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Statistical mechanics of phase transitions in elastic media with vanishing thermal expansion

Sudip Mukherjee1,* and Abhik Basu2,†

1Barasat Government College, 10, KNC Road, Gupta Colony, Barasat, Kolkata 700124, West Bengal, India
2Theory Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Calcutta 700064, West Bengal, India

(Received 2 September 2021; accepted 25 March 2022; published 14 November 2022)

We consider a minimal spin model for Ising transitions in an isotropic elastic medium in the zero thermal
expansion (ZTE) limit. We set up the elastic theory for this system. We use this theory to identify and study
the nature of the fluctuations in the system near the second order phase transitions at Tc in the ZTE limit given
by dTc/dV = 0, where V is the system volume, and explore anomalous elasticity. Allowing for the local strain
to couple asymmetrically or selectively with the states of the order parameter, we uncover the dramatic effects
of these couplings on the fluctuations of the local displacements near Tc, and also on the nature of the phase
transition itself. Near second-order phase transitions and with weak asymmetry in the order parameter–strain
couplings, the variance of the displacement fluctuations in two dimensions scale with the system size L in a
universal fashion as [ln(L/a0 )]2/3; a0 is a small-scale cutoff. Likewise, the correlation functions of the difference
of the local displacements at two different points separated by r scale as [ln(r/a0)]2/3 for large r. For stronger
selectivity above a finite threshold, this variance diverge as L exceeds beyond a (nonuniversal) size, determined
by the model parameters, signaling a transition to a phase with only short-range order or the loss of the positional
order of the elastic medium. At dimensions higher than two, for sufficiently weak selectivity, the variance of
the displacement fluctuations is L-independent corresponding to long-range order. However, if the selectivity
parameters rise beyond a dimension-dependent threshold value, then again the positional order is lost with a
concomitant transition to a phase with short-range order. Large values of the order parameter–strain couplings
can turn the phase transition into a first order as well. Our theory establishes a one-to-one correspondence
between the order of phase transitions and anomalous elasticity near the transitions. Our theory should be a
useful guide to possible synthesis of appropriate ZTE materials.
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I. INTRODUCTION

Phase transitions are ubiquitous in nature and continue
to remain central to the subject of equilibrium statistical
mechanics for many decades [1,2]. The Ising model is the
simplest model that shows phase transitions between a high
temperature (T ) disordered phase to a low-T ordered phase
at dimensions d > 1 [3]. It and its variants have been used
to study phase transitions in a wide class of systems, ranging
from magnetic phase transitions between the high T paramag-
netic to the low T ferromagnetic phase [4] to phase separation
transitions from a high-T well-mixed phase to a low-T phase
separated state [4,5]. These transitions can be second order
through a critical point, or first order with a finite jump in the
order parameter [6]. Phase separation transitions and corre-
sponding nucleation and the growth of domains are not only
significant from statistical mechanics point of views, these are
believed to be of paramount importance in host of naturally
occurring phenomena, which are of of nonequilibrium origin,
e.g., chemical and biological phenomena. For instance, phase
separations of proteins are expected to be of vital importance
in living biological cells [7].
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Elastic media (e.g., crystals) are broken symmetry phases
of systems with continuous translational invariance. These are
characterized by the broken symmetry Goldstone modes or
acoustic phonons [6,8], which are massless or long-lived fluc-
tuations. At three dimensions (3D), variance 〈[u(x)]2〉 of the
local displacements ui(x) of the position x in the undistorted
system is a finite constant proportional to T , which means po-
sitional long-range order (LRO), whereas in two-dimensional
(2D) systems, 〈[u(x)]2〉 grows with the linear system size
L as T ln (L/a0), setting Boltzmann constant kB = 1, where
a0 is a small-scale cutoff, corresponding to the positional
quasi-long-range order (QLRO); the lack of long-range order
is a consequence of the Mermin-Wagner-Hohenberg theo-
rem (MWHT) [9]. At higher temperatures, crystals undergo
a melting transition into a liquid phase. At 3D, the melting
transition is known to be a first-order transition [10]; at 2D,
the transition could be either first or second order [11].

Statistical mechanics of phase transitions are well-
developed and have a long history of study [1]. How elastic
degrees of freedom may conspire with the order parameter
to affect the macroscopic behavior of a system near a critical
point remains a topic of debate. This brings up the question
on the nature of phase transitions in elastic media, and in
turn the corresponding scaling of the position fluctuations
near the phase transition temperature. However, studies on
their mutual interplay are relatively few. For instance, studies
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in Ref. [12] showed that the universal critical scaling of the
Larkin-Pikin-Sak model is unaffected by a coupling with an
elastic continuum. In a seminal study, Ref. [13] showed that
generically an isotropic elastic solid gets unstable in the vicin-
ity of an Ising transition at temperature T = Tc, except in the
case dTc/dV = 0, whence the spin and the elastic degrees
of freedom decouple in the long wavelength limit, naturally
leading to no mutual effects on each other in their model.
Most theoretical studies of phase transitions in elastic media
till date either usually concern about the nature and growth of
order below the phase transition temperature, or the how the
second-order transition of the scalar order parameter (of the
undistorted system) belonging to the Ising universality class
is affected by the displacement fluctuations coming from the
background lattice or network.

Recent studies indicate that order parameter–strain cou-
plings could be important in various phenomenologies. For
instance, in a cross-linked, elastic polymer network swollen
by a solvent mixture, droplets are found to grow to a fixed
size, controlled by the network stiffness [14]. More recent ex-
perimental studies have revealed that compressive stresses in a
polymer network can suppress phase separation of the solvent
that swells it, ultimately stabilizing the mixtures even well
beyond the standard liquid-liquid phase-separation boundary
[15–18]. Similarly, the order parameter–elasticity interplay is
believed to be of importance to understand the ground state
and collective excitation of magnetic materials. There has
been a growing body of research that considers the various
aspects and effects of order parameter–strain coupling in the
general context of magnetic materials [19]. In general, in
any real magnetic crystal, the interplay between the magnetic
and the elastic degrees of freedom should exist. Similarly,
in a composite elastic medium (e.g., a binary alloy) or a
of composite system made of a two-component fluid and
an embedding elastic network (e.g., a polymer network in a
mixed fluid), the order parameter–elasticity interplay should
be present. In fact, the question of phase separation in an
elastic network is believed to be important in cell biological
contexts, e.g., liquid-liquid phase separation is proposed as
a candidate mechanism for the formation of membraneless
compartments in live biological cells [20].

Studies on the statistical mechanics of phase transitions
in metamaterials are few and far between. Metamaterials are
artificially prepared materials that are designed to have spe-
cific properties not found in naturally occurring systems. In
this paper, we formulate a generic and experimentally testable
theory of phase transitions in a zero thermal expansion (ZTE)
medium, coupled with Ising spins. ZTE materials, a particular
type of metamaterials that neither expand nor contract over a
range of temperature, can be of diverse origin [21], featuring
nearly zero thermal expansion behavior. These materials have
enormous potential technical applications in wide-ranging
fields, e.g., precision engineered parts, microdevices, and
functional materials, e.g., thermomechanical actuators. Our
theory should be helpful as a guideline in studies on such
ZTE systems. We focus on a ferromagnetic Ising model with
nearest neighbor interactions, defined on a deformable lattice.
We show that the fluctuations near phase transitions in such
media can behave very differently from conventional systems
with finite thermal expansion. While the scalar order param-

eter field for the Ising model in the limit of a rigid lattice
undergoes a second-order universality class belonging to the
Ising universality class, we generalize the scope of our study
by allowing the order parameter–strain tensor couplings to
break the Ising symmetry of the order parameter. In other
words, the local strain couples with the order parameter selec-
tively and asymmetrically, depending upon the “two states”
(i.e., two different signs) of the Ising order parameter. This
can be generically present, e.g., in a binary fluid mixture, or
in biologically relevant systems where the embedding elastic
network can chemically interact with the two fluid compo-
nents in different ways, or in a binary alloy, where the local
deformability can explicitly depend upon the excess or deficit
of one or the other component.

Specifically, in this work we schematically consider a fer-
romagnetic Ising model grafted on Hookean-like spring model
for an isotropic elastic medium, e.g., a gel. The spin-lattice
interactions are chosen in such a way to ensure vanishing
thermal expansions, and correspond to a second-order phase
transition belonging to the Ising universality class with a
critical temperature Tc. We construct the Landau-Ginzburg
theory of phase transitions in this model. We explore anoma-
lous elasticity near phase transitions in this model, that arises
due to the interplay between the local strain and Ising-like
order parameter fluctuations in elastic media. In this work, we
focus on systems with zero thermal expansions, which in our
model implies dTc/dV = 0 [13]. To generalize the scope of
our study, we allow for the local strain to couple selectively
or asymmetrically with the states of the order parameter,
which breaks the Ising symmetry of the system through these
selectivity-dependent order parameter–strain couplings. This
is a situation that can potentially arise in soft matter systems,
e.g., in elastic networks immersed in a binary fluid. Our most
surprising result is that unexpected anomalous behavior of the
elastic modulii ensues near Tc, in contrast to the predictions in
Ref. [13]. We show that in 2D, the elastic modulii either stiffen
significantly, diverging logarithmically in the wave vector q
in the thermodynamic limit q → 0 for weak selectivity, or
softens for strong selectivity, vanishing at finite length scales
indicating selectivity-induced structural phase transitions to a
phase with short-range order (SRO). At 3D, with sufficiently
weak selectivity, the elasticity near Tc is statistically identical
to that away from Tc. However, with stronger selectivity above
a finite threshold, the elastic modulii soften and disappear at
finite length scales suggesting structural phase transitions like
its 2D counterparts, near Tc. Last, the order parameter–strain
couplings can even turn the second-order transition of the
rigid lattice system a first-order transition in all dimensions.
In this case, the elastic modulii shows finite jumps across
the first-order transition temperature. In what follows below,
we interchangeably use “ZTE” and “dTc/dV = 0.” A brief
account of these results is available in the associated short
paper [22].

The remainder of this article is organized as follows. In
Sec. II, we summarize our principal results. In Sec. III we
present our microscopic model, and formulate its elastic the-
ory near the phase transition by setting up the corresponding
coarse-grained Landau-Ginzburg (LG) free energy. Then in
Sec. IV, we discuss the properties at the harmonic order of
the free energy. Next, in Sec. V, we analyze the anharmonic
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effects in 2D and d > 2 systems. Then in Sec. VI, we discuss
how the transition can be turned into a first-order one. In
Sec. VII, we set up the correspondence between the order
of the transitions and the local displacement fluctuations. We
summarize our results and discuss possible future directions
in Sec. VIII. The parameters in this paper, and the equations
defining them (where ever applicable), are summarized in
the glossary that constitutes Appendix A. Many technical
details are available for the interested reader in the subsequent
Appendices.

II. SUMMARY OF THE TECHNICAL RESULTS

We consider Ising spins on a Hookean spring-like model
for an isotropic gel. The spin-spring interactions are such that
the model has ZTE. We study this system by constructing
an LG free-energy functional, subject to ZTE, in which we
describe an elastic medium with a local displacement field
u(x) of a point x in the undistorted system, coupled with an
Ising-like continuum order parameter field φ(x). We formally
define a displacement field u(x) that describes the local dis-
tortion of the elastic medium, such that R(x) ≡ [x + u(x)]
denotes the new, post-fluctuation coordinates in the medium
that was originally located at x. Here, x = (x, y) for a 2D
system, and x = (x, y, z) for a corresponding 3D realization
[6].

After dropping terms that are irrelevant in the renormaliza-
tion group (RG) sense, the free-energy functional F invariant
under a constant shift of u, as appropriate for this system is

F =
∫

dd x

[
r

2
φ2 + 1

2
(∇φ)2 + vφ4 + μ

(∇iu
T
j

)2 + λ̃

2

(∇iu
L
j

)2

+ (g1φ
2 + g1φ)

(∇iu
T
j

)2 + (g2φ
2 + g2φ)

(∇iu
L
j

)2
]
, (1)

where, r = 0 is the mean-field critical point in the rigid lattice
limit, uL

i (x) and uT
i (x) are the inverse Fourier transforms of

uL
i (q) and uT

i (q). Here, uL(q) and uT (q) are the projections
of u(q) along and normal to the wave vector q. Couplings g1
and g2 manifestly break the Ising symmetry of the problem,
and are the selectivity parameters, since their contributions to
F depend upon the sign of φ. Last, μ and λ̃ are, respectively,
the shear and bulk modulii of the system.

We study the fluctuations in the system corresponding to F
in Eq. (1). Our principal results are given below.

In systems with selectivity, i.e., with nonzero g1, g2, the
transition is generically first order similar to the liquid-gas first
order transition. However, again like a liquid-gas transition
a second order transition with a critical point at Tc can be
accessed.

