energy. Subsequent periodic modulation
of the modes frequencies allows for work extraction follow-
ing an impulsive measurement by a detector D. The total
Hamiltonian describing a system consisting of two (hot-h
and cold-c) interacting modes described by the Hamiltonian
HS = Hh + Hc + Hhc and a detector is

Htot = HS + HSD, (80)

where HSD is the impulsive system-detector interaction that
does not commute with HS ([HS, HSD] �= 0). This total Hamil-
tonian is assumed to be τ -periodic, Htot (τ ) = Htot (0). Work
extraction comes about because the NSM changes the inter-
mode mean correlation energy 〈Hhc〉.

When the detector is traced out, the entropy and energy
of the single mode change since the NSM decorrelates the
modes, thereby increasing their correlation energy by

�ED = −〈Hhc〉Eq > 0. (81)

This scenario stands in contrast to Landauer’s [42], where
such correlations are not accounted for. If the cycle duration
is shorter than the correlation time, tcycle < tc, but longer than
the time needed to perform the measurement, the maximal
amount of extractable work, without measurement readout
(for an NSM), is given by

(WNSM)max = �ED − TD�SD, (82)

where �SD is the entropy increase of the detector due to the
NSM.

The energy �ED consumed by the detector can be a ther-
mal noisy pulse, described by a passive state, so that neither
the detector nor these modes can store ergotropy. The NSM-
based cycle converts such passive input into a nonpassive
output state capable of delivering work.

Such a cycle exemplifies the conclusion that, upon entan-
gling the initially uncorrelated passive (but nonthermal) states
of distinct subsystems, here the intermode and the detector,
the state of one subsystem (here the hot mode) may become
nonpassive and thus deliver work.

The maximum work (per cycle) extractable from a selec-
tive measurement, (Wsel )max, clearly exceeds the NSM-work,
(WNSM)max:

(Wsel )max = (WNSM)max + W, (83)

where W is the work obtained by WOF in Sec. II or IV in
the absence of �ED. The extra work (WNSM)max stems from
correlations or entanglement unaccounted for by the Landauer
principle.

Remarkably, an NSM in this scenario allows for work
extraction from a bath at TD = 0, without information gain:
The reason is that the correlation energy is always negative,
even at TD = 0. Hence, decorrelation of the modes through a
measurement increases the total energy allowing the cycle to
be triggered, yielding the extractable work

(Wsel )max = (WNSM)max > 0. (84)

A similar situation arises for a system and a bath that
adhere to the spin-boson model [72], where work extraction
via NSM can only take place within the correlation timescales.
The joint, entangled multimode state initially at equilibrium,
ρeq, is changed [73] to a product state by the impulsive NSM
[72,73].

VI. CONCLUSIONS

Our comparative analysis of heat to work conversion in
few-mode setups by measurements has led to the following
findings:

(A) As compared to the previously proposed work extrac-
tion by measuring a variable of the entire input [45], we have
shown (Sec. II) that it is advantageous to measure only a small
fraction of the input and extract work from the dominant,
unmeasured fraction by generalizing our recently proposed
method of work by observation and feedforward (WOF) [57].
The main advantage of measuring a small fraction, either
by photocount or by homodyning, is that it bears a much
smaller cost in terms of information (entropy) consumed by
feedforward and by resetting the detectors (after WOF has
been completed).
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(B) We have argued (Sec. III) that, practically, the resetting
of the detectors should preferably be done as fast as possible,
since detector cooling to its initial temperature may carry a
modest energy and entropy cost compared to the extracted
work.

(C) Measurements with partial resolution (coarse-graining)
have been shown (Sec. IV) to yield much less informa-
tion as well as work and efficiency than their fine-graining
counterparts, thereby establishing the rapport of work and
information extraction. Yet, WOF based on extreme coarse-
graining of a small fraction has been shown to favorably
compare with binary-measurement (Maxwell-demon) infor-
mation machines [45–48].

(D) Finally, unread or nonselective measurements (NSMs)
[2] have been shown (Sec. V) to yield no work when applied in
WOF. Yet, they may extract work when performed in a basis
that does not commute with the Hamiltonian: In fact, we have
shown that NSMs may yield considerably more work than
previously proposed [71,74]. In scenarios in which the modes
are nonlinearly correlated, NSM has been noted to yield work
from the intermode correlation energy, a consideration absent
in Landauer’s principle [42]. These scenarios are analogous to
work extraction by NSM from system-bath correlations in the
non-Markovian time domain [72].

