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Liquid-hexatic-solid phases in active and passive Brownian particles determined
by stochastic birth and death events
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We study the effects of stochastic birth and death processes on the structural phases of systems of active
and passive Brownian particles subject to volume exclusion. The total number of particles in the system is a
fluctuating quantity, determined by the birth and death parameters and on the activity of the particles. As the birth
and death parameters are varied, we find liquid, hexatic, and solid phases. For passive particles, these phases are
found to be spatially homogeneous. For active particles, motility-induced phase separation (coexisting hexatic
and liquid phases) occurs for large activity and sufficiently small birth rates. We also observe a reentrant transition
to the hexatic phase when the birth rate is increased. This results from a balance of an increasing number of
particles filling the system, and a larger number of defects resulting from the birth and death dynamics.
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I. INTRODUCTION

Active matter [1,2] has been intensively investigated in
the last decades partly due to its many applications to living
systems [3]. Examples include flocks of birds [4], schools
of fish [5,6], the swarming of bacteria [7], and the migra-
tion of cancer cells [8]. Dense particle configurations are
particularly relevant for biological processes such as wound
healing [9–11] and tissue formation [12]. The interplay be-
tween motility, interactions, biochemical dynamics, and other
effects induce interesting collective phenomena in these sys-
tems [7,13–15].

A key model in this area is that of active Brownian
particles (ABPs). This model describes a system of self-
propelled particles which interact only through mutual volume
exclusion [16–18]. In two dimensions, the nonequilibrium
phase diagram at high densities was established in Ref. [19].
Broadly, it shows the same types of ordering as also seen in
equilibrium two-dimensional melting of hard disks [20,21],
namely, liquid, hexatic, and solid phases. Activity in the sys-
tem of Brownian particles shifts transition lines toward higher
densities and motility-induced phase separation (MIPS) be-
comes possible [22–24]. The basic structural phase diagram
becomes more complex if one considers velocity correlations
in space [25].

In this paper, we add a simple but general biological in-
gredient. We allow the stochastic birth and death of particles.
We are motivated, for example, by bacterial populations on a
Petri dish. Another example would be in some phases of tissue
growth and wound healing, where cells divide and die, and
tend to fill the entire space that is available to them [26]. In
these systems, the individuals making up the population (bac-
teria, cells) are subject to reproduction and death processes,
and they move in space.

*almodovar@ifisc.uib-csic.es

We focus on the regime in which the timescales of the birth
and death processes are comparable to those of the movement
of particles. That is, the distance traveled by a particle during
its lifetime is comparable to its size. Typical timescales for
(some types of) cells to move distances comparable to their
size are several hours, and cell proliferation occurs every 15
hours on average [26,27]. Thus, we aim to introduce a min-
imal model to describe the spatial ordering, for example, of
living microorganisms, capturing some of the effects of their
size, movement, and stochastic population dynamics. Our
analysis encompasses systems with active motion as well as
so-called passive Brownian particles (PBPs). In contrast with
conventional models of ABPs or PBPs, the packing fraction
in our setup is a time-varying quantity (due to the birth and
death dynamics), and fluctuates around a steady-state value at
long times.

Our focus is on the structural phases of this system. We
restrict the analysis to the case in which the birth rate is
larger than the death rate, so the system reaches a state
of high density eventually (if the death rate is higher than
the birth rate, the system typically ends up being empty).
Some of the questions we seek to address are the follow-
ing: Does the demographic dynamics determine the spatial
distribution of the particles of both systems, and if so, how?
What is the interplay between self-propulsion and popula-
tion dynamics, in particular, concerning the coexistence of
different phases (e.g., MIPS)? What is the role of defects
in this context? Addressing these questions may provide
further insight, at a qualitative level, into biological phe-
nomena such as wound healing and tissue formation, which
have been studied before from the perspective of active
matter [27,28].

We note that even the case of passive particles constitutes a
nonequilibrium system in our model. This is due to the demo-
graphic dynamics. In the passive case, we observe the same
uniform phases as in equilibrium two-dimensional melting
(liquid, hexatic, and solid) [29–33]. Importantly, which one
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of these phases is realized at fixed temperature (or diffusivity)
is determined by the birth and death rates. As a central part of
our paper, we provide a full phase diagram.

When the particles are active, we observe a MIPS-like
phase in the system with birth and death dynamics, similar to
what is observed in a conventional ABP system without birth
and death. We provide a phase diagram in the space defined
by the activity parameter and the birth rate for a fixed value
of the death rate. We also discuss differences compared to a
conventional ABP system.

The remainder of this paper is organized as follows. In
Sec. II, we define the model of passive or active particles,
undergoing motion and birth-death dynamics. We also de-
scribe the numerical method we use to simulate the dynamics.
Section III contains our main results. In Sec. IV, we present a
summary and discussion.