A. Results on 2D systems

We show that at 2D with weak selectivity (i.e., weak g1
and g2) such a thin elastic sheet can significantly stiffen close
to the critical point Tc of the ordering transition, a prop-
erty not found in a pure (one component) system, or away
from critical points. In particular, both μ and λ̃, the shear
and bulk modulii respectively, acquire scale-dependence, di-
verging as [ln(�/q)]1/3 in the long wavelength limit, which
implies anomalous elasticity; here � is an upper wave-vector

cutoff. This is analogous to anomalous elasticity in 3D equi-
librium smectics [23]. As a result, the variance of the local
fluctuating displacement field ui(x) (i is the Cartesian com-
ponent), that describes the local deformation or dilation,
〈[ui(x)]2〉 shows a universal dependence on the system size
L as [ln (L/a0)]2/3, a significantly weaker L-dependence than
the well-known ln (L/a0)-dependence found away from Tc, or
in one-component systems at any T ; a0 = 2π/�. Likewise,
the two-point correlation function of the difference of the local
displacements at two points separated by a distance r scales
as [ln (r/a0)]2/3, unlike the well-known ln(r/a0)-dependence
of QLRO. These imply a positional order logarithmically
stronger than the usual QLRO. We call this positional SQLRO,
that forms an altogether new, heretofore unstudied universality
class. The prediction of this SQLRO and the associated uni-
versality class is a principal outcome of the present study. The
second-order transition remains unaffected with the critical
exponents belonging to the Ising universality class, as they do
in the corresponding rigid system. This is not the only state
of the system near Tc. With sufficiently strong breaking of the
Ising symmetry, the system distabilizes, leading to the loss
of any SQLRO positional order (PO); only positional SRO is
possible. This instability is driven by the selectivity param-
eters g1 and g2, which are also the Ising symmetry-breaking
couplings. Our detailed results show that as the initial or
microscopic value of the dimensionless ratio � ≡ g2

1/(μg1)
exceeds a finite threshold �1c,

g2
1

μg1
> �1c ≈ 1.5, (2)

the system destabilizes with the attendant loss of SQLRO. An
analogous relation exists involving g1, λ̃, and g2; see later.
We further show that in such an elastic medium near Tc with
Eq. (2) holding good, as soon as the system size L exceeds
a threshold value Lc, controlled by the microscopic (bare)
value of the selectivity parameters, is lost. Our theory gives
the following expression of Lc:

Lc = a0 exp

⎡
⎣ μ( g2

1
2μ

− g1
) 2π

Tc

⎤
⎦. (3)

FIG. 1. Schematic phase diagram in the g1-μ plane for d � 2
near Tc. The blue shaded region is where μ > 0 corresponding to
positional SQLRO with second-order transition in 2D. The region
outside has μ < 0 implying loss of positional order or short-range
order. The phase boundary (red) can be obtained by using Eq. (2)
above (see text).
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FIG. 2. Schematic phase diagram in the g1-g1 plane for d � 2
near the phase transition. The middle light green region (PO), cor-
responds to SQLRO in 2D. The region outside has SRO. The phase
boundary (red) can be obtained by using Eq. (2) above (see text).

Equation (2) allows us to draw the phase diagrams of the
system in 2D, demarcating the phases with PO (i.e., SQLRO)
and without PO (i.e., with SRO) which are shown in the
schematic phase diagrams in Figs. 1–3. The g1 versus μ curve
for a fixed g1, and the g1 versus g1 curve for a fixed μ, which
are the phase boundaries between the ordered (PO) phase and
disordered phase (SRO), are obviously parabolas as can be
seen by equating g2

1/(μg1) with �1c; see Eq. (2). Furthermore,
a phase diagram can be drawn in g2

1-L plane showing the
regions with PO and SRO by using Eq. (3); see Fig. 3.

Similar phase diagrams could be drawn in terms of g2 and
g2, λ̃, or L (not shown here).

The above results assumed a second-order transition of the
order parameter field. However, the transition of the order
parameter field too can depend very sensitively on the order
parameter – strain couplings. While this is second order for
weak order parameter-strain couplings, it can be turned first
order by sufficiently strong order parameter – strain couplings.
In the latter case, the system can still show positional or-
der, which in this case would be just conventional QLRO,
or can destabilize, and undergoes a transition to SRO for

FIG. 3. Schematic phase diagram in the g2
1 − L plane in 2D near

Tc. The red curved line corresponding to L = Lc, the instability
threshold, demarcates regions with PO (SQLRO) and SRO. The
region left to the vertical broken blue line corresponds to systems
with arbitrarily large L retaining PO. The region between the vertical
blue line and the curved red line given by (3) corresponds to systems
having a finite L < Lc, a threshold value maintaining PO and is
identified with the persistence length or positional correlation length
ξ ; for L > Lc = ξ only SRO is possible (see text).

larger couplings. However, the distinctive feature of positional
QLRO together with a first-order transition is that across
the first-order transition temperature, there is a finite jump
in the effective elastic modulii, unlike across second-order
transitions. With a first-order transition, the instability in the
positional order is, however, independent of the system size L,
i.e., it sets in independent of the system size.

B. Results on 3D systems

At 3D, for low selectivity, there are no infinite renormaliza-
tions of μ and λ̃; therefore, the displacement fluctuations show
true positional LRO, indistinguishable from pure 3D elastic
media. However, again a sufficiently strong selectivity, ex-
ceeding a dimension-dependent threshold, can distabilize the
positional order. Unlike its 2D counterpart, this threshold is
independent of L. In this case, the phase transition of the order
parameter is unaffected by the order parameter-displacement
couplings, and belongs to the 3D Ising universality class.
Stronger selectivity parameters can introduce a first-order
transition as well, in a way similar to the 2D case, with
the elastic modulii displaying finite jumps across the first-
order transition temperature. These results are shown in the
schematic phase diagrams in Fig. 1 and Fig. 3.

These results including the phase diagrams could be
verified in numerical simulations of the associated Ising spin-
lattice discrete model close to the phase transitions. These
may also be tested in carefully prepared purpose-built mixed
ZTE samples (of magnetic or nonmagnetic origins), which
undergo phase transitions within the temperature range of
ZTE behavior, in future.

III. LANDAU-GINZBURG FREE ENERGY

We start by formulating the coarse-grained LG theory of
a spin model for Ising transitions in a deformable ZTE. For
simplicity, we schematically consider a conceptual model
consisting of ferromagnetic Ising spins with nearest neighbor
interactions on a Hookean spring-like model of isotropic gel.
We assume the Hamiltonian H:

H = −
∑
αβ

Jαβ [(xα − xβ − ã)2]SαSβ

+
∑
αβ

SαJ ′
αβ [(xα − xβ − ã)2]

+ 1

2

∑
αβ

Kαβ (xα − xβ − ã)2. (4)

Here, α, β refer to lattice sites with position vectors xα, xβ ,
and not Cartesian components, and Sα = ±1 is the Ising spin
at lattice site α; all the sums over α, β are restricted to nearest
neighbors. The constant ã is the rest length of the springs.
Then in the rigid lattice limit of the lattice, y ≡ xα − xβ − ã =
0, where y is a measure of the strain. Further, Jαβ is the
exchange integral that is assumed to depend quadratically on
the strain for small strains: we assume Jαβ (y) = J0

αβ + J1
αβy2

for small y. Here, J0
αβ > 0 is the exchange integral in the

limit of an undistorted lattice. We further assume J1
αβ > 0 for

stability reasons. We have also included an Ising inversion
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symmetry breaking term that is linear in Sα but quadratic
in the strain, and is formally like a “local magnetic field”;
J ′
αβ (y) = J ′

αβ
0y2 for small y. Here, the coupling J ′

αβ can be
of any sign. As mentioned earlier, such an Ising symmetry
breaking coupling, although is not commonly considered in
magnetic crystals, routinely appears in the free energies of
two-component soft matter systems, where the Ising degree of
freedom represents the local difference in the two components
of a mixed system; see, e.g., Ref. [24]. In that spirit and
to generalize our theory, we allow for such an anhamornic
coupling in our model. Clearly, in the rigid limit of the lat-
tice Jαβ (y = 0) = J0

αβ ; J ′
αβ (y = 0) = 0, reducing H in Eq. (4)

to the standard ferromagnetic Ising Hamiltonian [6]. Lastly,
Kαβ (xα − xβ − ã)2, which is the last term in (4), gives the
stretching energy of the Hookean springs. We now construct
the LG free-energy functional for an isotropic system, assum-
ing that in the rigid limit of the medium the phase transition
is of continuous nature, described by a local scalar order
parameter φ(x) representing the local Ising degree of freedom.
As discussed above, in an actual physical realization of this
model, φ could be a local magnetic (Ising-type) spin, or the
local concentration difference of the two components that
make up the elastic medium. The quadratic dependence of the
interactions on the strains ensures ZTE here. We have ignored
contributions anhamornic (i.e., non-Hookean) in the strain,
since they turn out to be irrelevant in what follows below.

The Landau-Ginzburg free-energy functional F for this
system is obtained by expanding in terms of the fields and
their gradients, assuming small fluctuations [6]. For a two-
component elastic medium, this should have three distinct
parts:

F = Fφ + Fu + Fuφ. (5)

For reasons of analytical manipulations (see later), we write
down F in general d dimensions. Here, Fφ is the free-energy
functional of an isolated Ising model with all the displace-
ments ui(x) = 0 (e.g., on a rigid lattice):

Fφ =
∫

dd x

[
r

2
φ2 + 1

2
(∇φ)2 + vφ4

]
. (6)

Here, v > 0 and r = T − T 0
c , where T is the temperature

and T 0
c is the mean-field critical temperature of the Ising

model. Further, Fu is the elastic free energy of deformation
of an isolated elastic medium, which due to the invariance of
the system under any translation or rotation can depend on
u(x) only through the strain tensor ui j = 1

2 (∇iu j + ∇ jui +
∇ium∇ jum) [6]. Now, assuming isotropy Fu must have the
form [25]

Fu = 1

2

∫
dd x[2μui jui j + λuii]. (7)

Parameters μ and λ are the well-known Lamé coefficients
for an elastic medium [6]. For an incompressible medium, λ

diverges and uii → 0.
Last, Fuφ is the free energy of interactions between the

local order parameter and the local strain. General symmetry
considerations dictate the following form for Fuφ :

Fuφ =
∫

dd x
[
g1φ

2u2
i j + g1φu2

i j + g20φ
2u2

ii + g20φu2
ii

]
, (8)

to the leading order in gradients and fields. The form of Fuφ

is chosen in such a way to ensure that it and also the total free
energy F are even (quadratic) in the strain. The invariance
of F under constant shifts of u ensures that there are no
couplings of the form u · ∇φ in Fuφ . The local stress field
σi j is the thermodynamic conjugate of ui j and is given by [6]

σi j = ui j[2μ + g1φ
2 + g1φ] + ummδi j[λ̃ + g20φ

2 + g20φ],
(9)

giving strain ui j to vanish identically in the zero stress state
with σi j = 0. Furthermore, F in Eq. (5) is constructed in a
way such that the thermal average of the strain tensor, 〈ui j〉 =
0 identically in the absence of any externally applied stress, as
it should be for ZTE materials.

Let us consider the different anharmonic terms included
in Fuφ . The terms on the the right side of Eq. (8) may be
interpreted as order parameter-dependent Lamé coefficients.
In fact, by combining with Eq. (7), we may define effective or
local Lamé coefficients

μ(φ) = μ + g1φ
2 + g1φ, (10)

λ(φ) = λ + 2g20φ
2 + 2g20φ. (11)

Thus, the effective Lamé coefficients depend on the local
order parameter, not only through its magnitude, but also its
sign, i.e., by the overall state of the local order parameter.
These anhamornic terms may be alternatively interpreted as
follows. The terms [g1(ui j )2 + g20(uii )2]φ2 can be considered
as the local strain-dependent corrections to T 0

c giving Tc, the
local effective critical temperature:

Tc = T 0
c − 2[g1(ui j )

2 + g20(uii )
2]. (12)

Further, the terms [g1(ui j )2 + g20(uii )2]φ together effectively
act like a local aligning field term hφφ in F , where

hφ = −[
g1(ui j )

2 + g20(uii )
2
]
, (13)

that is the analog of an external conjugate field [26].
To generalize the scope of our study, we have included

Ising Z2 symmetry breaking terms g1φu2
i j and g20φu2

ii in Fuφ

to allow for the possibility that the local strain couples with
the two states of the Ising degree of freedom differently or
selectively: the magnitudes of the parameters g1 and g20 thus
give measures of the degree of selectivity in the model; these
are also the parameters that introduce inversion asymmetry
of the Ising order parameter [27]. This could be potentially
important, e.g., in a two-component composite ZTE elastic
medium, where the local elastic modulii may depend ex-
plicitly on the relative concentration of the two components.
For instance, in a two-component binary mixture embedded
in an elastic medium, the elastic deformations may couple
selectively to the two local concentration of the two com-
ponents [28,29]. These should result into the local elastic
modulii depending asymmetrically upon the two states of
the order parameter, e.g., relative concentration of the two
components in a binary system, or both the sign and amplitude
of the local order parameter. To generalize the scope of this
study, we allow for such selectivity in composite ZTE elastic
medium. These considerations motivate inclusion of the Ising
Z2 symmetry breaking terms in F , which leads to unexpect-
edly rich behavior [27]. These Ising-symmetry breaking terms
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in Eq. (8) make it different from its counterparts used in
Refs. [12,30] (studied in somewhat different contexts though).
Couplings v, g1, g2 > 0 for thermodynamic stability, where
as couplings g10, g2 can be of either sign.

It is convenient to write the fields in the Fourier space as
functions of the wave vector q, and decompose u(q) as the
vector sum of uL(q) and uT (q):

u(q) = uL(q) + uT (q), (14)

where uL(q) and uT (q) are projections of u(q) along and
perpendicular to the wave vector q. Thus,

uL
i (q) = Qi j (q)u j (q), uT

i (q) = Pi j (q)u j (q), (15)

where Qi j (q) = qiq j/q2 is the longitudinal projection oper-
ator, and Pi j (q) = δi j − qiq j/q2 is the transverse projection
operator, which project, respectively, any vector onto the
space parallel and perpendicular to q. Free energy F can then
take the form, after dropping cubic or higher-order terms in
∇iu j that are irrelevant in the renormalization group (RG)
sense

F =
∫

dd x

[
r

2
φ2 + 1

2
(∇φ)2 + vφ4 + μ

(∇iu
T
j

)2 + λ̃

2

(∇iu
L
j

)2

+ (g1φ
2 + g1φ)

(∇iu
T
j

)2 + (g2φ
2 + g2φ)

(∇iu
L
j

)2
]
, (16)

where uL
i (x) and uT

i (x) are the inverse Fourier transforms of
uL

i (q) and uT
i (q); λ̃ = λ + 2μ, g2 = g20 + g1, g2 = g1 + g20.

In Eq. (16), g1 and g2 are the selectivity parameters. The
corresponding partition function is given by

Z =
∫

DφDuT
i DuL

i exp (−βF ), (17)

where β ≡ 1/T with the Boltzmann constant kB = 1. Di-
mensions and estimates for these parameters are available in
Appendix B. It can be shown that with the form of F as given
in Eq. (16), dTc/dV = 0 [31]. Our theory differs from the one
studied in Ref. [13] due to the presence of the spin-lattice
anhamornic terms, which are irrelevant in the presence of a
finite thermal expansion, and are not considered in Ref. [13].
We note that Eq. (16) does not contain any term that is odd in
strain, for such a term would lead to 〈ui j〉 	= 0, violating the
condition of ZTE.