The present analysis has not only conceptual but also prac-
tical merit, in particular for optical setups and their acoustic
counterparts. While the spatial profile of electromagnetic or
acoustic field propagation and its mode decomposition are
well controlled by simple elements (collimators, beam split-
ters, lenses, etc.), temporal fluctuations are much harder to
control. Our comparative analysis has presented guidelines
to the alternative methods by which such control can be
accomplished for single-mode, i.e., spatially well-collimated
propagation of thermal noise, resulting in optimized work
extraction. The bounds on this work extraction and the cor-
responding power have been quantified by the minimal costs
required for these tasks, i.e., information transfer for feedfor-
ward and detector resetting.

These bounds are important for determining the feasibility
of few-quanta conversion from heat to work. Optical ele-
ments have been shown to allow the increased concentration
of sunlight so that the stationary power that arrives at the
detector on average is multiphoton, but it has thus far been
unclear what level of power suffices for work generation. Our
analysis makes us cautiously optimistic that this task may
be experimentally accomplished with a few photons. It may
manifest itself, e.g., as the transformation of concentrated sun-
light input into nearly coherent or number-squeezed light at
the output and thereby produce reduced quantum fluctuations
in an optomechanical device [54]. Alternatively, thermal light
input may yield low-noise (low-entropy) photocurrent [58,75]
that can be instrumental for quantum operation of electronic
devices.

The WOF protocols for work extraction discussed in
Secs. II and IV are not only applicable to optical systems,
but also to any noisy source, where homodyning or quanta
number count of continuous variables can be performed. For
example, in ultracold bosonic gases, homodyning was pro-
posed [76] and demonstrated [77]. Photocurrents induced
by signal-pump interference in semiconductors [75,78] and

phonon fields in acoustic structures [79–83] also allow to
split off a small fraction of the input field for observation
(homodyning or others), thereby yielding work from the dom-
inant part of the input. Thus, the proposed WOF schemes
may pave the way towards work extraction in both classical
and quantum regimes of diverse systems using continuous-
variable noise as a resource.
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APPENDIX A: ERGOTROPY AND WORK EXTRACTION

At the outset, we briefly present the key expressions for
work and heat extractable from a quantum system. These
expressions can help guide us through the different work
extraction processes in Secs. II–V.

Ergotropy is the maximum amount of work extractable
for a given Hamiltonian H from a state ρ with mean energy
〈E〉 by unitary transformations. It is quantified as [7,8,25,49–
51,53]

W (ρ, H ) ≡ Tr(ρH ) − min
U

Tr(UρU †H ) � 0, (A1)

where the minimization encompasses all possible unitary
transformations U . To have W (ρ, H ) > 0, the state ρ must
be nonpassive, i.e., it must correspond to a nonmonotonic or
anisotropic distribution of energy eigenvalues (Figs. 3 and 5).
The mean energy 〈E〉 of such a state ρ can be divided into
ergotropy W and passive energy, i.e., the energy that cannot
be extracted as useful work by a unitary operation, which is
given by

〈E〉 − W = Tr(UpρU †
p H ) = Tr(�H ). (A2)

Here Up is the unitary transformation from state ρ to its
(unique) passive counterpart state �. This transformation
minimizes the second term on the right-hand side of (A1).

The ergotropy may increase in a nonunitary fashion due to
the interaction of the system with a bath and be subsequently
extracted as work via a unitary process. Any unitary change
in the passive energy of a system driven by a time-dependent
Hamiltonian results in a change in the extracted work. The
ergotropy of a quantum state may change as a result of a
measurement. In this article, the measurement-based WOF
protocols render a passive (thermal) state nonpassive, i.e.,
endow it with ergotropy.

In the case of small-fraction homodyne WOF, as the dis-
tribution is displaced from the origin, the ergotropy can be
extracted by displacement (downshift) of the state ρ to the
origin [57],

�W = h̄ω

2
(〈x̂〉2 + 〈p̂〉2), (A3)

where 〈x̂〉 and 〈p̂〉 are the mean values of the position and the
momentum, respectively.
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In the case of small-fraction photocount, nonpassivity is
manifested by the nonmonotonic occupation probabilities of
the number states (see Fig. 2). In this case, work can be
extracted from the postmeasured state by permutation of the
number-state basis.

