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Continuum mechanics of nonideal crystals: Microscopic approach
based on projection-operator formalism
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We present a microscopic derivation of the laws of continuum mechanics of nonideal ordered solids including
dissipation, defect diffusion, and heat transport. The starting point is the classical many-body Hamiltonian.
The approach relies on the Zwanzig-Mori projection operator formalism to connect microscopic fluctuations to
thermodynamic derivatives and transport coefficients. Conservation laws and spontaneous symmetry breaking,
implemented via Bogoliubov’s inequality, determine the selection of the slow variables. Density fluctuations in
reciprocal space encode the displacement field and the defect concentration. Isothermal and adiabatic elastic
constants are obtained from equilibrium correlations, while transport coefficients are given as Green-Kubo
formulas, providing the basis for their measurement in atomistic simulations or colloidal experiments. The
approach to the linearized continuum mechanics and results are compared to others from the literature.
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I. INTRODUCTION

Continuum mechanics describe the physical properties of
condensed matter at large spatial and temporal scales. For
simple liquids, the theory is called hydrodynamics, where
there are five relevant variables for the five physical degrees
of freedom: the mass density ρm, three components of the
momentum density jx, jy, jz, and the energy density e. In
crystalline solids, spontaneous symmetry breaking takes place
and a periodic structure arises for all microscopic physical
variables. Therefore, on macroscopic scales, three more rele-
vant variables arise and these are the three components of the
displacement field ux, uy, and uz. These additional physical
degrees of freedom means there are a total of eight relevant
variables for a crystalline solid.

However, in conventional elasticity theory there are only
seven degrees of freedom [1]. In case of defect-free ideal
crystals with perfect lattice structures, each lattice site is oc-
cupied by exactly one particle. This constrains the density to
be the divergence of the displacement field u. In this way, the
physical degrees of freedom are reduced by one, from eight to
seven.

On the other hand, a one-component crystalline solid at a
nonzero temperature is expected to have a finite concentration
of point defects. These point defects may be vacant lattice
sites or particles at interstitial places. As a consequence, there
is an eighth physical degree of freedom in nonideal crystals
best described by the defect density c. This eighth degree of
freedom, describing the diffusion of point defects, has been
introduced by Martin et al. [2]. Later, Fleming and Cohen
[3] further developed and elaborated a continuum-mechanics
description based on the phenomenology of this idea.

A microscopic approach to understand reversible mechan-
ical response and dissipative transport in crystals with local
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defects has been theorized by Szamel and Ernst [4,5]. They
investigated the microscopic density ng(q) in Fourier repre-
sentation where the wave vector k = g + q is decomposed
into the discrete reciprocal lattice vector g and the contin-
uous wave vector q restricted to the first Brillouin zone.
Szamel and Ernst [4] suggested a microscopic formula for
the displacement field u = uxex + uyey + uzez associated with
the linear elastic response due to small deformations of the
crystal. From microscopic principles, they derived the dy-
namic equations for the eight degrees of freedom governing
the continuum mechanics of the system. As a result, they
obtained explicit expressions for the linear elastic constants.
Later, Szamel’s [5] extension of the theory includes dissipa-
tive effects. He applies the concepts of the projection-operator
formalism [6] and derives the Green-Kubo [7–9] relations for
the transport coefficients.

The microscopic approach of Szamel and Ernst [4] has
been extended by Walz and Fuchs [10]. Their representation
of the microscopic particle density ng(q) in terms of the
displacement field u and the defect density c also identifies
previously ignored correlations between displacements and
defect density fields. These general theoretical frameworks
were implemented to a specific model of cluster crystals by
Häring et al. [11]. Cluster crystals are defect-rich crystals,
where an inhomogeneously distributed number of soft parti-
cles occupies lattice sites [12,13]. An extensive examination
of the elastic properties of the same cluster crystals, taken
up by Ganguly et al. [14], infers how local disorder quanti-
tatively impacts mechanical response. The perspective for the
elasticity of hard-sphere crystals, presented by Lin et al. [15]
highlights the influence of microscopic interactions and direct
correlations on the thermomechanics. Ras et al. [16], through
their study of disordered binary crystals, further extended the
scope of these theories. An extension to include nonlinear
effects and fluctuations has been provided by Haussmann
[17]. This theory uses projection operators defined [18,19]
for ensembles far from equilibrium but with an assumption
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of local entropy maximisation. Finally, an alternative and
equivalent approach has been presented by Mabillard and
Gaspard [20,21]. Their approach, unlike Refs. [4,5,10,11,14–
17], avoids the explicit use of projection operators.