IV. GAUSSIAN THEORY

Ignoring the anharmonic terms, the free-energy Eq. (16)
reduces to

Fg = 1

2

∫
dd q

(2π )d
[(r + q2)|φ(q)|2 + 2μ|uT (q)|2

+ λ̃|uL(q)|2]; (18)

see Appendix C for more details. This gives for the displace-
ment correlation functions at the harmonic order

〈
uL

i (q)uL
j (−q)

〉 = T δi j

λ̃q2
, (19)

〈
uT

i (q)uT
j (−q)

〉 = T δi j

2μq2
(20)

at all temperatures T . Equations (19) and (20) give

〈(
uT

i

)2〉 = T

2πλ̃
ln(L/a0), (21)

〈(
uL

i

)2〉 = T

4πμ
ln(L/a0) (22)

in 2D. Similarly, the correlation functions of the elastic distor-
tions are given by

CT
uu0 ≡ 〈[uT (x) − uT (x′)]2〉 ≈ T

4πμ
ln(r/a0), (23)

CL
uu0 ≡ 〈[uL(x) − uL(x′)]2〉 ≈ T

2πλ̃
ln(r/a0) (24)

in the limit of large separation r ≡ |x − x′| in 2D. Equa-
tions (21)–(24) correspond to positional quasi-long-range
order (QLRO). At d > 2,

〈(
uT

i

)2〉 = T

2πλ̃
�, (25)

〈(
uL

i

)2〉 = T

4πμ
�, (26)

which imply positional long-range order (LRO); where �

is an upper wave-vector cutoff, � = 2π/a0. From the free-
energy Eq. (16) it is clear that the local order parameter
φ(x) introduces corrections to the elastic modulii μ and λ;
alternatively, the elastic distortions at different points in the
system interact via the order parameter fluctuations. At any
temperature away from Tc, the fluctuations of φ(x) are short-
ranged, and hence, only short-ranged interactions between
local displacement fields are generated. In contrast, near Tc,
fluctuations of φ(x) are scale-invariant and long-ranged, lead-
ing to the local displacement fields interacting via effective
long-range interactions. Interestingly, this takes the system
potentially out of the jurisdiction of MWHT. Whether close
to Tc these interactions lead to a phase that is more ordered
or less ordered cannot however be inferred without detailed
calculations. Below we calculate the precise quantitative sys-
tem size dependence of 〈(uL

i )2〉 and 〈(uT
i )2〉, and the analogs

of the correlation functions defined above in Eqs. (23) and
(24), which should reveal the nature of order near Tc. Due to
the large critical point fluctuations, naïve perturbation theory
fails. To circumvent this problem, we resort to the perturbative
RG framework that we discuss below.

V. ANHARMONIC THEORY

Anhamornic effects are likely to substantially alter the
Gaussian theory results Eqs. (21), (22), (23), (24), (25) and
(26) near the critical point. We discuss here in details the RG
analysis, that we execute at the one-loop order, of the free-
energy Eq. (16). By construction uT · uL = 0. This allows
us to mutually completely decouple the RG calculations for
μ, g1, g1 and λ̃, g2, g2 at the one-loop order.

Before we embark on the RG calculations, we note that
the anhamornic coupling constant v has dc = 4 as the critical
dimension, where as dc = 2 for g1, g1, g2, and g2; see Ap-
pendix D 1. Since we will perform this RG in an expansion
around the critical dimension dc = 2, it is useful to consider F
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FIG. 4. Vertices for the Feynman graphs (a) g1φ
2[uT (x)]2, (b) g2φ

2[uL (x)]2, (c) g1φ[uT (x)]2, (d) g2φ[uL (x)]2.

to arbitrary d dimensions (see above), instead of considering
specific physical dimensions of d = 2, 3.

Since the couplings g1, g1, g2, and g2 are irrelevant (in
the RG sense) near dc = 4, we can conclude that a second-
order transition for the order parameter field φ at dimensions
4 � d � 2, belongs to the Ising universality class [6], and is
unaffected by the elastic deformations; see also Ref. [30] for
similar discussions. That a second order transition is possi-
ble even in the presence of the inversion symmetry breaking
terms in F [see Eq. (16)] can be argued in a manner that is
exactly analogous to the existence of a second order liquid-gas
transition; see Sec. VI for more details. Here, we assume
the existence of a critical point and proceed to examine its
consequence. It now remains to calculate how the order pa-
rameter fluctuations affect the lattice deformation fluctuations.
As already explained, away from the critical point, effects
of the φ-fluctuations are small, which leave the scaling of
the variances 〈[uL

i (x)]2〉 and 〈[uT
i (x)]2〉 and the corresponding

correlation functions unchanged from their forms in the har-
monic theory, whereas close to the critical point, the observed
scaling may change. Hence, below we focus only on the crit-
ical region and set T = Tc. Being closed to the critical point,
we can then set up the renormalized perturbation theory solely
for the displacement fields u(x) and expand in the powers of
the coupling constants g1, g1, g2, g2 for a given configuration
of φ, and subsequently averaging over the Boltzmann distri-
bution of φ, controlled by Fφ given above [30].

We employ the Wilson momentum shell procedure [2,6].
This method consists of tracing over the short wavelength
Fourier modes of φ(x) and ui(x), followed by a rescaling
of lengths. In particular, we follow the standard approach of
initially restricting wave vectors to lie in a bounded spherical
Brillouin zone: |q| < �. The fields φ(x) and ui(x) are sep-
arated into high and low wave-vector parts φ(x) = φ<(x) +
φ>(x) and ui(x) = u<

i (x) + u>
i (x) where φ>(x) and u>

i (x)
are nonzero only in the large-wave-vector (short wavelength)
range �e−dl < |q| < �, while φ<(x) and u<

i (x) have sup-

port in the small-wave-vector (long wavelength) range |q| <

e−dl�. We then integrate out φ>(x) and u>
i (x). This inte-

gration is done perturbatively in the anharmonic couplings
g1, g1, g2, and g2 in Eq. (16); as usual, this perturbation
theory can be represented by Feynman graphs, with the
order of perturbation theory reflected by the number of
loops in the graphs we consider. We confine our study
to the one-loop renormalized theory here. The Feynman
graphs or the vertices representing the anhamornic couplings
g1φ

2[uT (x)]2, g1φ[uT (x)]2, g2φ
2[uL(x)]2, and g2φ[uL(x)]2

are illustrated in Fig. 4.
Next to the above perturbative step, we rescale lengths to

restore the upper cut off back to �: x = x′b, b = exp(dl ). We
then rescale the long wavelength parts of the fields according
to ui(x) = ζuui(x′) and φ(x) = ζφφ(x′). We determine ζu by
demanding that under the rescaling μ, λ̃ do not scale. This
gives ζu = b1−d/2. We further determine ζφ by demanding that
the coefficient of

∫
dd x(∇φ)2 remains unity under rescaling.

This gives ζφ = b1−d/2; see Appendix D 1. We restrict our-
selves to a one-loop calculation. At this order, both μ and
λ̃ receive two fluctuation corrections each, originating from
nonzero g1, g1, g2 and g2. The relevant Feynman diagrams
for μ are given in Fig. 5. There are two similar Feynman dia-
grams that renormalize λ̃; they are discussed in Appendix D 2
(see Fig. 15).

Likewise coupling constants g1, g1 are each renormalized
at the one-loop order by the Feynman graphs illustrated in
Figs. 6 and 7, respectively. Evaluation of these Feynman di-
agrams are discussed in more details in Appendix D 2. The
corresponding Feynman graphs for g2, g2 are given in Ap-
pendix D 2. As shown there, all the one-loop diagrams are
proportional to 〈φ>(x)2(x)〉 = ∫ �

�/b
dd q

(2π )d 〈|φ(q)|2〉. We now
use the well-known relation

∂〈φ2(x)〉
∂T

∼ −Cv, (27)
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FIG. 5. One-loop diagrams that contribute to the fluctuation cor-
rections of μ. Diagram (a) comes from the nonlinear coupling g1,
where as diagram (b) comes from g1 (see text).

where Cv is the specific heat at constant volume [30]. As T →
Tc, Cv ∼ |T − Tc|−α , where α is the specific heat exponent.
At 2D, α = 0 exactly [32], which corresponds to a logarith-
mic divergence in Cv as T → Tc: Cv ∼ ln(|T − Tc|/Tc). For
4 > d > 2, α is nonzero, and not known exactly, but known
perturbatively (or numerically, e.g., α = 0.11 in 3D) [33],
giving Cv ∼ |T − Tc|−α . This gives at 2D,

〈φ2(x)〉 ∼ ln(|T − Tc|/Tc), (28)

where as at higher dimensions,

〈φ2(x)〉 ∼ |T − Tc|−α+1. (29)

Now as T → Tc, correlation length ξ ∼ |T − Tc|−ν . The cor-
relation length exponent ν = 1 is again known exactly at 2D,
or at higher dimension, ν is known perturbatively or numer-
ically: ν ≈ 0.63 at 3D. This gives 〈φ2(x)〉 ≈ Tc ln ξ × O(1)
at 2D, and 〈φ2(x)〉 ∼ Tcξ

(−α+1)/ν . These are discussed in
Appendix D 2. As already mentioned above, one-loop renor-
malization of μ, g1, g1 are fully decoupled from those of
λ̃, g2, g2. The result is the following recursion relations

dμ

dl
= Tcg1 − Tcg2

1

2μ
, (30)

dλ̃

dl
= 2Tcg2 − 2Tcg2

2

λ̃
, (31)

dg1

dl
= −εg1 − 2Tcg2

1

μ
− Tcg4

1

8μ3
, (32)

dg1

dl
= −ε

2
g1 + Tcg3

1

2μ2
− 2Tcg1g1

μ
, (33)

FIG. 6. One-loop diagrams that contribute to the fluctuation cor-
rections of g1. Diagram (a) depends only on g1, whereas diagram
(b) depends only on g1.

dg2

dl
= −εg2 − 4Tcg2

2

λ̃
− Tcg4

2

λ̃3
, (34)

dg2

dl
= −ε

2
g2 + 2Tcg3

2

λ̃2
− 4Tcg2g2

λ̃
, (35)

where ε ≡ d − 2. To proceed further, we define two dimen-
sionless effective coupling constants

α1 ≡ Tcg1Sd

(2π )dμ
�ε, β1 ≡ Tcg2

1Sd

(2π )dμ2
�ε, (36)

α2 ≡ Tcg2Sd

(2π )d λ̃
�ε, β2 ≡ Tcg2

2Sd

(2π )d λ̃2
�ε. (37)

Here, Sd is the surface area of a d-dimensional sphere of unit
radius. As we will see below, the one-loop perturbation theory
that we set up here is actually an expansion in α1, α2, β1, and
β2 up to the linear order.
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FIG. 7. One-loop diagrams that contribute to the fluctuation cor-
rections of g1. Diagram (a) depends both g1 and g1, whereas diagram
(b) depends only on g1.

Next we obtain the RG recursion relations for
α1, β1, α2, β2 by using the flow Eqs. (30)–(35):

dα1

dl
= −εα1 − 3α2

1 − β2
1

8
+ α1β1

2
, (38)

dβ1

dl
= −εβ1 + 2β2

1 − 6α1β1, (39)

dα2

dl
= −εα2 − 6α2

2 − β2
2 + 2α2β2, (40)

dβ2

dl
= −εβ2 + 8β2

2 − 12α2β2. (41)

At 2D, we must set ε = 0 in Eqs. (30)–(35) and (38)–(41).

A. Two-dimensional system: Thin elastic sheet

To study the system at 2D, we use the flow Eqs. (38)–(41)
and set ε = 0. Clearly, the only fixed points are α1 = 0, β1 =
0 and α2 = 0, β2 = 0. By exploiting the decoupling between
uT and uL, we separately focus on the phases and their stabil-
ity in the (α1, β1) plane, which we work out in details below,
and which suffices for incompressible systems. An identical
analysis holds in the (α2, β2) plane.

Interestingly, the fixed point (0,0) is attractive (i.e., stable)
along the α1 direction, but repulsive (i.e., unstable) along the
β1 direction. Qualitatively thus, with a sufficiently large initial
β1(l = 0) ≡ β10 = Tc[g1(l = 0)/μ(l = 0)]2 (i.e., β10 is the
“bare” or unrenormalized value of β1) much larger than the
initial α1(l = 0) ≡ α10 = Tcg1(l = 0)/μ(l = 0) (again, α10 is
the “bare” or unrenormalized value of α1), the system can
become unstable, whereas a sufficiently small β10 � α10 may
not be able to destroy the stable ordered phase observed for
β1 = 0. The question is, then where is the separatrix located
in the α1-β1 plane, that separates the stable phase from the un-

FIG. 8. RG flow diagram in the α1-β1 plane in 2D. The origin O
is the only fixed point. The red line is the separatrix given by Eq. (46).
Arrows indicate the flow directions (see text).

stable phase? Since this putative separatrix must pass through
the fixed point (0, 0), its general equation should be of the
form β1 = α1 f (α1), with f (α1) = �1+ higher-order terms in
α1. Consistent with our lowest-order perturbation theory, we
set β1 = �1α1 as the separatrix that passes through the origin
and set out to calculate �1. Flow Eqs. (38) and (39) may be
written as

d ln α1

dl
= α1

(
−3 − �2

1

8
+ �1

2

)
, (42)

d ln β1

dl
= α1(2�1 − 6). (43)

Thus,

d

dl
ln �1 = d

dl
ln β1 − d

dl
ln α1

= α1

(
3�1

2
− 3 + �2

1

8

)
= 0, (44)

giving the threshold �1c as

�1c = 1
2 [−12 +

√
240]. (45)

Thus, if

β1 = �1cα1 = 1
2 [−12 +

√
240]α1, (46)

equivalently,

g1
2

μg1
= �1c ≈ 1.5, (47)

initially, this will continue to hold under renormalization.
Points below this locus necessarily flow to the origin, where as
points above this locus do not. They flow away from the ori-
gin, until they leave the regime of validity of our perturbation
theory. See Fig. 8 for a schematic flow diagram.

The plot of Eq. (47) in the g1-μ for a fixed g1 gives the
phase diagram Eq. (1). Similarly, the plot of Eq. (47) in the
g1-g1 plane gives the phase diagram Eq. (2).