APPENDIX B: THERMODYNAMICS OF A SINGLE
OSCILLATOR MODE

Starting from the partition function

Z =
∞∑

n=0

exp

(
− h̄ω

kBT
n

)
= 1

1 − exp
(− h̄ω

kBT

)
= 1

1 − exp (−β h̄ω)
, (B1)

one finds the mean energy

E = 1

Z

∂Z

∂ (1/kBT )
= h̄ω

exp
(

h̄ω
kT

) − 1
= h̄ωn̄. (B2)

Expressing the relationship between temperature and mean
photon number as

T = h̄ω

kB ln
(
1 + 1

n̄

) , (B3)

we can express the partition function as

Z = n̄ + 1, (B4)

entropy as

S = kB(ln Z + E/kBT )

= kB[(n̄ + 1) ln(n̄ + 1) − n̄ ln n̄], (B5)

and free energy as

F = −kBT ln Z = −h̄ω + kBT ln

[
exp

(
h̄ω

kBT

)
− 1

]

= −h̄ω
ln(1 + n̄)

ln
(
1 + 1

n̄

) . (B6)

We can write the first law (or, more precisely, the combined
theorem) of thermodynamics as

dE = T dS + Pdω, (B7)

where T dS = h̄ωdn̄ is the heat entering the system and Pdω

is the work done on the system by changing the frequency,
where the “pressure” P is given by the derivative F with
respect to ω,

P =
(

∂F
∂ω

)
T

= h̄

exp
(

h̄ω
kT

) − 1
= h̄n̄. (B8)

Thus, we can express the work done on the system as free
energy change, and heat entering the system as entropy change
during an isothermal process,

W = F2 − F1

= h̄(ω1 − ω2) + kT ln
exp

( h̄ω2
kT

) − 1

exp
( h̄ω1

kT

) − 1

= h̄

[
ω1

ln(1 + n̄1)

ln
(
1 + 1

n̄1

) − ω2
ln(1 + n̄2)

ln
(
1 + 1

n̄2

)
]
, (B9)

Q = T (S2 − S1)

= h̄

[
ω2

exp
( h̄ω2

kT

) − 1
− ω1

exp
( h̄ω1

kT

) − 1

]

+ kT ln
1 − exp

(− h̄ω1
kT

)
1 − exp

(− h̄ω2
kT

)
= h̄ω2

(n̄2 + 1) ln(n̄2 + 1) − n̄2 ln n̄2

ln
(
1 + 1

n̄2

)
− h̄ω1

(n̄1 + 1) ln(n̄1 + 1) − n̄1 ln n̄1

ln
(
1 + 1

n̄1

) . (B10)

Considering the limit h̄ω2 � kBT , one can find the work
necessary to isothermally compress the oscillator to infinite ω,
as well as the corresponding heat (using here n̄ and ω instead
of n̄1 and ω1),

W∞ = −F = h̄ω − kBT ln

[
exp

(
h̄ω

kBT

)
− 1

]

= h̄ω
ln(1 + n̄)

ln
(
1 + 1

n̄

) , (B11)

Q∞ = −T S = −h̄ω

[
n̄ + ln (1 + n̄)

ln
(
1 + 1

n̄

)]
. (B12)

As can be seen, W∞ + Q∞ = −h̄ωn̄, i.e., during an isothermal
process the work spent on increasing ω plus the initial energy
h̄ωn̄ are converted into heat going to the environment. Note
that in the limit kBT � h̄ω, or n̄ � 1, one gets

W∞ ≈ h̄ω

[(
n̄ + 1

2

)
ln n̄ + 1

]
, (B13)

Q∞ ≈ −h̄ω

[(
n̄ + 1

2

)
ln n̄ + n̄ + 1

]
. (B14)

APPENDIX C: PHOTOCOUNT OF A REFLECTED
THERMAL BEAM

When a Fock state |n〉 is incident on a beam-splitter (BS)
with transmissivity κ2, the transmitted state [60] is

|n, 0〉out =
n∑

q=0

√
n!

(n − q)!q!
(κ )q(

√
1 − κ2)n−q|q, n−q〉.

(C1)

If we detect m photons in the reflected beam, the resulting
transmitted state is |n − m〉. This event has the probability

p′
m = n!

(n − m)!m!
(κ2)n−m(1 − κ2)m. (C2)

For a thermal input as in Eq. (5), detecting m quanta in the
reflected beam has the probability

pm = (1 − κ2)m
(
1 − e− h̄ω

kBT
)
e− h̄ω

kBT m

(
1 − e− h̄ω

kBT κ2
)(m+1)

. (C3)

As the BS does not change the distribution of the input, the re-
flected beam corresponds to a thermal distribution with mean
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quanta number (1 − κ2)n̄ [Eq. (7)]. The average energy of the
postmeasured state is

Em = h̄ωn̄m = h̄ω

∞∑
n=0

p(n|m)n = h̄ω
(1 + m)κ2

e
h̄ω

kBT − κ2
. (C4)