II. MODEL AND NUMERICAL ALGORITHM

The model consists of two components. One is the interac-
tion and movement of particles. This is as in the conventional
setup of Ref. [19], where particles interact via volume exclu-
sion and follow a standard Langevin dynamics. The second
component describes the birth and death of particles. We
here use exponential processes to trigger deaths and potential
births. This is simulated most conveniently using the cele-
brated Gillespie algorithm [34]. We now present details of the
setup and of the simulation method.

A. Passive and active Brownian particles

We consider a two-dimensional system of N interacting
disks in the overdamped limit (i.e., we neglect inertia). The
particles move in a square domain of size L × L, with periodic
boundary conditions. We also discard any hydrodynamical
interaction. The central position of every disk evolves in time
according to the Langevin equation,

ṙi = 1

γ
Fi + 1

γ
Fact

i +
√

2Dζi(t ), (1)

where γ is the friction coefficient. The {ζi} are independent
Gaussian noise vectors satisfying 〈ζi〉 = 0, 〈ζi,a(t )ζ j,b(t ′)〉 =
δi jδabδ(t − t ′) (here, a and b describe the entries of the
two-component vectors ζi and ζ j). The parameter D > 0 is
related to temperature via Einstein’s relation D = kBT/γ . The
interaction force is assumed to derive from a pairwise interac-
tion potential U , i.e., Fi = −∇i

∑
j �=i U (|ri − r j |). We follow

Refs. [19,25] and choose a truncated Lennard-Jones potential
to describe finite-size particles. Specifically, we set U (r) =
4ε[( σ

r )12 − ( σ
r )6] + ε, if r < σd ≡ 21/6σ , and U (r) = 0 if

r > σd . The cutoff at r = 21/6σ is to remove the attractive part
of the potential to mimic hard sphere repulsion. The quantity
σ > 0 represents the particle diameter, and ε is an energy
scale. The additive constant ε for r < σd is irrelevant for the
dynamics, its purpose is to make the potential continuous. The
resulting potential is known as the Weeks-Chandler-Andersen
potential [35].

Our analysis focuses on two distinct scenarios. In the first
one, the particles are passive, i.e., Fact

i = 0. We refer to this
as a system of PBPs. In the second scenario, the particles

are active (i.e., self-propelled). For such ABPs, we use self-
propulsion forces Fact

i = v0n[θi(t )], of constant modulus v0

and with direction (in the plane) given by the unit vector
n(θi ) = (cos θi, sin θi ). The angle θi for particle i performs dif-
fusive motion, θ̇i(t ) = √

2Drηi(t ), where Dr is the so-called
rotational diffusion coefficient [36,37]. We take these to be
Gaussian with zero mean, and 〈ηi(t )η j (t ′)〉 = δi jδ(t − t ′). We
treat D and Dr as independent parameters.

B. Birth and death dynamics

Particles may randomly reproduce (self-replicate) or die,
so the total number of particles, N (t ), changes with time.
Death events occur through a Poisson process with constant
per capita removal rate δ. The corresponding particle is then
simply removed from the system.

Birth events are more elaborate. In previous studies, par-
ticles had no spatial extension, and offspring were located at
the same place as the parent [38–41]. In Ref. [42], the particles
had a finite radius, but the model operated at a coarse-grained
level of the density of particles (per area). In the present
paper, particles have a fixed diameter σ . This combined with
volume exclusion complicates the implementation of the birth
process.

Potential birth events in our model are triggered with per
capita rate β. That is to say, an existing particle is selected
for potential reproduction. However, the birth event can only
go ahead if there is room for the offspring. Thus growth is
suppressed when the local density of individuals becomes too
high. More precisely, we assume that new particles are placed
at a distance σ from the parent. In two dimensions, this defines
a continuous ring of possible positions for the center of the
offspring. However, to implement this numerically, we neces-
sarily need to carry out a discretization. Then, we restrict the
possible locations for the offspring to 4nϕ discrete positions,
placed at equal angular separation on the ring (we choose
nϕ = 500). We think this provides a sufficient approximation
for the continuous set of possible positions. Thus, the points
at which the offspring can potentially be located are at dis-
tance σ from the center of the parent particle, and at angular
positions 0, π

2nϕ
, π

nϕ
, ...,

π (4nϕ−1)
2nϕ

. In the first instance, one of
these positions is selected at random. If placing the offspring
at that position does not lead to an overlap with any existing
particle, then the birth event completes. If there is overlap,
then a new potential position is chosen at random from the
remaining 4nϕ − 1 possible options. This procedure continues
until either the offspring is successfully placed or until all 4nϕ

positions have been exhausted. We stress that in any attempted
event, at most one new particle is produced. This offspring is
placed with equal probability at any of the available positions
near the parent. If there is no space near the parent, then no
reproduction event occurs, and the simulation continues.