Let us first focus on the scaling properties when α10, β10,
the initial values of the α1, β1, lie below the separatrix. While
all points below the line Eq. (46) eventually flow to the origin,
we still need to find out the manner in which these points
may approach the origin. That is to say, an arbitrary point
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[α1(l ), β1(l )] below Eq. (46) may, during its approach to
the origin, either go away from Eq. (46), or move toward it,
depending upon whether the locus Eq. (46) is attractive or re-
pulsive. To know that let us assume β10 = �(l = 0) α10, with
�1(l = 0) = �1c − δ1(l = 0), where small δ1(l = 0) > 0 cor-
responding to an initial point below the separatrix Eq. (46).
Therefore,

d

dl
ln �1(l ) = 1

�1

d�1

dl
= −�1c

dδ1

dl

= −α1

(
�2

1c

8
− 5δ1

4
+ �1c − 3

)

= −α1
δ1

4
(�1c + 6) < 0, (48)

to the leading order in small δ1. Equation (48) implies that
δ1(l ) rises, or equivalently, �1(l ) decreases as the renormal-
ization group “time” l increases, corresponding to a repulsive
separatrix. This further means

d

dl
ln �1 = 1

�1c

d

dl

(
β1

α1

)
< 0. (49)

Therefore, a point (α1, β1) that is slightly away from
the separatrix Eq. (8) and lies on the stable side of it,
not only flow toward the origin, it does so by moving
away from the separatrix as the RG time l increases.
We thus conclude that in the long wavelength limit,
β1(l ) � α1(l ), l → ∞. In this limit, then by using Eq. (38),
we find

dα1

dl
= −3α2

1, (50)

giving

−1

α1
= −3l − 1

α10
≈ −3l, (51)

for large l , where α10, a constant of integration, is the “initial
value” of α1(l ). Therefore,

α1(l ) = 1

3l
= Tcg1(l )

μ(l )
(52)

for large l . Likewise, we can find out β1(l ) from Eq. (39).
Using β1(l ) � α1(l ) in the long wavelength limit, Eq. (39)
gives

dβ1

dl
= −6α1β1 = −2

l
β1. (53)

This gives

β1(l ) ∼ 1

l2
� α1(l ) ∼ 1

l
, (54)

which provides aposteriori justification of β1(l ) � α1(l ) that
we have claimed above. We now calculate the renormalized
shear modulus in the long wavelength limit. Using Eq. (30)
together with Eq. (52) above and using β1(l ) � α1(l ),

dμ

dl
= μ

3l
, (55)

in the limit of large l , which upon integration gives for the
scale-dependent, renormalized, scale-dependent shear modu-

lus μ(q),

μ(q) ≈ μR[ln(�/q)]1/3, (56)

for small enough q, where we have used � = ln b = ln(�/q).
Thus, μ(q) clearly diverges in the long wavelength limit q →
0. Here, μR, a constant of integration, is the amplitude of the
scale-dependent, renormalized shear modulus. Equation (56)
is the analog of anomalous elasticity in 3D equilibrium smec-
tics [23]. Thus,

〈|uT (q)|2〉 ≈ Tc

2μR| ln(�/q)|1/3q2
, (57)

for sufficiently small q. Equation (56) shows anomalous elas-
ticity that arises due to the coupling with the critical order
parameter, and illustrates the new universality class. What is
the range of wave vectors over which Eq. (57) is valid? While
the Landau-Ginzburg free-energy Eq. (16) is valid for wave
vector q � �, the upper wave-vector limit of the validity of
the corresponding renormalized free energy [and hence the
correlation function Eq. (57)], which is �̃ must be smaller
than �, for high wave vectors close to �, effects of renormal-
ization would be small, and the harmonic theory should suffice
there. Enough RG “time” l must be spent in order for the
fluctuation effects to become dominant, to acquire substantial
renormalization of the harmonic theory scaling. Equivalently,
one might ask how big the system must be for it to display
Eq. (57)? An estimate of that crossover scale ξNL may be
obtained from Eq. (51) by noting that the “crossover RG time”
lNL, at which the anharmonic effects become substantial, is
given by the condition 3lNL ∼ 1/α10. This gives

�ξNL ≈ exp[μ/(3g1Tc)] × O(1). (58)

Thus, ξNL that sets the scale at which anhamornic effects be-
come important, depends sensitively on the model parameters
and also Tc. For instance, if we consider two systems having
same values for the model parameters, but their respective
Tc’s differing by a factor of 2, ξNL will differ by a factor
of e2 ≈ 7.4. In fact, if the system size L < ξNL, the system
does not get enough “renormalization group” time l to have
substantial renormalization of the model parameters; as a re-
sult conventional QLRO ensues. However, for L > ξNL, the
system gets enough RG time for substantial renormalization
of the model parameters, and hence SQLRO follows.

We now calculate the variance 〈[uT (x)]2〉 near T = Tc

that involves inverse Fourier transform of 〈|uT (q)|2〉. Inverse
Fourier transform of Eq. (57) gives

〈[uT (x)]2〉 =
∫ �̃

2π/L

d2q

(2π )2
〈|uT (q)|2〉

≈ Tc

2μR

∫ �̃

2π/L

d2q

(2π )2

1

[q2{ln(�/q)}1/3]

≈ 3Tc

8πμR
[ln(L/a0)]2/3, (59)

in the limit of large L. This though rises with L and eventually
diverges in the thermodynamic limit, it does so significantly
more slowly than the QLRO, indicating an order stronger than
QLRO. Henceforth, we call it SQLRO. In Eq. (59) above,
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�̃ is an upper momentum cut off below which (i.e., q < �̃)
Eq. (56) holds; see also Appendix D 3.

We next calculate the renormalized equal-time correlation
function CT T (|x − x′|) of uT (x) near T = Tc. We get

CT T (|x − x′|)
≡ 〈[

uT
i (x) − uT

i (x)
]2〉

≈
∫ �̃

0

d2k

(2π )2

Tc

2μRk2[ln(�/k)]2/3
{1 − exp[ik · (x − x′)]}

≈ Tc

4πμR
[ln |x − x′|�̃|]2/3, (60)

in the limit of large |x − x′|. See details in Appendix D 4.
Equations (59) and (60) are the essence of SQLRO, as al-
ready mentioned above; the alert reader will find them in
Introduction above. Equations (59) and (60) define the new
universality class close to second-order phase transitions of
incompressible systems.

This is to be contrasted with the corresponding result
for the displacement correlator C0

T T (|x − x′|) in the har-
monic theory, where the same correlation function scales as
ln(|x − x′|�). Thus, for large |x − x′|,

CT T (|x − x′|) � C0
T T (|x − x′|), (61)

showing SQLRO as a distinctly stronger order than the well-
known QLRO.

Let us consider the physics on the other side of, i.e., above
the separatrix Eq. (46). The RG trajectories starting with
initial values lying above the separatrix, but not far from the
origin (to stay within the validity regime of our one-loop RG,
at least for small α10, β10) flow away, since α1 still flows to
zero, whereas β1 flows away, giving β1(l ) � α1(l ), which we
show a posteriori. This follows directly from Eq. (48) with
the replacement of δ1 by −δ1 corresponding to an “initial
condition” above the separatrix. It then follows

d

dl
ln �1(l ) = 1

�1c

d

dl

(
β1(l )

α1(l )

)
> 0, (62)

meaning that starting from an initial condition that lies slightly
above the separatrix, the RG trajectories will move toward to
the origin along the α1 direction but move away from it along
the β1 direction; see the flow lines in the flow diagram Eq. (8).
It is useful to find out how β1(l ) grows and α1(l ) decays in
the limit of large l . It should be kept in mind though that on
the unstable side of the separatrix, the accuracy of our one-
loop RG gets progressively poorer with larger RG time l , since
as l gets larger, β1(l ) gets larger as well, eventually making
the perturbative approximation untenable. Retaining the most
dominant terms for large l , we find from Eq. (39)

dβ1(l )

dl
= 2β2

1 , (63)

giving

β1(l ) = β10

1 − 2lβ10
, (64)

where β10 = β1(l = 0) appears as a constant of integration.
Thus, as β1(l ) diverges as l → �β ≡ 1/(2β10) from below,
i.e., as the system size exceeds an initial condition-dependent

finite size Lβ = a0 exp[1/(2β10)], a finite, model parameter-
dependent nonuniversal size, from below. Similarly, retaining
the most dominant terms we find from Eq. (38) for large l

dα1

dl
= −β2

1

8
= −1

8

β2
0

(1 − 2lβ0)2
. (65)

Thus, α1(l ) decreases monotonically as l increases. Solving,
we find

α1(l ) = cα + 1

32

1

l − 1/(2β10)
. (66)

Here, cα is a constant of integration that can be fixed by de-
manding that at l = 0, α1(l = 0) = α10 ≡ Tcg1(l = 0)/μ(l =
0), the “initial” or unrenormalized value of α1. This gives
cα = β10/16 + α10, yielding

α1(l ) = −1

32

1

1/(2β10) − l
+ β10

16
+ α10. (67)

Thus, α1(l ) continuously decreases as l increases, and even-
tually vanishes as the system size crosses a finite threshold �̃.
This scale �̃ may be found by setting α(�̃) = 0 giving

�̃ = 8α10

β10(β10 + 16α10)
< �β, (68)

which unsurprisingly is finite and nonuniversal.
We now study the fate of μ(l ) on this unstable side. In the

limit l � 1, we get from Eq. (30)

dμ

dl
= −μ

β1

2
= − μβ10

2(1/(2β10) − l )
, (69)

giving

μ(l ) = μ̃0| 1

2β10
− l|1/4, (70)

as l → �β from below, where μ̃0 is a constant of integration:
μ̃0 = μ(l = 0)( 1

2β10
)1/4. Thus, μ(l ) depends sensitively on

β10, and as l → �β from below, μ(l ) vanishes. Of course, we
cannot follow μ(l ) all the way to l → 1/(2β10) from below,
as precisely there β1(l ) diverges.

It is clear from the discussions above that for the stability
of the system, RG “time” l should satisfy

l < �c = lβ ≡ 1

2β10
= 1

2

μ2(l = 0)

Tcg2
10(l = 0)

, (71)

whereas if l > �c, then the system becomes unstable. Equiva-
lently, the length scale for stability Lc, which is a measure of
the positional correlation length, is given by

Lc = Lβ = a0 exp

[
1

2Tc

μ2(l = 0)

g2
10(l = 0)

]
, (72)

such that for system size L < (>) Lc, the system is stable and
the system remains positionally ordered (unstable without any
positional order). For a fixed Lc, this relation may be written
in an alternative form:

μ(l = 0) = |g1(l = 0)|
√

Tc ln(Lc/a0) × O(1). (73)

Thus, Lc depends very sensitively on g10. For small g10, Lc be-
comes very large. Readers who are interested in a perturbation
theory argument for divergence of Lc for small g1(l = 0) can
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find one in Appendix E. The interpretation of the separatrix
as the threshold for breakdown of positional order is in fact
supported from the fact that on the unstable side of the sep-
aratrix, an arbitrarily large system will not be able to sustain
any positional order.

The instability discussed above occurs if

�1(l = 0) > �1c = 1

2
[−12 +

√
240], (74)

or equivalently, the bare or unrenormalized model parameters
satisfy

g2
1(l = 0)

μ(l = 0)g1(l = 0)
> �1c. (75)

In the unstable region of the parameter space, the elastic sheet
can remain stable if it is sufficiently small, for in that case,
μ(l = �c) > 0, stabilizing the positional order. So long as
the system size L < Lc = a0 exp(�c), the positional order is
stable since μ(l � �c) remains positive. On the unstable side
of the separatrix, starting from small “initial” values of α1 and
β1, anharmonic effects will not be visible until β1(l = �∗) ∼
O(1). For l < �∗, the system remains stable and shows scaling
as given by the Gaussian theory. Using Eq. (64), we get an
estimate about �∗:

�∗ = 1 − β10

β10
× O(1). (76)

For l � �∗, there is no substantial renormalization of μ, and
hence, the variance 〈[uT (x)]2〉 should scale as ln(L/a0), im-
plying conventional QLRO.

The flow along the separatrix can be calculated. We find on
the separatrix

dα1

dl
= α2

1

(
−3 − �2

1c

8
+ �1c

2

)
< 0, (77)

dβ1

dl
= 2α1β1(�1c − 3) < 0, (78)

implying a flow toward the origin.
Let us further analyze the behavior of the system qualita-

tively on the unstable side of the separatrix Eq. (46), where the
RG trajectories flow out, eventually going out of the regime
of validity of our perturbation theory. The system will then
behave differently than what it does below the separatrix, i.e.,
in the stable regime. What might this different behavior be?
Since the flows in this regime lead out of the region of validity
of our perturbation theory, we cannot follow these flow lines,
but can only speculate about it. For this, we are guided by the
expectation that for large enough α1 (which can be accessed
by, e.g., high enough T = Tc), there should be a phase where
positional order breaks down giving way to a “new phase”
that only has short-range order. Accordingly, there must be an
unstable critical point on the α1 axis, controlling this transition
to this putative phase. If we now consider the full RG flows for
an elastic sheet near a second-order phase transition in the two
dimensional parameter space (α1, β1) and connect this puta-
tive flow on the α1 axis with our flows near the origin in the
simplest possible way (i.e., one that does not involve introduc-
ing any other new fixed points), then we are then led to Fig. 9.
This is essentially an “Occam’s razor”-style argument: Fig. 9
has the simplest flow topology that naturally reduces to the

FIG. 9. Conjectured “Occam’s razor” global RG flows in the
α1-β1 plane at 2D. Arrows indicate the flow directions. The (light
blue) shaded region is the stable region with positional SQLRO. The
red circle on the α1 axis is the putative unstable critical point not
accessible in our perturbative RG (see text).

known flow trajectories for small α1, β1 (as shown in Fig. 8).
It at the same time gives the putative global flow allowing for a
continuous transition to a phase with breakdown of positional
order with breakdown of elasticity that we are tempted to
identify with the liquidlike phase with SRO, where obviously
the mean square displacement is unbounded. It for instance
suggests that starting very close to this “conjectured unstable
fixed point” on the α1 axis, but outside of the separatrix (i.e., in
the unstable region), we expect the resulting RG trajectories to
follow the separatrix for a long “RG time,” eventually moving
away from it to flow away toward unbounded β1 for large l .
In 2D, this melting transition could be a first or second order.
What if the putative transition to this phase is first order in
nature? In that case, the conjectured unstable fixed point or
the critical point with, e.g., a diverging correlation length and
a continuously vanishing order parameter cannot exist. Still
there should be a phase boundary schematically similar to
that drawn in Fig. 9 that should presumably be a first-order
boundary between a phase characterized by positional order
and a new phase with only short-range order. In an RG de-
scription, the separatrix should still end at a critical point of
certain type, where the associated exponents are such that they
represent, for instance, a jump in the order parameter (e.g.,
a vanishing order parameter exponent in the ordered phase).
While the true nature of the transition may still be somewhat
unclear till the date, we expect the topology of the RG flow
lines to remain the same regardless of the precise nature of the
transition, and hence, we speculate Fig. 9 to hold in general.