Assume a thermal state with mean photon number n̄ entering
a beam splitter with reflectivity

R = 1 − κ2. (C5)

The reduced density matrix for the reflected beam corresponds
to a thermal state with mean photon number Rn̄. Let us as-
sume that m photons in the reflected beam were detected. The
conditional probability distribution of the photon number n is
evaluated,

p(n|m) = p(n ∧ m)

prefl(m)
, (C6)

where p(n ∧ m) denotes the joint probability of having m
photons in the reflected beam and n photons in the transmitted
beam. It is given by

p(n ∧ m) = p(n ∧ m|n + m)pin(n + m), (C7)

p(n ∧ m|n + m) =
(

n + m

m

)
Rm(1 − R)n, (C8)

pin(n + m) = n̄n+m

(n̄ + 1)n+m+1
, (C9)

prefl(m) = (Rn̄)m

(Rn̄ + 1)m+1
, (C10)

where pR(m) is the marginal probability of having m photons
in the reflected beam, and pin(n + m) is the probability of
having n + m photons in the incoming beam. Using these
equations, one finds

p(n|m) =
(

n + m

m

)
Rm(1 − R)n n̄n+m

(n̄ + 1)n+m+1

(Rn̄ + 1)m+1

(Rn̄)m

= (n + m)!

n!m!
(1 − R)n n̄n(Rn̄ + 1)m+1

(n̄ + 1)n+m+1
. (C11)

This result is exact. If the numbers n, m are too large so that
computation of the factorials is impractical, one can use an
approximation based on the Stirling formula,

n! ≈
√

2πn
(n

e

)n
, (C12)

to get (see Fig. 10)

p(n|m) ≈
√

n + m

2πnm

( n

m

)m(
1 + m

n

)n+m

× (1 − R)n n̄n(Rn̄ + 1)m+1

(n̄ + 1)n+m+1
. (C13)

FIG. 10. Comparison of the exact conditional probability distri-
bution p(n|m) as in Eq. (C11) (blue) with the approximate formula
of Eq. (C13) (red).

APPENDIX D: PHASE-PLANE DISTRIBUTION OF THE
POSTMEASURED STATE FOLLOWING

SMALL-FRACTION PHOTOCOUNT

The distribution of α, conditioned on the detection of
quanta number m, is

P(α|m) = p(m|α)P(α)

p(m)
. (D1)

The unmeasured (transmitted) field mode has the state (con-
ditional on the detection of m)

	̂(n) = 1

κ2

∫ ∫
P
(α

κ
|m

)
|α〉〈α|d2α. (D2)

In small-fraction photocount, the distribution of detected pho-
tons for a coherent state input |α〉 yields a Poissonian statistics
with the mean number of quanta λ = (1 − κ2)|α|2,

p(m|α) = e−λ λm

m!
. (D3)

In Eq. (D1), p(m) is the quanta number distribution of a
thermal state with mean quanta number (1 − κ2)n̄, obtained
according to Eq. (7).
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APPENDIX E: WORK OPTIMIZATION FOR
PHASE-SENSITIVE MEASUREMENT

Upon substituting ξ = 2β2 and ε = 1 − κ2, the work in
Eq. (20) is optimized for

ξ =
√

n̄(1 − ε) − 1

1 + 1
εn̄

(E1)

and

ε =
√

n̄ − √
n̄ + 1 − 1

n̄
. (E2)

Using these values, one gets the maximal extractable work in
Eq. (21) as

Wmax/h̄ω ≈ (
√

n̄ − √
n̄ + 1 − 1)2

(
1 − 1√

n̄

)
. (E3)

Let us optimize the extractable work in Eq. (90). Substitut-
ing ξ = 2β2 and ε = 1 − κ2, one can write Eq. (90) as

W/h̄ω = n̄

2π

1 − ε

1 + 1
ξ

+ 1
εn̄

− ξ . (E4)

Equating ∂W
∂ξ

= 0, we get a quadratic equation

(
1 + 1

εn̄

)2

ξ 2 + 2

(
1 + 1

εn̄

)
ξ + 1 − n̄(1 − ε)/2π = 0,

(E5)
whose only positive root is given by

ξ =
√

n̄(1 − ε)/2π − 1

1 + 1
εn̄

. (E6)

Substituting this in Eq. (E4), we get

W/h̄ω = n̄ε

n̄ε + 1

[
n̄

2π
(1 − ε) − 2

√
n̄

2π
(1 − ε) + 1

]
. (E7)