While δ is the fixed per capita death rate, we note that β is
not the actual birth rate. Instead, it is the maximum possible
per capita birth rate which would be realized if all proposed
birth events complete. In practice, the typical time between
two birth events in the population will be higher than 1/(Nβ )
because some reproduction events that are triggered may not
complete. This effective birth rate is therefore a stochastic
observable, dependent on the positions of the particles. The
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FIG. 1. Number of particles as a function of time for different
values of the birth and death rates. (The corresponding packing
fraction φ is indicated on the vertical axis on the right of each panel).
(a) Fixed value of the death-rate δ and varying values of the birth
parameter β. (b) Fixed value of β, varying death rate δ. The letters
L, H, or S indicate the phase the dynamics results in for the different
parameter sets (liquid, hexatic, or solid).

larger the density of particles is around a focal particle, the
lower the true birth rate becomes for this individual. The
number of particles in the system increases when the average
birth rate is higher than the death rate. Conversely, if the
density is too high, death events dominate, and the number of
particles decreases. At long times, the particle number reaches
a stationary distribution (see Fig. 1). In this stationary state,
the mean effective birth rate is equal to the death rate.

C. Algorithm

To simulate the system, we use a combination of the
well-known Gillespie algorithm for the birth and death dy-
namics [34], and an Euler-Maruyama integration of the
Langevin equations for the motion of the particles. The lat-
ter requires the choice of a discretization time step t , and
careful interfacing with the continuous-time Gillespie algo-
rithm is required. We now describe our simulation method in
detail. Assuming time t has been reached and that the system
contains N (t ) particles at that time, the algorithm proceeds as
follows:

(1) Generate an exponentially distributed random number
τ with parameter N (t ) × (δ + β ).

(2) Update the positions of all particles by integrating the
Langevin equations forward to time t + τ . To do this, proceed
as follows:

(a) If τ > dt , carry out k + 1 Euler-Maruyama steps to
integrate Eqs. (1), where k is the largest integer smaller
than τ/dt (i.e., k is the number of steps of length dt that
fit into an interval of length τ ). The first k of these Euler-
Maruyama steps use time step dt . The remaining step is of
length τ − kdt .

(b) Or, if τ < dt , carry out a single Euler-Maruyama
iteration with time step τ .
(3) Once the time t + τ has been reached, a possible birth

or death event is carried out. More precisely, a death event
occurs with probability δ/(δ + β ) or a birth event is proposed
with complementary probability β/(δ + β ).

3.1 In the case of a death event, choose one of the N (t )
particles at random (with equal probabilities) and remove
the particle from the system. Go to step 4.

3.2 If a birth event is proposed, choose one particle at
random (with equal probabilities) for possible reproduc-
tion. Then follow the procedure described above in the text
to decide if the birth event can go ahead. If it can, place the
offspring at the designated position. If the birth event is not
possible due to particle exclusion, then no new particle is
produced. Either way, go to step 4.
(4) The algorithm has now reached time t + τ . The num-

ber of particles at that time and their positions are known. Go
to step 1.

We fix the following parameters in the numerical simula-
tions: γ = 1, kBT = 0.05, ε = 1, and σ = 1 for both active
and passive particles. In addition, for the active case we use
Dr = 1.0, and v0 will be varied. The particles are in a two-
dimensional box of length L = 70 with periodic boundary
conditions. The number of possible positions for a newborn
disk is 4nϕ = 2000.

III. RESULTS

A. Passive particles

1. Stationary packing fraction

We first discuss the case of passive particles. We focus
on the regime β > δ (birth more frequent than death), as
the system otherwise evolves to an empty absorbing state.
In Fig. 1, we show how the number of particles in the sys-
tem changes in time for different choices of the birth and
death parameters β and δ. The data confirms that the number
of particles at long times, or equivalently the packing frac-
tion φ(t ) = N (t )π (σ/2)2/L2, strongly depends on the relative
strength of the birth and death processes. For fixed death rate δ

(upper plot in Fig. 1) the long-time particle number increases
with the birth rate. Also, if we fix β (bottom plot), as the value
of the death rate increases the number of particles diminishes,
but fluctuations in the particle number increase.

One might expect a complete filling of the system of par-
ticles independently of the birth and death rates, but results
show this is not so. Instead there is a more complicated in-
terplay between motion and population dynamics. For large
reproduction rates, as soon as there is room, a new particle is
born. For smaller birth parameters, this is not necessarily the
case, mainly due to the motion of particles.

2. Characterization of the different phases

In two-dimensional equilibrium melting, the packing frac-
tion (at a fixed temperature) determines whether the system
is in a liquid, hexatic, or solid state [20]. Thus, we expect
that changing the parameters of the birth and death dynamics
can induce transitions between similar phases. To confirm
this, we show different spatial configurations of the system
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FIG. 2. Structural properties of the system in the different phases. Panels in the first column [(a), (d), (g)] are in the liquid phase; those
in the the second column [(b), (e), (h)] are in the hexatic phase; and (c), (f), and (i) are in the solid phase. We have used δ = 1.0 in all plots,
and three different values of β: β = 5.525, 5.6, 8.5 from left to right. (a)–(c) show snapshots of the system in real space at long times. (d)–(f)
are the corresponding Voronoi tessellations, where the color indicates the number of neighbors for the different particles. (g)–(i) show again
the Voronoi tessellation but the colors now represent the projection of local orientation on the direction of the sample orientation (see text). (j)
shows the correlation function g6(r) (see text) for different values of the birth parameter β. The lower two lines (crosses) are in the liquid phase,
the upper line (pentagons) in the solid phase, and the remaining lines (diamonds) in the hexatic phase. (k) shows the distribution, P(φloc ), of
the local packing fraction for β = 5.525, 5.6, 8.5.

in the steady state in Fig. 2. These are for different choices
of the birth and death parameters, Figs. 2(a)–2(c) show the
arrangement of particles in space. Figure 2(a) is in the liquid
phase, Fig. 2(b) in the hexatic phase, and Fig. 2(c) in the solid
phase.