For nearly incompressible systems, λ̃ → ∞, and uii ≈
0. However, for compressible systems with vanishing strain
in the zero-stress states, an identical analysis holds for the
renormalization and scaling of the longitudinal displacements
uL(x). In summary: We again have (0,0) as the only fixed
point in the α2-β2 plane, which is attractive along the α2 axis
and repulsive along the β2 axis. Similar to the separatrix in
the α1-β1 plane, there is a separatrix in the α2-β2 plane, such
that for initial conditions lying below the separatrix, the RG
flow is toward the origin, where as for initial conditions lying
above the separatrix, the flow lines go away from the origin
and eventually go out of the validity of the perturbation theory.
The equation of the separatrix in the (α2, β2) plane, that is the
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direct analog of Eq. (8) in the (α1, β1), is given by

�2c = 1
2 [−6 ±

√
60], (79)

that is the analog of �1c in Eq. (45). Proceeding as for uT , on
the stable side of the separatrix, we find that

dλ̃

dl
= 2g2 = λ̃

3l
, (80)

giving for the scale-dependent, renormalized λ̃(q) as

λ̃(q) = λ̃R

[
ln

(
�

q

)]1/3

, (81)

where λ̃R is the amplitude of renormalized bulk modulus. This
in turn gives

〈[uL(x)]2〉 ≈ Tc

2πλ̃R
[ln(L/a0)]2/3, (82)

that is identical with the corresponding result for 〈(uL(x))2〉.
Unsurprisingly, renormalized correlator CLL(|x − x′|) ≡
〈[uL

i (x) − uL
i (x′)]2〉 scales as (Tc/λ̃R)[ln(|x − x′|)�̃]2/3

for large |x − x′|; here, λ̃R is the amplitude of the
scale-dependent, renormalized shear modulus. This together
with Eq. (82) are analogs of Eqs. (60) and (59). These four
results establish the new universality class with SQLRO near
Tc for second-order phase transitions in compressible elastic
media.

A RG flow diagram analogous to Eq. (8) may be drawn in
the α2-β2 plane; we do not show it here.

For initial conditions

g2
2(l = 0)/[λ̃(l = 0)g2(l = 0)] < (>)�2c ≡ 1

2 [−6 +
√

60],
(83)

the RG flow lines in the α2-β2 plane flow to (away from)
the origin, with β2 eventually diverging at a finite l and α2

vanishing in the latter case.
It is possible that the initial conditions are such that �1 <

(>)�1c and �2 > (<)�2c, since all the phenomenological pa-
rameters are free parameters in our theory. In that case, μ(l )
will stiffen (soften) and λ̃(l ) will soften (stiffen) due to the
order parameter fluctuations near the critical point. There-
fore, the longitudinal modes will have enhanced (reduced)
fluctuations, whereas the fluctuations of the transverse modes
will be suppressed (enhanced) due to the anhamornic effects.
Thus, separate measurements of the longitudinal and trans-
verse modes fluctuations should reveal important information
about the microscopic parameters of the system. It should
however be remembered as the fluctuations of either the lon-
gitudinal or transverse modes rise (being on the unstable side
of the respective sepatarrix), eventually the anhamornic terms
neglected in the strain (on the ground of being RG irrelevant)
are going to be important, ultimately leading to disorder and
overall loss of positional order for a sufficiently large system
size L. We do not discuss that further here.

B. Bulk sample: d > 2

We now study the universal scaling properties at higher
dimensions, i.e., d = 2 + ε > 2 near T = Tc. We use the flow

FIG. 10. RG flow diagram in the α1-β1 plane in 3D. The blue line
is the separatrix given by β = ε/2. The small circle on the β1 axis is
the unstable fixed point (0, βc ). Arrows indicate the flow directions
(see text).

Eqs. (38)–(41). There are now two fixed points for the RG
flow Eqs. (38) and (39). These are (0,0) which is linearly
stable and (0, ε/2) which is linearly stable along the α1 direc-
tion, but unstable along β1 direction. There could in principle
be a third possibility of a fixed point, in which α1 	= 0, and we
solve

2β1 − 6α1 = ε, (84)

−3α2
1 − β2

1

8
+ α1β1

2
= εα1 (85)

simultaneously. Eliminating β1, we find

84α2
1 + 36α1ε + ε2 = 0, (86)

that has no real positive solution for α1. Thus, α1 = 0 is the
only possible physically acceptable fixed point. RG trajecto-
ries for all initial values for α1 and for β1 < ε/2 flow to the
stable fixed point (0, 0), where as RG trajectories for all initial
values for α1 together with all initial β1 > ε/2 flow away from
the origin, until they are out of the validity of our perturbation
theory. This signifies instability arising from break down of
linear elasticity (see below). Further, β1 = ε/2 ≡ βc is the
separatrix between the stable and unstable phases. The RG
flow diagram is shown in Fig. 10.

In the stable region of the phase space, linearizing about
the stable fixed point (0,0), we get

dα1

dl
= −εα1, (87)

dβ1

dl
= −εβ1. (88)

These give

α1(l ) ∼ exp(−εl ), β1(l ) ∼ exp(−εl ). (89)

Thus, α1(l ) and β1(l ) vanish exponentially in l . This gives for
μ(l )

dμ

dl
= g1 − g2

1

2μ
= μ

[
α1 − β1

2

]
. (90)
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Thus,

dμ

dl
→ 0, (91)

as l → ∞, implying μ(l → ∞) → μ∞, a constant. Similar
argument gives λ̃(l → ∞) → λ̃∞, another constant. Thus,
there are no infinite renormalizations of μ(l ) and λ̃(l ), unlike
their 2D counterparts. Hence, there is no anomalous elasticity.
This further means that in the thermodynamic limit, the elastic
deformation fluctuations are statistically identical to that in the
noninteracting theory. This immediately gives 〈[uT (x)]2〉 as
finite in the thermodynamic limit. This naturally corresponds
to long-range order.

The separatrix is linearly unstable along the β1 direction.
This can be seen easily linearizing Eq. (39) by writing β1(l ) =
β1c + δ2(l ), where β1c = ε/2. To the linear order in δ2, we find

dδ2

dl
= 4βcδ2 > 0, (92)

clearly showing instability along both the directions parallel to
the β1 axis. However, the flow along the separatrix is toward
the critical point (0, β1c):

dα1(l )

dl

∣∣∣∣
β1(l )=β1c

= −εα1 + α1β1

2
− 3α2

1 − β2
1

8
< 0, (93)

indicating a flow toward to the β1 axis.
The linear instability of the fixed point (0, ε/2) together

with the RG flow diagram in Fig. 10 implies that on the
unstable side of the separatrix, β1(l ) diverges for any L, so
long as the initial values of α1, β1 lie in the unstable side of
the separatrix β1 = ε/2. This further gives that for all such
initial conditions renormalized μ vanishes independent of L.

Having known the structure of the RG flow lines near the
fixed points for small values of the coupling constants, we can
now use a Occam’s razor-type argument to speculate on the
global RG flow lines for arbitrary coupling constants. It is
generally expected, as in 2D, that for large enough α1 (with
β1 = 0), which may be achieved at high enough Tc, an elastic
medium should melt into a liquidlike phase with SRO. It
is also known that the melting transitions of crystals in 3D
is indeed first order. Nonetheless, as argued above for 2D,
the topology of the global RG flow lines should be such that
the separatrix should terminate on the α1 axis demarcating the
phase with long-range positional order and the high tempera-
ture liquid phase.

We can now infer the fluctuation properties of uL(x)
directly from those of uT (x). Here, β2 = β2c ≡ ε/8 is sep-
aratrix, that separates the stable phase with positional order
for β2(l ) < β2c and an unstable phase without any positional
order for β2(l = 0) > β2c. The separatrix is linearly unstable
along the β2 direction. Again the flow along the separatrix
is toward the critical point (0, β2c). The schematic RG flow
diagram in the α2-β2 plane is identical to Fig. 10. Again,
we can construct an Occam’s razor argument global RG flow
lines; the corresponding flow diagram looks schematically
identical to Fig. 11.

Notice that since both μ(l ) and λ̃(l ) rapidly vanish (es-
sentially as soon as the system size grows beyond a small
microscopic size) on the unstable side of the separatrix, the
instability is practically independent of the system size. This

FIG. 11. Conjectured “Occam’s razor” global RG flows in the
α1-β1 plane at d > 2. Arrows indicate the flow directions. The light
blue shaded region is the stable region. The small red circle on the
α1 axis is the putative unstable critical point not accessible in our
perturbative RG. The small red circle on the β1 axis is the unstable
fixed point (see text).

is in contrast to the situation at 2D. Readers interested in
a perturbation theory argument for this should find one in
Appendix E.

VI. FIRST-ORDER TRANSITIONS

We have argued above that the nonlinear couplings of φ

with uT or uL are irrelevant (in a RG sense) near the Heisen-
berg fixed point of the Ising model. This means the coupling
with the elastic medium does not affect the second-order
phase transition of the Ising model and the corresponding
universal critical scaling near Tc. This however implies that
the fluctuation corrected coupling constant v in Eq. (16) is
always positive at any length scale. Can effective v be turned
negative at any finite scale by large enough fluctuations? We
carefully consider this question in this section.

We first consider the case with microscopic Ising sym-
metry, i.e., the inversion symmetry breaking couplings g1, g2
vanish. In this case, in order to have a second order transition,
it should be ensured that under mode elimination, ve, the
fluctuation-corrected v at any intermediate scale never turns
negative. This need not be the case always. In fact, this may
not hold true for sufficiently strong order parameter-strain
couplings. In the anticipation that ve can actually turn nega-
tive, we extend F by adding a v6φ

6-term in it with v6 > 0
for thermodynamic stability reasons. We consider the inho-
mogeneous fluctuation corrections to v that originate from
g1, g1, g2, g2, that themselves do not depend upon v explicitly.
These contributions are finite, but negative: Neglecting the
homogeneous corrections to v for simplicity, and using the
expressions of the diagrams in Appendix F, (with g1 = 0 = g2
for the microscopic inversion symmetric case) we get

βcve ≡ βcv − 2dT 2
c

(
β2

c g2
1

4μ2
+ β2

c g2
2

λ̃2

)
�d

(2π )d
,

valid for all d � 2. Now, for ve > 0, the v6φ
6-term is unnec-

essary. The phase transition of φ is then unaffected by the
order parameter-strain couplings, and remains a continuous
transition belonging to the Ising universality class. If, how-
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ever, ve < 0, then a v6φ
6-term must be taken into account for

reasons of thermodynamic stability. In that case, φ now under-
goes a first order transition with the order parameter m ≡ 〈φ〉
jumping of magnitude [|ve|(2v6)]1/2. We thus conclude that in
ZTE systems with microscopic Ising symmetry, sufficiently
strong spin-lattice couplings necessarily turn the second order
transition into a first order one.

The general case with nonzero g1, g2 requires more care-
ful scrutiny. To proceed further systematically, we generalize
the free-energy functional Fφ to F̃φ in general d-dimensions
given by

F̃φ = Fφ +
∫

dd x[gφ3 − hφ], (94)

as appropriate for an asymmetric binary system (i.e., without
any symmetry under the inversion of φ); parameters g and h
can be of any sign. For a symmetric system g = 0 = h, which
corresponds to an Ising magnet with no net magnetization.
For a conserved system (relevant in soft matter version of
this model)

∫
dd xφ(x) is a conserved quantity (a constant),

and hence drops out from (94). Clearly, free energy F̃φ in
Eq. (94) in the limit of a rigid lattice (all strains vanish) gener-
ically describes a first-order transition akin to the standard
liquid-gas transition. This naturally implies the existence of
a coexistence curve identical to that for the liquid-gas tran-
sition, with an associated finite jump in the order parameter
[6]. Nonetheless, it still admits a second-order transition at a
critical point belonging to the Ising universality class. This can
be shown by expanding F̃φ about φ = φ0, with φ0 is chosen
in a way such that the gφ3 -term in F̃φ above vanishes. The
resulting transformed free energy has the form same as that of
the Ising model at a finite external magnetic field h0 [related
to h in Eq. (94) above and depends in general upon the model
parameters] that has generic first-order transitions (or no tran-
sitions at all) if h0 is tuned at any general T [6]; furthermore,
second-order transitions belonging to the Ising universality
class is found only if both T and h0 are simultaneously tuned;
the corresponding critical point is found in the T -h0 plane at
r = 0 or T = Tc (in a mean-field description) and h0 = 0 [6].
The coexistence curve for F̃ above in fact is similar to that for
the Ising model, except that it is now asymmetric with respect
to the order parameter 〈φ〉, averaged over the whole system
due to the lack of any symmetry of Fφ under inversion of φ.
The order parameter–strain coupling terms do not change this
general picture as we now discuss below.

To see the effects of the order parameter–strain couplings,
we integrate out the strains from F̃ perturbatively, a process
that produces F̃φe, a “dressed” F̃φ given by

F̃φe =
∫

dd x

[
r

2
φ2+1

2
(∇φ)2+veφ

4+geφ
3+v6φ

6 − heφ

]
,

(95)

where he is the “effective magnetic field,” and ve and ge are the
“effective” coupling constants, produced by integrating over
the strains; v6 > 0 is added for thermodynamic stability (see
below). Here, we have ignored any corrections to r, obtained
by eliminating the strain field, as they represent just a shift
in Tc, a fact that is present but of little significance to the

present discussion. Again, the last term on the rhs of (95) can
be dropped in a conserved system.