For high transmittance BS using the approximation
√

1 − ε ≈
1 − ε/2, we get

W ≈ n̄ε

n̄ε + 1
[(

√
n̄/2π − n̄/2π )y + (

√
n̄/2π − 1)2]. (E8)

Again equating ∂W
∂ε

= 0, we get

n̄ε2 + 2ε − 1 +
√

2π/n̄ = 0. (E9)

The above equation has only one positive root given by

ε =
√

n̄ − √
2π n̄ + 1 − 1

n̄
. (E10)

APPENDIX F: MUTUAL INFORMATION
IN PHOTOCOUNT, HOMODYNE, AND SIGN WOF

Using Eqs. (43) and (44), we get

I = −
∑

n

p(n)S(p(m|n)) + S(p(m)). (F1)

Here according to Bayes’ theorem, the conditional probabili-
ties follow:

p(m|n) = p(n|m)p(m)

p(n)
. (F2)

The Shannon entropy S(p(i)) associated with the probability
distribution p(i) is given as

S(p(i)) = −
∑

i

p(i) ln p(i). (F3)

We have used Eq. (F1) for computing mutual information
for the photocount WOF and sign measurement WOF. The
sum is replaced by an integral where the continuum limit is
applicable. We have considered natural logarithm instead of
log2 in computing mutual information or entropy. However,
as we are interested in calculating the erasing lower bound
on the cost of the detector and feedforward cost, which are
kBTD ln 2 times the entropy and mutual information in bits
(i.e., with log2), we compute I and ID in natural logarithm
units and multiply them by kBTD.

For calculating mutual information for the homodyne
WOF, we have additionally considered properties of mutual
information of two Gaussian distributions as detailed below.
The mean mutual information generated in the detection pro-
cess is given by Eqs. (38) and (39). Their explicit evaluation
is effected by taking

P(x, p|�nx,�np)

≈ 1

2πσ 2
x

exp

[
− (x − x̄�nx )2 + (p − p̄�np)2

2σ 2
x

]
, (F4)

with

x̄�nx = �nx

β
√

1 − κ2
[
1 + 1

n̄(1−κ2 ) + 1
2β2

] , (F5)

p̄�np = �np

β
√

1 − η2
[
1 + 1

n̄(1−κ2 ) + 1
2β2

] , (F6)

σ 2
x = n̄

1 + 2β2 n̄(1−κ2 )
2β2+n̄(1−κ2 )

. (F7)

Equation (38) can be evaluated using the following prop-
erty of a Gaussian distribution of variables X and Y in which
the mutual information is given by

〈I (X ;Y )〉 = −1

2
ln

(
1 − var2

X,Y

varX varY

)
. (F8)

We find

varx,�nx = varp,�np = εσ 2
�n (F9)

and

varx = varp = n̄, (F10)

var�nx = var�np = σ 2
�n, (F11)

σ 2
�n = β2 + n̄(1 − κ2)

(
β2 + 1

2

)
. (F12)

For sign measurement WOF, P(�nx,�np|α) in Eq. (65)
can be approximated for large quanta number as [57]
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P(�nx,�np|α) ≈ 1

2π
[ (1−κ2 )|α|2

2 + β2
] exp

[
− (�nx −

√
2(1 − κ2)β Reα)2 + (�np −

√
2(1 − κ2)β Imα)2

(1 − κ2)|α|2 + 2β2

]
.
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Sci. Technol. 5, 035006 (2020).
[24] L. A. Correa, J. P. Palao, D. Alonso, and G. Adesso, Sci. Rep.

4, 3949 (2014).
[25] W. Niedenzu, V. Mukherjee, A. Ghosh, A. G. Kofman, and

G. Kurizki, Nat. Commun. 9, 165 (2018).
[26] M. O. Scully, K. R. Chapin, K. E. Dorfman, M. B. Kim, and A.

Svidzinsky, Proc. Natl. Acad. Sci. (USA) 108, 15097 (2011).
[27] R. Uzdin, A. Levy, and R. Kosloff, Phys. Rev. X 5, 031044

(2015).

[28] A. Ghosh, D. Gelbwaser-Klimovsky, W. Niedenzu, A. I.
Lvovsky, I. Mazets, M. O. Scully, and G. Kurizki, Proc. Natl.
Acad. Sci. (USA) 115, 9941 (2018).

[29] K. Brandner, M. Bauer, and U. Seifert, Phys. Rev. Lett. 119,
170602 (2017).

[30] W. Niedenzu and G. Kurizki, New J. Phys. 20, 113038 (2018).
[31] A. Manatuly, W. Niedenzu, R. Román-Ancheyta, B. Çakmak,
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