To confirm the structural nature of the different
phases, we use the orientational order parameter ψ6(ri ) =∑

j∈i e6iαi j /Ni [43], where ri describes the position of the ith
particle. The sum is over the Ni neighbors of particle i (we
write j ∈ i if j is a neighbor of i). To define neighborhood
relations, we first determine the Voronoi tessellation of the
box. In other words, there is one Voronoi cell for each particle.
The cell for particle i consists of the points in space which are
closer to particle i than to any other particle. This is illustrated
in Figs. 2(d)–2(f). Two particles are considered neighbors if
their Voronoi cells are in contact [44]. The quantity αi j in the
definition of ψ6(ri ) is the angle with respect to the x-axis of
the line joining the positions of particles i and j.

The parameter ψ6(ri ) quantifies how ordered the positions
of the neighbors of particle i are. For a perfect triangular

lattice, the quantities 6αi j are the same for all j ∈ i, and hence
|ψ6(ri )| = 1. The projection 〈ψ6(rk )ê�〉 is shown as a color
map in Figs. 2(g)–2(i), where ê� is the unit vector pointing in
the direction of the sample orientation � = (1/N )

∑
k ψ6(rk ).

Zones of the same color in those panels of the figure show
domains with the same orientation of the spatial ordering,
indicating long-range orientational correlations.

The defects emerging in the system are the standard
ones [45]: Disclinations, dislocations, and vacancies. The de-
fects are identified in the Voronoi representations [Figs. 2(d)–
2(f)] as particles with a number of neighbors different
from six. In the liquid phase, Fig. 2(d), there are mainly
disclinations (one-particle defects) and dislocations (pairs of
neighboring particles, with five and seven neighbors, respec-
tively). No disclinations are found in the hexatic phase [see
Fig. 2(e)]. In the solid phase [Fig. 2(f)], there are only a few
defects, and nearly all of them are of the vacancy type [45]
(point defects resulting from the absence of a particle in an
otherwise hexagonal packing). These holes are due to the
population dynamics (in particular death), and they do not
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break the hexagonal symmetry as shown in Fig. 2(i). Most of
these holes get filled quite quickly. This type of defect is also
present in the other phases although it is not easy to visualize
because there are in fact many defects.

From the orientational order parameter, we define the
correlation g6(r) = 〈ψ6(ri )ψ∗

6 (r j )〉/〈|ψ6(r j )|2〉 (where |ri −
r j | = r). We average g6(r) over time in the stationary state;
results are shown in Fig. 2(j) for different choices of the model
parameters. In all our calculations, we have averaged over 103

points in time, with two consecutive measurements separated
by 104 [∼N (δ + β )] Gillespie events, that is, between two
measurements each particle is involved in one event on av-
erage. We find that g6 decays exponentially with distance in
the liquid phase, as a power law in the hexatic phase, and
that it is approximately constant in the solid phase. These
results are used to numerically characterize the different faces.
A further measurement to confirm the phases (not shown) is
the pair correlation function, which only allows distinguishing
between the liquid and solid phases [46].

As mentioned above and in contrast with conventional
systems, the number of particles is not a set parameter in our
model, and instead fluctuates in time in the stationary state.
One could therefore expect that the system moves from one
phase to another as it undergoes these fluctuations, that is,
without changing any parameter, a phase transition would take
place. We have not observed this in our model. Instead, the
phase the system is in appears to be determined by the average
total number of particles in the long-run.

Despite the nonequilibrium character due to birth and death
events, the phases are found to be homogeneous in space.
In Fig. 2(k), we show the distribution of the local packing
fraction across different positions in the system. In all three
phases, the distribution is unimodal. Due to the logarithmic
scale on the vertical axis, the distribution appears broader than
similar distributions reported in the literature [19]. We choose
the logarithmic scale to be able to compare with the case of
active particles further below.

3. Phase diagram

Figure 3 shows the phase diagram of the system in the
plane spanned by the birth and death parameters, β and δ.
We reiterate that the density of particles depends on the birth
and death rates, and is therefore not an independent control
parameter as in conventional Brownian particle systems.

For β � δ, we find the system in the solid phase. In this
situation, the stationary filling fraction is high. When the
birth parameter is comparable to the death parameter (but still
maintaining β > δ), the liquid phase is obtained. In a nar-
row range of parameters between these scenarios, the system
shows the hexatic phase. We have confirmed in simulations
that the general features of this phase diagram are maintained
as we vary the size L of the system.