We focus on the fluctuation-corrections to v and g that arise
solely from the order parameter–strain couplings (this suffices
for our purposes here). Consider the two inhomogeneous fluc-
tuation corrections to v that originate from g1 and g̃1; which
are discussed in Appendix F (see Fig. 18). Contributions
from these diagrams are finite. and independent of v itself,
i.e., inhomogeneous in. More importantly, these contribute
negatively to v. While in the standard wisdom of RG, these
finite corrections do not matter and are to be neglected, there
is a possibility that for sufficiently large g1 and g1, effect-
ive v actually turns negative. This then immediately destroys
the assumed second-order transition, and with it all the di-
verging fluctuation corrections to the model parameters, since
fluctuations are bounded in a first-order transition. As before,
neglecting the homogeneous corrections to v and using the
expressions of the diagrams in Appendix F, we define an
effective v, that we denote by ve, as follows:

ve ≡ v − 2dTc

(
g2

1

4μ2
+ g2

2

λ̃2

)
�d

(2π )d

− 2dTc

(
g4

1

32μ4
+ g4

2

λ̃4

)
�d

(2π )d
. (96)

Similarly, the inhomogeneous one-loop corrections to g are
given in the Feynman graphs in Appendix F (see Fig. 19). The
resulting effective parameter ge is thus given (neglecting any
homogeneous correction) by

ge = g + g1g1
Tc

2μ2
d

�d

(2π )d
+ 2g2g2

Tc

λ̃2
d

�d

(2π )d

− g3
1

Tc

2μ3
d

�d

(2π )d
− 4g3

2
Tc

λ̃3

�d

(2π )d
. (97)

Two distinct situations can arise. First consider ge 	= 0
which is the more general case. In this case, there is a generic
first order transition, akin to the liquid-gas first order transition
with an order parameter jump m = −ge/(12v) at a transition
temperature T ∗ = Tc + 9g2

e/(16v) [6]. On the other hand, ge

can be turned zero by tuning g1, g1, g2, g2. Consider ve > 0.
The v6φ

6-term in Eq. (95) can now be ignored. Then Eq. (95)
has the same structure as F̃φ in Eq. (94) above; the discussion
that follows immediately after Eq. (94) applies here as well.
By making a suitable shift in φ, the cubic term geφ

3 may be
eliminated from Fφe, yielding Fe, a modified form for Fφe,
identical to the free energy for the Ising model in the presence
of an external magnetic field hφ . Then, the order parameter
φ clearly generally undergoes a first-order transition below a
transition temperature. A critical point with a second-order
transition may still be accessed only by suitable tuning of
both T and hφ ; in fact, the critical point is located in the
T -hφ plane at r = 0 or T = Tc and hφ = 0, with an asso-
ciated universal scaling behavior belonging to the 2D Ising
universality class. Since hφ in general depends on the order
parameter–strain couplings, it is possible to tune it to zero by
tuning g1, g1, g2, g2. Further, Tc also receives fluctuation cor-
rections that depends on the strain–order parameter couplings
(not shown here). Thus, the critical point is accessed by tuning
g1, g1, g2, g2. At the simplest level, the role of ge 	= 0 is only
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FIG. 12. Schematic phase diagram of the order parameter in the
g̃ − v plane, where for simplicity we have set g1 = g2 = g1 = g2 =
g̃. We have assumed ge = 0, which rules out a first order transition
of the liquid gas kind. Second order phase transition is obtained in
the green region with ve > 0, whereas the transition is first order in
the outside white region with ve < 0. The broken blue curved line is
given by [see Eq. (97)] ve = 0 (along with ge = 0), corresponding to
a line of tricritical points.

to introduce an asymmetry of the order parameter 〈φ〉, which
is reflected in the curvature of the coexistence curve at the
criticality [6]. Since ge can also be varied continuously and
made positive, negative or zero by tuning the order parameter–
strain coupling constants, the curvature at criticality and hence
the location of the coexistence curve in the 〈φ〉-T plane should
change continuously with these coupling constants. Experi-
mental measurements of the coexistence curve for a given
system can thus reveal valuable quantitative information about
these coupling constants.

If ve < 0, then conditions of thermodynamic stability dic-
tates that the v6φ

6-term in Eq. (16) must be taken into
consideration, where v6 is positive definite. We can still set
ge to zero by tuning g (in a technical language this is akin to
adding a “counter term” in F to as to keep the net coefficient
of a φ3-term to zero). Now with ve < 0, instead of a second-
order transition, this now allows a first-order transition with
an order parameter jump φc = ±[|ve|(2v6)]1/2 at the transition
temperature T ∗ = Tc + 2|ve|2/(3v6) [6]. In fact, there now
exists a tricritical point that is determined by the condition
ve = 0 (along with ge = 0). Notice that the dependence of ve

on the selectivity parameters g1 or g2 by a factor of 2 changes
their contributions to ve by a factor of 16, whereas similar
changes in g1, g2 change their contributions to ve by just a
factor of 4. Thus, carefully prepared samples with different
selectivity parameters should enable one to test the possibili-
ties of both first and second-order transitions. See Fig. 12 for
a schematic phase diagram.

We thus conclude that even in the presence of Ising-
symmetry breaking spin-lattice coupling terms, the transition
is generically first order. Nonetheless, a second order Ising
transition can be accessed by tuning the model parame-
ters reminiscent of the second order transition in liquid-gas
systems. Intriguingly, this second order transition can get
converted into a different first order one for sufficiently strong
spin-lattice interactions. Across these first order transitions,

the elastic modulii are finite, but still anomalous in the sense
discussed below.

If there is a first-order transition, then there are no instabil-
ities since all corrections to λ̃ and μ are finite. Nonetheless,
there are corrections which can be measured. The fluctuation
corrections are finite and small for small (bare) anharmonic
coupling constants g1, g2, g1, g2. With this and neglecting the
contributions from the one-loop corrections, effective μ and
effective λ̃ are given by [see free-energy Eq. (16)]

μe = μ + g1〈φ2(x)〉 + g1〈φ(x)〉, (98)

λ̃e = λ̃ + 2g2〈φ2(x)〉 + g2〈φ(x)〉 (99)

to the lowest order in g1, g2, g1, g2. For T > T ∗, 〈φ2(x)〉 is
negligible, where for T < T ∗, 〈φ2(x)〉 can be approximated
by m2; where m = 〈φ(x)〉 	= 0 is the mean field value of the
order parameter below T ∗. For simplicity, we neglect the one-
loop corrections to g1, g2, g1 and g2 in this discussion. Thus,

μ(T < T ∗) = μ(T > T ∗) + g1m2 + g1m

	= μ(T > T ∗), (100)

λ̃(T < T ∗) = λ̃(T > T ∗) + 2g2m2 + 2g2m

	= λ̃(T > T ∗). (101)

Whether or not μ(T < T ∗) or λ̃(T < T ∗) is larger or smaller
than their counterparts at T > T ∗ depends on the relative val-
ues of g1 and g1, or g2 and g2, which are free parameters in our
theory, but are actually controlled by the microscopic material
properties, and the signs of g1, g2 and m. In fact, it is entirely
possible that one among μ(T < T ∗) and λ̃(T < T ∗) larger
than its counterpart at T > T ∗, whereas the other is smaller,
since all of g1, g1, g2, g2 can in principle vary freely. There-
fore, measurements of the elastic fluctuations should show a
sudden jump across T ∗ and should give valuable information
about the material properties. As before, for nearly incom-
pressible systems λ̃ diverges, and we need to be concerned
only with the variation of μ across the first-order transition. It
is in fact possible to have instability in the ordered phase of
the order parameter, leading to loss of positional order. That
is any one among μ(T < T ∗) and λ̃(T < T ∗) or both may be
negative, if g1 and/or g2 are sufficiently large. Notice that this
instability is independent of the system size at any dimension.
A schematic phase diagram in the g2

2-μ plane may be drawn,
which is topologically identical to the phase diagram valid for
T ≈ Tc, valid when there is a second-order transition; see the
phase diagram in Fig. 2. In the case of first-order transition the
instability exists in the entire ordered phase T < T ∗, whereas
for the second-order transition case, it is confined to the neigh-
borhood of Tc only. More intriguingly, if the order parameter
m is conserved, then below T ∗, there will be (at least) two
macroscopically large domains corresponding to +m and −m.
This means there is a possibility that the system remains stable
in one domain, but gets unstable in the other. At the very least,
the effective Lamé coefficients will be different in the different
domains.
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VII. CORRESPONDENCE BETWEEN THE ORDER OF
THE TRANSITION AND DISPLACEMENT FLUCTUATIONS

We now elucidate the correspondence between the dis-
placement fluctuations and the order of the associated
transitions, as one crosses the transition temperature. We make
the following general conclusions about the interrelations
between the variances and correlations of the displacement
fluctuations.

(1) At 2D
(a) If there is a second-order phase transition (i.e., with

no jump in the order parameter across the transition) with
the unrenormalized model parameters falling in the stable
region of the phase space, then the Lamé coefficients in-
crease as the transition temperature Tc is approached from
the above. The Lamé coefficients decrease as T is further
reduced below Tc. If the system size diverges, then the
Lamé coefficients too diverge as Tc is approached. The
system shows novel anomalous elasticity resulting into po-
sitional SQLRO in the thermodynamic limit, different from
the well-known QLRO at T 	= Tc, or in a single-component
elastic medium. The displacement correlation function for
a large separation is much smaller than what it is away from
Tc, or in a single-component medium.

(b) However, if there is a second-order phase transition
and the unrenormalized model parameters fall in the un-
stable region of the phase space, then for a system with
a finite size L < Lc, a critical size, the Lamé coefficients
decrease as temperature T as the transition temperature
Tc is approached from the above. The Lamé coefficients
increase as T is further reduced below Tc. Close to Tc, the
Lamé coefficients vanish as the system size L approaches
Lc from below; in fact, for L > Lc, the system gets unstable
with the attendant loss of any positional order.

(c) If there is a first-order transition at the transition
temperature T ∗ with a finite jump in the order parame-
ter, then there is a finite jump in the Lamé coefficients
directly related to the jump in the order parameter. The
displacement correlator shows conventional QLRO, with
its amplitude showing a jump across the transition temper-
ature.

(d) Independent of the order of the phase transition,
the values of the Lamé coefficients above the transition
temperature can be lower or higher than the corresponding
values below the transition. This is controlled by the model
parameters.
(2) At higher dimensions d > 2

(a) If there is a second-order phase transition with the
unrenormalized model parameters falling in the stable re-
gion of the phase space, then the Lamé coefficients do
not diverge as the critical point is approached. The system
shows conventional LRO. When the unrenormalized model
parameters fall in the unstable region of the phase space
for any value of the system size L. This corresponds to
positional short-range order only.

(b) If there is a first-order transition, then the Lamè
coefficients show a jump across the transition temperature,
concomitant with a jump in the displacement correlation
function that shows conventional LRO below and above the
transition temperature.

The above correspondences are pictorially shown in the
schematic diagrams in Figs. 13 and 14.

VIII. SUMMARY

We have here developed a continuum theory of Ising
transitions in a deformable isotropic zero thermal expansion
elastic medium, e.g., a gel, and investigate the existence of
anomalous elasticity. We consider an Ising-type scalar or-
der parameter to describe the phase transition. Our theory
includes anharmonic couplings between local in-plane lat-
tice dilations or strains with the order parameter, such that
dTc/dV = 0, or 〈ui j〉 = 0. Further, these couplings contain
two distinct anhamornic contributions, one of which respects
the Ising symmetry of the order parameter in a rigid lat-
tice, the other explicitly breaking it. The latter effectively
implies selective coupling of the local strain with the local
states of the order parameter, and makes the system inversion
(i.e., Z2) asymmetric. The breaking of the Z2 symmetry in
the present study is entirely due to its coupling with the
local strain, and hence vanishes in the rigid limit of the
model. These anhamornic terms are irrelevant in the RG sense
when dTc/dV 	= 0, and were not considered in Ref. [13]. In
contrast to the present study, the absence of these anhamor-
nic terms even at at dTc/dV = 0 led Ref. [13] to conclude
that spin and lattice degrees of freedom decouple in this
limit.

We study the system both at 2D and d > 2 close to the
phase transition temperature of the order parameter. At 2D, we
find anomalous elasticity: When there is a second-order tran-
sition with the selectivity couplings being sufficiently weak,
the in-plane displacement fluctuations are significantly sup-
pressed in comparison with its behavior away from the phase
transition; the phase transition itself remains second order
belonging to the 2D Ising universality class. The elasticity is
anomalous and the mean-square in-plane displacement scales
as [ln (L/a0)]2/3, a significantly weaker dependence on the
system size L than the traditional ln(L/a0) behavior observed
in a 2D elastic medium. Similarly, the two-point correlation
function of the differences in the local displacements at two
points separated by a distance r scales as [ln(r/a0)]2/3 for
large r, a much weaker r-dependence than the well-known
ln r dependence observed in QLRO. Thus, our result can
be thought as a novel positional SQLRO that forms a new
universality class. As the selectivity parameters grow in mag-
nitude, the system gets unstable beyond a threshold value
of the parameters as the renormalized elastic modulii vanish
when the system size L exceeds a finite value. This implies a
positional short-range order or SRO, reminiscent of a liquid.
Thus, the selectivity parameters can introduce a novel SQLRO
to SRO transition. These results are summarized in Fig. 8.
Melting of 2D crystals are believed to be defect-mediated.
It would be interesting to study how melting proceeds near
the critical point, when the positional order is not QLRO, but
SQLRO. Sufficiently strong strain-order parameter couplings
can turn the phase transition to a first-order one. In that case,
there is no SQLRO; conventional QLRO is observed at all
temperatures. However, there are jumps in the elastic modulii
as the system passes through the transition temperature. For
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FIG. 13. Schematic variation of μ in a 2D system of finite size L across (a) a second-order transition at Tc when the unrenormalized
parameters fall on the stable side of the separatrix, (b) a second-order transition at Tc when the unrenormalized parameters fall on the unstable
side of the separatrix and L < Lc, the instability threshold, (c) a first-order transition at T ∗ > Tc, with μ having no significant L-dependence. At
3D, (c) holds regardless of the order of transitions. In all these cases, μ(L) is smaller in the ordered low-T phase than its value in the disordered
high T -phase, which is controlled by the bare (unrenormalized) model parameters. Note the smooth variations (shown schematically) of the
Lamé coefficients across second-order transitions, as opposed to their discontinuity across first-order transitions.

sufficiently strong selectivity parameters, the system can get
destabilized as well.