4. Packing fraction and number of defects

In Fig. 4, we plot the long-term packing fraction in the sys-
tem as a function of the birth parameter β for different fixed
values of the death rate δ. The background color indicates the
three different phases, as in Fig. 3. Three regimes associated
with the three different phases can be clearly identified. In par-

FIG. 3. Phase diagram for passive Brownian particles with birth
and death dynamics in the space spanned by the birth and death
parameters (β and δ). The background colors represent the differ-
ent phases (grey: Solid phase; orange: Hexatic phase; blue: Liquid
phase). The black area represents the region of parameter space in
which δ > β. Markers show simulations for different choices of β

and δ, with the type of marker indicating the resulting phase (see
legend in the figure).

ticular, in the hexatic phase (simulations shown as red circles),
the increase of the number of particles with β is rather sharp.
We also find that the packing fraction required for the system
to be in the solid phase increases with increasing death rate δ.
This constitutes a difference with conventional PBPs (at fixed
temperature and without birth and death), where the packing
fraction alone determines when the solid phase is observed.

In Fig. 5, we show the percentage of defects (particles
that do not have exactly six neighbors) as a function of the
birth parameter β for different fixed values of the death rate
δ. The data in Fig. 5 shows strong dependence on the birth
and death parameters. We also find that the transition between
the hexatic and solid phases occurs at a fraction of defects of
approximately 10% to 25%. This is significantly higher than
the percentage of defects of approximately 5% observed in
standard PBP and ABP systems at this transition [19,45].

FIG. 4. Packing fraction as a function of β for different fixed
values of δ. Results from simulations are shown as markers. The
background colors represent the three different phases (solid phase
in grey, hexatic orange, liquid phase blue).

054130-5



ALMODÓVAR, GALLA, AND LÓPEZ PHYSICAL REVIEW E 106, 054130 (2022)

FIG. 5. Percentage of defects as a function of β for different
values of δ. Each curve represents a series of simulations with the
same value of δ as indicated. The background colors represent the
three different phases as in the two previous figures.

B. Active particles

We next study the ABP system with birth and death events.
We fix the death rate to δ = 0.01. When a birth event occurs,
then the propulsion force of the offspring is initially set to be
in same direction as that of the parent particle. Alternatively,
the direction of the propulsion force of the offspring can also
be chosen at random. Simulations (not shown) indicate that
the main properties of the system remain unchanged.

1. Packing fraction

Figure 6(a) shows how the packing fraction in the system
evolves in time, for different values of the birth and death
rates, and of the activity parameter v0. As in the passive case,
when the value of β is increased, keeping all other parame-
ters fixed, the packing fraction also increases. On the other
hand, increased activity typically leads to a higher number
of particles in the system at long times, in particular, the
packing fraction in the active system is higher than that for
passive particles. This is further detailed in Fig. 6(b) for a
selection of fixed values of the birth and death parameters. We
find that the steady-state packing fraction only experiences
a minor increase with the activity when v0 is small, but that
the increase is much more pronounced when v0 is large (in
other words, the packing fraction curves upward as a function
of the activity). The reason for the increase is that when
the activity is high enough, the particles may penetrate the
repulsive potential and overlap (at these values the average
distance between particles gets smaller than σ ). Then there is
more room for self-replication and the steady-state number of
particles increases. For intermediate values of v0, the packing
fraction diminishes, signaling the transition from solid to liq-
uid. Overall, we conclude that the birth and death rates, and
the activity determine the long-time packing fraction of active
particles and thus the structural phases of the system.

2. Motility-induced phase separation and phase diagram

In addition, the activity has a similar impact on the system
as in standard ABP, that is, we observe nonhomogeneous
phases or MIPS. That is to say, we find a separation of di-

FIG. 6. (a) Packing fraction versus time for different values of
β and strength of the active force (v0) for δ = 0.01. (b) Long-time
particle fraction versus v0 for different values of β. The colored
arrows indicate the parameter choices used in (a).

lute and dense phases for sufficiently high self-propulsion.
This is shown in Figs. 7(a) and 7(b), where the MIPS
phase [47] is identified from the bimodality of the local
packing fraction distribution, P(φ), at long times. The two
maxima represent the dilute and dense phases. We use log
scale on the vertical axis since our objective is to characterize
the behavior of the system in the MIPS phase, where two
maxima of the local packing fraction may be observed, and
where these maxima can have different magnitudes. This,
besides the fact that the local density is averaged over the
Voronoi cells, results in curves that are relatively smooth and
broad.

Figure 7(c) shows the phase diagram of the system (in
terms of β and v0, for fixed δ). We observe that for v0 � 5
the system behaves broadly as in the absence of activity. The
effects of activity on the packing fraction are small in this
regime [see Fig. 6(b)], and thermal fluctuations dominate.
Since self-propulsion plays the role of an effective tempera-
ture [48,49], the larger v0 the liquid-hexatic and hexatic-solid
transitions are shifted toward larger density (or lower tem-
perature). In our case, this translates into a larger birth rate.
We have also checked what happens if instead of varying v0,
we vary Dr in the regime where ε/(F act

i σ ) � 1. We have
observed the solid, hexatic, and liquid phases, but we have
not found the reentrant phase or the MIPS region.

For large activity, we find interesting differences in the
phase diagram of our system [Fig. 7(c)] compared to that of
the standard ABP system without birth and death (this phase
diagram is shown, for example, in Fig. 1 of Ref. [19]). In fact,
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FIG. 7. (a), (b) Distribution of the local packing fraction for
different values of the birth parameter β and the activity parameter
v0. In (a), we fix v0 = 50 and vary β, in (b) β = 2 is fixed and
v0 is varied. (c) Phase diagram for the ABP system. Background
color in (c) represents the different phases (solid phase grey, hexatic
orange, liquid phase blue, MIPS red). The different phases are also
indicated. The parameters used in (a) and (b) are indicated by colored
markers in (c). (d) shows the density of defects as function of v0 for
β = 0.2, 2, 20 [corresponding to the three horizontal lines in (b)].

one of the main differences of our model with standard ABPs
is found in the MIPS phase. For the ABPs, there are large
inhomogeneities in density across the system, with particles
accumulating in some regions, and significant free space all
around. This is not so in our model since this free space
is filled with particles due to birth events. That is, in our
case the difference between the densities of the two regions
(dense and dilute) is not as pronounced as in the standard
MIPS phase. But the most important difference is a reentrance
phenomenon, seen, for example, along the cuts β = 2.0 and
β = 20.0, indicated by the horizontal lines in Fig. 7(c). As the
activity parameter is increased, the system is first in the solid
phase, then hexatic, and then liquid, and then, upon further

increase of activity, it becomes ordered again and returns to
the hexatic phase.

To investigate this further, we plot in Fig. 7(d) the density
of defects versus v0 along the cuts β = 0.2, 2.0, 20.0. The per-
centage of defects is nonmonotonic and reaches a maximum at
intermediate values of the activity v0. We note that this is very
different from what happens in standard ABP systems where
the activity acts as an effective temperature, so the system
becomes more disordered with increased activity, resulting in
an increased percentage of defects. In the system with birth
and death, larger activity induces particle aggregation, leading
to clusters that are quite ordered due to their high density. In
an active system without population dynamics, these particle
clusters are also formed as the activity is increased, but free
space remains and the system does not become ordered. In
the system with birth and death, production events fill this
available space with additional particles. The resulting clus-
ters pervade the entire spatial domain for large activities, so
the system becomes ordered and returns to the hexatic phase.
In this regime, we note that particles get closer to each other
due to the increased activity. This can be seen in Fig. 7(b),
where the peak of the distribution of local packing fractions
shifts to the right, corresponding to a larger packing fraction.

Similar effects can be seen upon increasing the birth rate,
while keeping v0 fixed at sufficiently large values to have a
MIPS regime. If the birth rate β is small (e.g., β < 0.02 for
v0 = 50), the system is in the liquid phase. As β increases,
an increased number of birth events aggregates particles into
denser local clusters in some regions, thus producing MIPS.
As β is increased further, these denser regions grow and
occupy more of the system. MIPS is then no longer found,
and the system becomes hexatic. This is also confirmed in
Fig. 7(a). As the birth parameter β is increased, the maximum
of the distribution of the local packing fraction at φ � 0.2
reduced in height. In contrast, the maximum at φ � 1.1 is
then the only one that persists. For intermediate values, one
observes MIPS and both maxima of P(φ) are present.

IV. SUMMARY AND DISCUSSIONS

As a minimal model for the biological aggregation of
finite-size moving individuals, we have studied systems of
passive or ABPs in which particles may also die and self-
replicate at given rates. To prevent an absorbing state of a
system void of particles, we have focused on scenarios in
which birth dominates over removal. Both in the system with
active and with passive particles. the long-time packing frac-
tion depends on the birth and death parameters, and these thus
determine what structural phases are observed. In the case of
active particles, the stationary particle density is additionally
affected by the strength of self-propulsion. In simulations,
we have constructed the phase diagram in terms of the birth
and death parameters for the passive system, and in terms
of birth parameter and activity in the active system. Liquid,
hexatic, and solid phases are observed, and additionally phase
coexistence (MIPS) in the active system.

A fundamental feature of our system is that, due to the birth
and death dynamics, the number of defects is larger than in
conventional systems. At difference with the standard ABP
system, we find the hexatic phase at large activity (there is
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reentrance to this phase), reflecting the increased number of
defects due to the combination of birth, death, and activity.

Studying the dynamics of particle systems combining mo-
tion and particle proliferation is relevant for a number of
biological processes. For example, wound healing and tissue
formation have been studied using models of interacting par-
ticles [27,28]. Analyses such as ours can then contribute to
gaining a deeper insight into the mechanics of these systems.
Our approach is complementary to existing models without
birth and death processes. It provides qualitative information
about the spatial ordering of cells progressing through an ir-
regular border or about optimal demographic rates to improve
the average progression.