At dimensions d > 2, for sufficiently weak selectivity
couplings, the variance of the local elastic displacements
is independent of the size of the system, corresponding to
positional long-range order (LRO), not different from an or-
dinary 3D elastic medium, e.g., a 3D crystal. However, as
the selectivity increases, the system gets unstable beyond a
threshold value of the selectivity parameters, with only po-
sitional short-range order reminiscent of a liquid. Thus, a
structural transition between LRO and SRO can be induced
by turning the selectivity parameter. As in 2D, the phase
transition can be turned to first order by tuning the selectivity
parameters, across which the elastic modulii display finite
jumps.

On the whole, thus, the selectivity parameters can be
tuned to distabilize the positional order and also to turn the
second-order phase transition to a first-order one. Assuming
the selectivity parameters to be continuously varying control
parameters, we can note that such variations lead to re-entrant
structural phase transitions of the sample; this could be easily

seen if one moves along the g1 axis in the phase diagram
Figs. 1 and 2.

The free energy F in Eq. (16) for ZTE elastic media is
constructed in such a way that 〈ui j〉 = 0 identically in the
absence of externally applied stresses, ensuring vanishing
thermal expansion. If we relax this condition, then additional
terms of the form

∫
dd xĝAA(φ)uii can be added to Fuφ in

Eq. (8) above, where A(φ) is a generic polynomial function
of φ, which would lead to thermal expansion ∝ gA〈A(φ)〉
(which vanishes automatically in the incompressible limit).
Such a term with A(φ) = A0φ + A1φ

2 + · · · , being more
relevant than the existing order parameter–elastic deforma-
tion anhamornic terms, can distablize the RG fixed points
discussed here; see also Ref. [13]. These terms would then
describe materials with finite thermal expansions. However,
in nearly compressible systems, uii is small, and there should
be a sufficiently large scales over which the physics described
here could be observed.

The stiffening of the system with weak selectivity at 2D
holds close to the critical point only. Away from the critical
point, all the fluctuation corrections are finite. These finite

FIG. 14. Schematic variation of μ in a 2D system of finite size L across (a) a second-order transition at Tc, when the unrenormalized
parameters fall on the stable side of the separatrix, (b) a second-order transition at Tc when the unrenormalized parameters fall on the unstable
side of the separatrix and L < Lc, the instability threshold, (c) a first-order transition at T ∗ > Tc, with μ having no significant L-dependence. At
3D, (c) holds regardless of the order of transitions. In all these cases, μ(L) is larger in the ordered low-T phase than its value in the disordered
high T -phase, which is controlled by the bare (unrenormalized) model parameters. Note the smooth variations (shown schematically) of the
Lamé coefficients across second-order transitions, as opposed to their discontinuity across first-order transitions.
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corrections to μ and λ̃ can however turn these elastic mod-
ulii negative, if the selectivity parameters are large enough.
However, these instabilities no longer depend upon the sys-
tem size. For weak selectivity, μ and λ̃ remain positive, but
finite, leading to the standard QLRO. Thus, phase diagrams in
Figs. 1 and 2 still hold with the caveat that the positional order
now refers to just QLRO. This picture holds in 3D as well.

In general, thermal expansion could be controlled or sig-
nificantly restricted by various means, e.g., by inclusion of
additives or impurities with negative thermal expansion co-
efficient [34], such that results predicted by theory could be
observed over a large range of length scales. Our theory is
generic, and applicable to Ising transitions in any isotropic
elastic medium, independent of its microscopic details. This
theory can be tested in numerical simulations of appropri-
ately constructed spin-lattice models near phase transitions in
models with ZTE or the condition dTc/dV = 0, and also by
performing controlled experiment on ZTE materials having
phase transitions within the temperature range of ZTE behav-
ior. Recent progress in the synthesis of two-component ZTE
materials [35] are promising developments in this direction.
We expect future technological breakthrough will make it pos-
sible to design specific ZTE materials where our theory can
be tested. Possible stiffening of ZTE materials near second-
order transitions may make such materials highly valuable in
making precision engineering equipment. We look forward to
future research in these directions.

Our work can be extended in several ways. First, we have
assumed an isotropic elastic medium. It would be interesting
to study how anisotropy would affect our results. Then, to
keep the theory simple, we have just considered a continuous
medium coupled with Ising spins. More realistic situations,
in particular, biologically relevant ones, may involve several
lipids, requiring multiple order parameters. This can poten-
tially give rise to multicritical points, or even simultaneous
occurrence of first and second-order transitions. The nature
of any anomalous elasticity, and the displacement fluctuations
in such systems remain open questions. It will be interesting
to study the dynamics of the fluctuations and the spatiotem-
poral scaling of the time-dependent correlation functions of
the displacements near the second-order transitions. Further-
more, extending these ideas to “active” or nonequilibrium
systems should be important, with possible strong relevance
to biological systems, e.g., phase separations in biological
cells, or flocking phenomena in a correlated background due
to a second-order phase transition. Further work should be
undertaken in this context.
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APPENDIX A: GLOSSARY

In this Appendix, we list and give rough definitions for the
symbols used in this paper, in the order in which they appear

in the text. We also refer to the equations that precisely define
them, or where they appear first in the text.

(1) F̃ : Total free energy of the system [Eq. (5)].
(2) Fφ : Free energy for the Ising degrees of freedom

[Eq. (6)].
(3) r = T − Tc: Difference between the temperature T

(not to be confused with superscript T in uT ) and the mean-
field critical temperature Tc of the Ising degrees of freedom
[Eq. (6)].

(4) v > 0: Anharmonic coupling constant that couples φ’s
with itself [Eq. (6)].

(5) Fu: Free energy for the local displacements ui

[Eq. (7)].
(6) μ, λ: Bare Lamé coefficients for the in-plane elasticity

of the system [Eq. (7)].
(7) ui j = 1

2 (∇iu j + ∇ jui ) is the local strain [Eq. (7)].
(8) Fuφ : Free energy of interactions between the order

parameter φ and displacement ui [Eq. (8)].
(9) g10, g2: Anhamornic coupling constants which couple

order parameter linearly with the local displacement and ex-
plicitly break the inversion symmetry of φ in Fφ [Eq. (8)].

(10) g10, g2: Anhamornic coupling constants which cou-
ple order parameter quadratically with the local displace-
ments, and maintain the inversion symmetry of φ in Fφ

[Eq. (8)].
(11) uL(q), uT (q): Longitudinal and transverse compo-

nents of the displacement u(q), written in the Fourier space
[Eq. (14)].

(12) L: Linear system size (not to be confused with super-
script L in uL).

(13) a0: Short distance cutoff [Eq. (21)].
(14) � = 2π/a0: Upper wave-vector cutoff [Eq. (25)].
(15) λ̃ = λ + 2μ: Effective elastic modulus [Eq. (16)].
(16) Cv: Specific heat at constant volume [Eq. (27)].
(17) ε = d − 2: Small parameter in the RG calculation

[Eq. (32)].

(18) α1 = Tcg1Sd

(2π )d μ
�ε, β1 = Tcg2

1Sd

(2π )d μ2 �
ε : Effective coupling

constants [Eq. (36)].

(19) α2 = Tcg2Sd

(2π )d λ̃
�ε, β2 = Tcg2

2Sd

(2π )d λ̃2 �
ε : Effective coupling

constants [Eq. (37)].
(20) �1c: Slope of the separatrix in the α1-β1 plane in 2D

[Eq. (45)].
(21) δ1: (Small) deviation from the separatrix in the α1-β1

plane in 2D [Eq. (48)].
(22) λ̃(q): Renormalized wave-vector-dependent elastic

modulus [Eq. (56)].
(23) ξNL: Length scale at which the anharmonic effects

become important [Eq. (58)].
(24) Lc: Position correlation length, or the length at which

μ(Lc) ≈ 0 [Eq. (72)].
(25) �2c: Slope of the separatrix in the α2-β2 plane in 2D

[Eq. (79)].
(26) δ2: (Small) deviation from the separatrix in the α2-β2

plane in 3D [Eq. (92)].
(27) F̃φ : Free energy of the Ising degrees of freedom that

includes a φ3 and linear φ terms [Eq. (94)].
(28) g: Coefficient of the φ3 term in F̃φ [Eq. (94)].
(29) h: Thermodynamic conjugate to φ—“magnetic

field”; coefficient of the linear φ-term in F̃φ [Eq. (94)].
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APPENDIX B: PARAMETER ESTIMATES

We begin by noting that both the elastic modulii have
the dimensions of energy/lengthd ∼ kBT/lengthd in d dimen-
sions. Taking this length to be the small scale ∼a0, which is
the mesh size of a cross linked polymer network, or the lattice
spacing for a crystal, we get

μ, λ ∼ kBT/ad
0 . (B1)

We take a0 ∼ 60 nm for a spectrin network [36]. Typical shear
modulus of a 2D spectrin network are μ ∼ 10−5 J/m2 [37]; for
an incompressible medium λ̃ � μ.

We can now find out the dimensions of g1,2 and g1,2. We
start from the fact that∫

dd xg1,2φ
2(∇iu j )

2 ∼ kBT ∼
∫

dd xg1,2φ(∇iu j )
2, (B2)

giving

[g1,2φ
2] ∼ kBT/ad

0 ∼ [g1,2φ]; (B3)

where [...] implies “in a dimensional sense.” Now for a two-
component system, if we assume φ to be the concentration or
number density difference between the two components, then
[φ] ∼ 1/ad . In this case, the dimensions of g1,2 differ from
those of g1,2. However, if φ is a magnetic (Ising) spin, then φ

may be chosen dimensionless. In this case, g1,2 and g1,2 have
the same dimensions.

APPENDIX C: FREE ENERGY

We first derive the free energy F in Eq. (16). We split

ui(q) = Pi j (q)u j (q) + Qi j (q)u j (q) = uT
i (q) + uL

i (q). (C1)

Next we note that∫
dd xuT

i (x) uL
i (x)

=
∫

dd q

(2π )d
ui(−q)T uL

i (q)

=
∫

dd q

(2π )d
Pi j (q)Qim(q)uT

j (−q)uT
n (q) = 0, (C2)

where we have used Pi j (q)Qi j (q) = 0. Furthermore,∫
dd x[uii(x)]2 =

∫
dd x[∂iu

L
j (x)][∂ ju

L
i (x)]

=
∫

dd x[∂iu
L
j (x)][∂iu

L
j (x)]

=
∫

dd x[∂iu
L
j (x)]2. (C3)

Now use that∫
dd x(∇iu j )

2 =
∫

dd q

(2π )d
q2u(q) · u(−q)

=
∫

dd q

(2π )d
q2[uL(q) · uL(−q)

+ uT (q) · uT (−q)]

=
∫

dd x
[(∇iu

L
j

)2 + (∇iu
T
j

)2]
. (C4)

Substituting this decomposition, we get Eq. (16), and also
Eq. (18) at the harmonic order.

APPENDIX D: RG CALCULATION

1. Upper critical dimensions

To determine the upper critical dimensions of the various
anhamornic terms, we rescale space and obtain the corre-
sponding scaling of the model parameters. We rescale space
and the fields as follows (b > 1):

x′ = x
b
, (D1)

ui(x) = ζuu(x′) = ζuui(x/b), (D2)

φ(x) = ζφφ(x′) = ζφφ(x/b). (D3)

These rescaling factors may be calculated by demanding that
under naïve rescaling, bare μ, λ̃ do not scale, and the coeffi-
cient of the term

∫
dd x(∇φ)2 remains unity under rescaling.

This gives

ζu = ζφ = b1−d/2. (D4)

We can use Eq. (D4) to obtain how the anhamornic coupling
constants change under naïve rescaling. We find

u′ = b4−d u, g′
a = b2−d ga, g′

a = b2−d ga, (D5)

a = 1, 2. Thus, critical dimension of u is 4, and the critical
dimension of g1, g2, g1, and g2 is 2.

2. Feynman diagrams

The one-loop integrals for μ, λ̃, g1, g1, g2, and g2 are all
evaluated at T = Tc.

We first consider the one-loop Feynman graphs in Fig. 5
that renormalize μ.

Diagram 5(a) has the value

−g1

∫ �

�/b

dd q

(2π )d
〈|φ(q)|2〉 = −g1〈φ>2(x)〉 = −g1

Tc

2μ
δl

(D6)
in all dimensions. Similarly, diagram 5(b) contributes

g2
1

Tc

2μ

∫ �

�/b

dd q

(2π )d
〈|φ(q)|2〉 = g2

1
T 2

c

2μ
δl, (D7)

in all dimensions. Similarly, evaluating the diagrams for μ in
Fig. 5, we obtain by combining both the corrections

μ< = μ + g1 − Tcg2
1

2μ
. (D8)

The one-loop diagrams which correct λ̃ are given in Fig. 15.
Proceeding as before, we obtain

λ̃< = λ̃ + 2g2 − 2Tcg2
2

λ̃
. (D9)

We now consider the one-loop fluctuation corrections to g1

and g1. We obtain

g<
1 = g1 −

(
4Tcg2

1

dμ2
+ g4

1

4dμ3

)
〈φ2(x)>〉, (D10)
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FIG. 15. One-loop diagrams that contribute to the fluctuation
corrections of λ̃. Diagram (a) comes from the nonlinear coupling g2,
where as diagram (b) comes from g2 (see text).

g<
1 = g1 +

(
g3

1

dμ2
− 4g1g1

μ

)
〈φ2(x)>〉. (D11)

Using the expression for 〈φ2(x)〉, g<
1 , g<

1 can be calculated.
The one-loop diagrams that correct g2 and g2 are shown in

Figs. 16 and 17.
Having shown that all the one-loop corrections are pro-

portional to 〈φ>2(x)〉, we are now obliged to discuss the
evaluation of 〈φ>2(x)〉.