Future extensions of this work could consider more com-
plex biological ingredients, like including an energetic cost

to the birth event so, for example, particles may stop moving
during a given time after reproducing, diversity for the size
and shape of the particles, other interactions, confinement
or competition for resources, but also some other types of
movement such as run and tumble dynamics and Levy-like
flights [50], and different descriptions of the activity [51].

ACKNOWLEDGMENTS

We acknowledge Lorenzo Caprini and Emilio Hernández-
García for a critical reading of the paper. We also acknowledge
support of the Spanish State Research Agency, through the
Severo Ochoa and María de Maeztu Program for Centers and
Units of Excellence in R&D (Grant No. MDM-2017-0711
funded by Grant No. MCIN/AEI/10.13039/501100011033).

[1] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool,
J. Prost, M. Rao, and R. A. Simha, Rev. Mod. Phys. 85, 1143
(2013).

[2] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G.
Volpe, and G. Volpe, Rev. Mod. Phys. 88, 045006 (2016).

[3] V. Hakim and P. Silberzan, Rep. Prog. Phys. 80, 076601 (2017).
[4] A. Cavagna and I. Giardina, Annu. Rev. Condens. Matter Phys.

5, 183 (2014).
[5] M. Larsson, Current Zoology 58, 116 (2012).
[6] E. Shaw, American Scientist 66, 166 (1978).
[7] C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein, and

J. O. Kessler, Phys. Rev. Lett. 93, 098103 (2004).
[8] O. Chepizhko, M. C. Lionetti, C. Malinverno, C. Giampietro,

G. Scita, S. Zapperi, and C. A. M. La Porta, Soft Matter 14,
3774 (2018).

[9] R. Alert and X. Trepat, Annu. Rev. Condens. Matter Phys. 11,
77 (2020).

[10] R. Alert and X. Trepat, Phys. Today 74, 30 (2021).
[11] T. E. Angelini, E. Hannezo, X. Trepat, M. Marquez, J. J.

Fredberg, and D. A. Weitz, Proc. Natl. Acad. Sci. USA 108,
4714 (2011).

[12] R. van Drongelen, T. Vazquez-Faci, T. A. Huijben, M. van der
Zee, and T. Idema, J. Theor. Biol. 454, 182 (2018).

[13] B. Szabó, G. J. Szöllösi, B. Gönci, Z. Jurányi, D. Selmeczi, and
T. Vicsek, Phys. Rev. E 74, 061908 (2006).

[14] T. E. Angelini, E. Hannezo, X. Trepat, J. J. Fredberg, and D. A.
Weitz, Phys. Rev. Lett. 104, 168104 (2010).

[15] J. K. Parrish and W. M. Hamner, eds., Animal Groups in Three
Dimensions (Cambridge University Press, New York, 1997)

[16] P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, and L.
Schimansky-Geier, Eur. Phys. J.: Spec. Top. 202, 1 (2012).

[17] B. ten Hagen, S. van Teeffelen, and H. Löwen, J. Phys.:
Condens. Matter 23, 194119 (2011).

[18] Y. Fily and M. C. Marchetti, Phys. Rev. Lett. 108, 235702
(2012).

[19] P. Digregorio, D. Levis, A. Suma, L. F. Cugliandolo, G.
Gonnella, and I. Pagonabarraga, Phys. Rev. Lett. 121, 098003
(2018).

[20] E. P. Bernard and W. Krauth, Phys. Rev. Lett. 107, 155704
(2011).

[21] J. U. Klamser, S. C. Kapfer, and W. Krauth, Nat. Commun. 9,
5045 (2018).

[22] M. E. Cates and J. Tailleur, Annu. Rev. Condens. Matter Phys.
6, 219 (2015).

[23] L. Caprini, U. Marini Bettolo Marconi, and A. Puglisi, Phys.
Rev. Lett. 124, 078001 (2020).

[24] I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger,
and T. Speck, Phys. Rev. Lett. 110, 238301 (2013).

[25] L. Caprini, U. M. B. Marconi, C. Maggi, M. Paoluzzi, and A.
Puglisi, Phys. Rev. Res. 2, 023321 (2020).

[26] A. Puliafito, L. Primo, and A. Celani, J. R. Soc. Interface 14,
20170032 (2017).

[27] N. Sepúlveda, L. Petitjean, O. Cochet, E. Grasland-Mongrain,
P. Silberzan, and V. Hakim, PLoS Comput. Biol. 10, e1003717
(2013).

[28] C. A. M. La Porta and S. Zapperi, The Physics of Cancer
(Cambridge University Press, Cambridge, UK, 2017).

[29] F. F. Abraham, Phys. Rep. 80, 340 (1981).
[30] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).
[31] D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457

(1979).
[32] B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121

(1978).
[33] A. P. Young, Phys. Rev. B 19, 1855 (1979).
[34] D. T. Gillespie, Annu. Rev. Phys. Chem. 58, 35 (2007).
[35] J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys.