As we have argued above, at 2D 〈φ2(x)〉 ∼ Tc ln |(T −
Tc)/Tc| as T → Tc. Using ξ ∼ [(T − Tc)/Tc]−ν , we get
〈φ2(x)〉 ∼ Tc ln ξ/a0 × O(1). This gives

〈φ>2(x)〉 ∼ Tc ln b × O(1). (D12)

Thus, the contribution from diagram 5(a) reads

−g1Tc ln b ≈ −g1Tcδl (D13)

in 2D, where b = exp(δ�) ≈ 1 + δl for small δl . However, at
d > 2, proceeding similarly,

〈φ>2(x)〉 ∼ Tc
�−α+1

−α + 1
[1 − b−α+1] ≈ Tcδl. (D14)

Thus, the contribution from diagram 5(a) at d > 2 again reads

−g1Tcδl. (D15)

In each of Eqs. (D13) and (D15), we have absorbed O(1)
constants, that arises in the evaluation of the diagrams, into the
definitions of g1, g2, g1, and g2 without any loss of generality.

FIG. 16. One-loop diagrams that contribute to the fluctuation
corrections of g2. Diagram (a) depends only on g2, whereas diagram
(b) depends only on g2.

3. Variances 〈(∇iuT
j )2〉 and 〈(∇iuL

j )2〉 in 2D

We now recalculate 〈(∇iuT
j )2〉 and 〈(∇iuL

j )2〉 by using the
forms of the renormalized propagators for uT

i (q) and uL
i (q)

that is valid up to an upper wave-vector limit �. We note that
the form of 〈|uT (q)|2〉 valid up to an upper wave-vector limit
� should read

〈|uT (q)|2〉 ≈ Tc

4π
[μR ln(�/q)]2/3q2]−1, q < 1/ξNL,

〈|uT (q)|2〉 ≈ Tc

4πμq2
, 1/ξNL < q < �. (D16)

Inverse Fourier transform of Eq. (D16) gives

〈[uT (x)]2〉 =
∫ �

2π/L

d2q

(2π )2
〈|uT (q)|2〉

= Tc

2μR

[∫ C′

2π/L
+

∫ �

C′

]
d2q

(2π )2
〈|uT (q)|2〉
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FIG. 17. One-loop diagrams that contribute to the fluctuation
corrections of g2. Diagram (a) depends both g2 and g2, whereas
diagram (b) depends only on g2.

= Tc

2μR

∫ C′

2π/L

d2q

(2π )2

1

[q2{ln(�/q)}1/3]

+
∫ �

C′

d2q

(2π )2
〈|uT (q)|2〉, (D17)

where C′ < 1/ξNL, C′ ∼ O(1) is such that in the range
2π/L < q < C′, 〈|uT (q)|2〉 is well approximated by
[Tc/(2μR)]1/[q2{ln |�/q|}1/3]. This integral scales with
L as [ln(C′L)]2/3. The remaining integral is independent of L.
We thus conclude that

〈[uT (x)]2〉= Tc

4πμ0
[ln(C′L)]2/3+O(1) ≈ Tc

4πμ0
[ln(C′L)]2/3,

(D18)
for large L, same as what we have obtained above [see Eq.
(59)].

4. Correlation functions in 2D

We are interested in calculating the correlation functions of
ui(x), defined as

Ca
uu(r) ≡ 〈[

ua
i (x) − ua

i (x′)
]2〉

, (D19)

where a = L or T , corresponding to uL
i or uT

i , in 2D near T =
Tc; r̃ = |x − x′|. We first revisit the correlator in the Fourier
space in the harmonic theory, in which at Tc,

Ca
uu0(k) ≡ 〈

ua
i (k)ua

i (−k)
〉 = Tc

ãk2
, (D20)

where ã = 2μ, λ̃ for a = T, L, respectively, for the transverse
and longitudinal components of u(x); a subscript “0” refers
to Cuu(r̃) being evaluated in the Gaussian theory, i.e., after
setting all the anhamornic couplings to zero. Note that (D20)

holds at all T . Inverse Fourier transform of Eq. (D20) gives the
correlation function Ca

uu(r̃) in the real space in the harmonic
theory:

Ca
uu0(r̃) = 2

∫ �

0

d2k

(2π )2
[1 − exp ik · (x − x′)]

Tc

ãk2

= 2Tc

(2π )2

∫ �

0

dk

ãk

∫ 2π

0
(1 − exp[ikr̃ cos θ ])

= 2Tc

(2π )2

∫ 1

0

dq

ãk

∫ 2π

0
(1 − exp[iqy cos θ ])

≡ I0(y), (D21)

where q = k/� and y = �r̃. Then,

dI0

dy
= −2iTc

ã(2π )2

∫ 1

0
dq

∫ 2π

0
cos θ exp[iqy cos θ ] dθ

= −2iTc

ãy(2π )2

∫ y

0
du

∫ 2π

0
dθ cos θ exp[iqy cos θ ]

= −2iTc

ãy(2π )2

∫ 2π

0
dθ cos θ

∫ ∞

0
du exp[iqy cos θ ]

= −2iTc

ãy(2π )2

∫ 2π

0
dθ cos θ

[
πδ(cos θ ) + iP

(
1

cos θ

)]
,

(D22)

in the limit r̃ → ∞. Now, δ(cos θ ) is even under θ → θ + π ,
but cos θ is odd under the same. Hence, the contribution
from the δ(cos θ ) part of the integrand vanishes. In contrast,
P ( 1

cos θ
) is odd, and hence the corresponding contribution

survives. Therefore,

dI0

dy
= 2Tc

ã(2π )2

∫ 2π

0
dθ cos θ P

(
1

cos θ

)

= Tc

ãπy
. (D23)

Therefore,

Ca
uu0(r̃) = T

π ã
ln(� r̃), (D24)

for r̃ → ∞, giving QLRO. As expected, this is valid at all
temperature T .

We now calculate Ca
uu(r̃) in the anhamornic, renormalized

theory at T = Tc. We start from

〈
ua

i (k)ua
i (−k)

〉 ≈ Tc

aRk2| ln(�/k)|1/3
, (D25)

where aR = 2μR, λ̃R. Equation (D25) is no longer valid over
the wave-vector range from 0 to �, rather it is valid between
0 and �̃ � �.

The renormalized correlation function in the real space is
then given as

Ca
uu(r) ≈

∫ �

0

d2k

(2π )2
[1 − exp ik · (x − x′)]

× 2Tc

aRk2[ln(�/k)]1/3
. (D26)
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Integrating over the angular variable, we get

Ca
uu(r) ≈

∫ �̃

0

dq 2Tc

aRq| ln(q/�)|1/3

[
1

2π

∫ 2π

0
dθ (1 − eiqr cos θ

]

=
∫ �̃

0

dq 2Tc

aRq| ln(q/�)|1/3
[1 − J0(qr)]

=
∫ �̃r

0

du 2Tc[1 − J0(u)]

aRu| ln( u
x� )|1/3

, (D27)

where J0(u) is the Bessel function of order zero. Then

Ca
uu(r) =

∫ 1

0

du 2Tc[1 − J0(u)]

aRu[ln u + ln(1/y)]1/3

+
∫ �̃r

1

du 2Tc

aRu{ln u + ln[1/(�r)]}1/3

−
∫ �̃r

1

du 2TcJ0(u)

aRu{ln u + ln[1/(�r)]}1/3
. (D28)

Since umax = �̃r � �r, the second contribution on the right
may be evaluated by setting u = exp(z). This gives

∫ �̃ r

1

du

aRu[ln(� r)]1/3
≈ 2

3
[ln(�r)]2/3 + const. (D29)

We thus find Ca
uu(r) ≈ Tc

aR
| ln(� r)|2/3 in the limit of large r,

with the remaining contributions on the right-hand side of
Eq. (D28) being finite or subleading for large r. By using the
above procedure, we recover the scaling of the harmonic the-
ory or QLRO. We find that Ca

uu(r)(r) eventually does diverge
in the thermodynamic limit, but does so much slower than the
corresponding result with QLRO:

Ca
uu(r)/Ca

0uu(r) → 0 (D30)

for large r. Naturally, we call this positional order stronger
than QLRO (SQLRO).

APPENDIX E: POSITIONAL CORRELATION LENGTH
IN THE PERTURBATION THEORY

We can obtain the positional correlation length from the
fluctuation corrected μ or λ̃ from the one-loop bare pertur-
bation theory. Let us first focus on 2D. The calculation is
essentially same as the RG calculations in Appendix D above,
except that we now extend the integrals over wave vectors
down to an infra-red cut-off qmin ≡ 2π/L, where L is the
length scale at which we intend to calculate the effective
values μe and λ̃e, respectively, of μ and λ̃. Evaluating the
leading order (i.e., one-loop) perturbative corrections to μ

coming from wave vectors q > 2π/L, we obtain at 2D

μe(L) = μ +
(

g1 − g2
1

2μ

)
Tc

2π
ln(L/a0), (E1)

where as usual g1, g1 refer to the bare or unrenormalised
parameters used in the free energy F in Eq. (16). A similar
perturbative expansion for λ̃e may be written. Evidently, for

a sufficiently large L = Lc, μe can be made zero. We get the
following relation for μe(L = Lc) = 0:

μ =
(

g2
1

2μ
− g1

)
Tc

2π
ln(Lc/a0), (E2)

Lc = a0 exp

⎡
⎣ μ(

g2
1

2μ
− g1

) 2π

Tc

⎤
⎦. (E3)

Thus, as g1 → g2
1

2μ
from below, Lc → ∞. for L < Lc, the sys-

tem remains stable with positional order. This critical length
Lc, being the linear size of the system such that μe(Lc) = 0,
can be identified with a persistence length or positional cor-
relation length ξ : As L exceeds ξ , positional correlations are
lost. When Lc is plotted as a function of g2

1 for a given μ, the
phase diagram in Fig. 3 in the g2

1-L plane is obtained.
We are interested in the parameter regimes where μe, λ̃e >

0 (our perturbation theory becomes meaningless outside this
regime). Clearly, if

g1 − g2
1

2μ
> 0, (E4)

then we have μe > μ, i.e., stiffening of the shear modulus.
This corresponds to the stable side of the separatrix Eq. (8) in
the RG calculations. However, if

g1 − g2
1

2μ
< 0, (E5)

then μe < μ necessarily. Thus,

g2
1

μg1
= 2 (E6)

is the borderline of stability. Note that this essentially same
as Eq. (47) above; the slight difference in the right-hand side
of the two is attributed to the quantitative difference between
the renormalized perturbation theory and ordinary perturba-
tion theory. Nonetheless, Eq. (E6) produces the same phase
diagrams as Figs. 1 and 2.

Similar analysis for λ̃e yields an exactly analogous expres-
sion for a critical size for the longitudinal modes. See phase
diagrams in Figs. 3 and 2.

We now consider the three-dimensional case. An equa-
tion that is a direct analog of Eq. (E1) can be written as below.
We note that at 3D, the leading order corrections, i.e., the
relevant integrals, can be performed all the way down to wave
vector q = 0 without encountering any divergence from the
lower limits of the integrals. This yields

μe = μ +
(

g1 − g2
1

2μ

)
Tc�

2π
. (E7)

Similar to the 2D case, if g1 − g2
1

2μ
> 0, then μe > μ; else,

μe < μ. In that latter case, μe = 0 sets the threshold for
instability and breakdown of the positional order. We find

μ =
(

g2
1

2μ0
− g1

)
Tc�

2π
. (E8)

Unlike its 2D counterpart, Eq. (E8) is independent of L, i.e.,
the instability sets in at all scales simultaneously; see Fig. 2.
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FIG. 18. One-loop inhomogeneous Feynman graphs that correct v.

In fact, for all positive (negative) g1 − g2
1

2μ
, the positional cor-

relation length Lc diverges (vanishes).

APPENDIX F: FIRST-ORDER TRANSITIONS

Consider the following diagrams that contribute to the one-
loop corrections to v.

These diagrams are finite. For instance, Fig. 18(a) is given
by

β2
c g2

1

∫
dd q

(2π )d

T 2
c q4δ jmδ jm

4μ2q4

= 2dg2
1

1

4μ2

∫
dd q

(2π )d
= dg2

1
1

2μ2

�d

(2π )d
. (F1)

Similarly, Fig. 18(b) is given by

2β
4
cg4

1

∫
dd q

(2π )d

T 4
c q8δ jsδskδknδn j

16μ4q8

= dg4
1

1

8μ4

�d

(2π )d
. (F2)

Figure 18(c) is given by

β2
c g2

2

∫
dd q

(2π )d

T 2
c q4δ jmδ jm

λ̃2q4

= 2dg2
2

1

λ̃2

∫
dd q

(2π )d
= 2dg2

2
1

λ̃2

�d

(2π )d
. (F3)

Similarly, Fig. 18(d) is given by

2β4
c g4

2

∫
dd q

(2π )d

T 4
c q8δ jsδskδknδn j

λ̃4q8

= 2dg4
2

1

λ̃4

�d

(2π )d
. (F4)

Neglecting the homogeneous fluctuation corrections, we ob-
tain Eq. (96) above for ve.

Consider the one-loop Feynman graphs in Fig. 19 that
corrects g. These are all finite. Figure 19(a) is

β3
c 4g3

1

∫
dd q

(2π )d

T 3
c q6δ jsδsnδn j

16μ4q6
. (F5)

Figure 19(b) is

β2
c 2g1g1

∫
dd q

(2π )d

T 2
c q4δ jmδ jm

4μ2q4
. (F6)

Figure 19(a) is

β4
c 4g3

2

∫
dd q

(2π )d

T 3
c q6δ jsδsnδn j

λ̃4q6
. (F7)

Figure 19(c) is

β2
c 2g2g2

∫
dd q

(2π )d

T 2
c q4δ jmδ jm

λ̃2q4
. (F8)

Neglecting the homogeneous fluctuation corrections, we ob-
tain Eq. (97) above for ge. Here, βc = 1/Tc.
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FIG. 19. One-loop inhomogeneous Feynman graphs that correct g.
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