54, 5237 (1971).
[36] J. Saragosti, P. Silberzan, and A. Buguin, PLoS One 7, e35412

(2012).
[37] R. Jain and K. L. Sebastian, J. Chem. Phys. 146, 214102

(2017.
[38] E. Hernández-García and C. López, Phys. Rev. E 70, 016216

(2004).
[39] F. Ramos, C. López, E. Hernández-García, and M. A. Muñoz,

Phys. Rev. E 77, 021102 (2008).
[40] E. Heinsalu, E. Hernández-García, and C. López, Europhys.

Lett. 92, 40011 (2010).
[41] W. R. Young, A. J. Roberts, and G. Stuhne, Nature 412, 328

(2001).
[42] N. Khalil, C. López, and E. Hernández-García, J. Stat. Mech.:

Theory Exp. (2017) 063505.
[43] U. Gasser, J. Phys.: Condens. Matter 21, 203101 (2009).
[44] C. H. Rycroft, Chaos: An Interdisciplinary Journal of Nonlinear

Science 19, 041111 (2009).

054130-8

https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1088/1361-6633/aa65ef
https://doi.org/10.1146/annurev-conmatphys-031113-133834
https://doi.org/10.1093/czoolo/58.1.116
https://doi.org/10.1103/PhysRevLett.93.098103
https://doi.org/10.1039/C8SM00128F
https://doi.org/10.1146/annurev-conmatphys-031218-013516
https://doi.org/10.1063/PT.3.4770
https://doi.org/10.1073/pnas.1010059108
https://doi.org/10.1016/j.jtbi.2018.06.002
https://doi.org/10.1103/PhysRevE.74.061908
https://doi.org/10.1103/PhysRevLett.104.168104
https://doi.org/10.1140/epjst/e2012-01529-y
https://doi.org/10.1088/0953-8984/23/19/194119
https://doi.org/10.1103/PhysRevLett.108.235702
https://doi.org/10.1103/PhysRevLett.121.098003
https://doi.org/10.1103/PhysRevLett.107.155704
https://doi.org/10.1038/s41467-018-07491-5
https://doi.org/10.1146/annurev-conmatphys-031214-014710
https://doi.org/10.1103/PhysRevLett.124.078001
https://doi.org/10.1103/PhysRevLett.110.238301
https://doi.org/10.1103/PhysRevResearch.2.023321
https://doi.org/10.1098/rsif.2017.0032
https://doi.org/10.1371/journal.pcbi.1002944
https://doi.org/10.1016/0370-1573(81)90099-5
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1103/PhysRevB.19.2457
https://doi.org/10.1103/PhysRevLett.41.121
https://doi.org/10.1103/PhysRevB.19.1855
https://doi.org/10.1146/annurev.physchem.58.032806.104637
https://doi.org/10.1063/1.1674820
https://doi.org/10.1371/journal.pone.0035412
https://doi.org/10.1063/1.4984085
https://doi.org/10.1103/PhysRevE.70.016216
https://doi.org/10.1103/PhysRevE.77.021102
https://doi.org/10.1209/0295-5075/92/40011
https://doi.org/10.1038/35085561
https://doi.org/10.1088/1742-5468/aa7283
https://doi.org/10.1088/0953-8984/21/20/203101
https://doi.org/10.1063/1.3215722


LIQUID-HEXATIC-SOLID PHASES IN ACTIVE AND … PHYSICAL REVIEW E 106, 054130 (2022)

[45] P. Digregorio, D. Levis, L. F. Cugliandolo, G. Gonnella, and I.
Pagonabarraga, Soft Matter 18, 566 (2022).

[46] L. Caprini, U. Marini Bettolo Marconi, and A. Puglisi, Sci. Rep.
9, 1386 (2019).

[47] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.106.054130 for a video showing the forma-
tion of MIPS in an active particle system.

[48] D. Levis and L. Berthier, Europhys. Lett. 111, 60006
(2015).

[49] J. Palacci, C. Cottin-Bizonne, C. Ybert, and L. Bocquet, Phys.
Rev. Lett. 105, 088304 (2010).

[50] S. Huda, B. Weigelin, K. Wolf, K. V. Tretiakov, K. Polev, G.
Wilk, M. Iwasa, F. S. Emami, J. W. Narojczyk, M. Banaszak,
S. Soh, D. Pilans, A. Vahid, M. Makurath, P. Friedl, G. G.
Borisy, K. Kandere-Grzybowska, and B. A. Grzybowski, Nat.
Commun. 9, 4539 (2018).

[51] L. Caprini, E. Hernández-García, C. López, and U. Marini
Bettolo Marconi, Sci. Rep. 9, 16687 (2019).

054130-9

https://doi.org/10.1039/D1SM01411K
https://doi.org/10.1038/s41598-018-36824-z
http://link.aps.org/supplemental/10.1103/PhysRevE.106.054130
https://doi.org/10.1209/0295-5075/111/60006
https://doi.org/10.1103/PhysRevLett.105.088304
https://doi.org/10.1038/s41467-018-06563-w
https://doi.org/10.1038/s41598-019-52420-1