In this paper, we build on the microscopic theories of Walz
and Fuchs [10] and Häring et al. [11]. These previous theories
are restricted to the reversible isothermal case where the tem-
perature is constant and dissipative processes are neglected.
In this paper, we consider nonconstant temperatures which
imply heat transport by diffusion. Furthermore, we consider
dissipative contributions to calculate the transport coefficients
of diffusive processes and attenuation in propagative modes.
We focus on general concepts and the derivation of explicit
formulas from microscopic principles. The entire premise of
our theoretical formulation relies on the response functions in
an out-of-equilibrium system in the vicinity of a equilibrium
ensemble. Formation of topological defects, like dislocations
or grain boundaries, requires crossing of a free energy barrier
[22] that takes the system well out of linear response regime.
So, any reference to metastable polycrystalline structures are
not included within the current framework.

The paper is organized as follows: Section II is devoted
to developing and explaining the microscopic basis of our
theoretical framework. In it, Sec. II A briefly summarizes the
conceptual premise of the Mori-Zwanzig projection operators
and introduces the set of microscopic dynamical variables rel-
evant for this paper. Section II B then derives the equations of
motion for these relevant variables after defining the static and
dynamic correlations responsible for the reactive and dissipa-
tive couplings in the equations. The main focus of Sec. III
is to obtain the coarse-grained fields of elasticity from the
microscopic fluctuating fields through an appropriate ansatz.
Once the equations of motion are obtained in the reduced
space of the coarse-grained relevant variables, Sec. IV derives
their connection to macroscopic thermodynamic properties of
the system. This is achieved by the consideration of thermo-
dynamic identities and expansions which allow us to interpret
our theoretical perspective in the broader context of material
properties in different thermodynamic ensembles. Finally, in
Sec. V we conclude giving outlines of future directions.

II. THE MICROSCOPIC THEORY

A. Densities of the relevant variables and their
projected dynamics

The thermodynamics of macroscopic systems predomi-
nantly depend on the dynamics of a few relevant variables.
Specialized projection tools allow the derivation of the dy-
namics of the few relevant variables from the microscopic
degrees of freedom governed by the Hamiltonian dynamics. In
the crystalline phase, the reversible parts of the equations of
motion of the slowly relaxing relevant variables govern the
macroscopic mechanical response, while the dissipative parts
describe the coefficients associated with heat or momentum
transport. The Mori-Zwanzig projection operator formalism
[6,23] provides a way to connect these measurable equilib-
rium and nonequilibrium thermodynamic properties to the
underlying large number of microscopic degrees of freedom.
The success of this formalism leading to a useful representa-

tion of a material phase relies on a good choice of the relevant
variables. They will be called hydrodynamic variables in the
following and will be identified in the hydrodynamic limit of
small frequencies and long wavelengths. Conservation laws
and long-ranged elastic correlations arising from spontaneous
symmetry breaking provide the basis for their selection.

The equations of motion for a chosen set of relevant
variables {Âi(t )} within a linear response framework are the
eventual outcomes of the Mori-Zwanzig formalism [6,23].
Averages, denoted by angular brackets, 〈δÂk (t )〉lr for time
t > 0 describe the relaxation of small initial perturbations
〈δÂk (t = 0)〉lr of the relevant variables generated by external
fields in the past (t < 0). The microscopic operators Âi, which
classically are functions in phase space, are consistently rep-
resented with a hat to distinguish them from their respective
averages. The general form of these equations and the expres-
sions for the matrices involved are summarized here and given
by

∂t 〈δÂk (t )〉lr = i
∑
i, j

χ−1
i j ω jk〈δÂi(t )〉lr

−
∑
i, j

∫ t

0
dτχ−1

i j m jk (t − τ )〈δÂi(τ )〉lr + Fk (t ).

(2.1)

The projection operation splits the time evolution of the rel-
evant variables into reversible [first term in Eq. (2.1)] and
dissipative [second term in Eq. (2.1)] parts. Besides these two
contributions arising from the present and earlier values of the
relevant variables, there exists a random force term Fk (t ). As
we aim to derive linear elasticity theory along with the atten-
uation in the elastic waves due to the dissipative couplings,
only the motion of the averaged fields is of interest. Including
the fluctuating forces would lead to stochastic equations intro-
duced by Langevin. Here that would correspond to fluctuating
elasticity theory, which is not our aim as it would provide a far
too detailed description. So we neglect the fluctuating force
Fk (t ) in our calculations. The angular brackets in Eq. (2.1)
denote ensemble averages and the relation between the small
fluctuation of the relevant variable and the average correlation
functions within the linear response theory is highlighted by
the use of index lr. Because of the closeness to equilibrium,
the dynamical parameters entering Eq. (2.1) can then be eval-
uated by (grand) canonical averaging. Yet, before defining
the matrices of static susceptibility χi j , frequency ωi j , and
memory mi j , that appear in the dynamical equations of the
averaged fields, one needs to define the Liouville operator
L governing the dynamics of the microscopic variables. The
Liouville operator L, acting on the dynamical variables of a
system with a conserved phase space volume, is defined as
the Poisson bracket of an arbitrary dynamical variable Âi and
the Hamiltonian H of the system. The time evolution of a
microscopic variable Âi is given by [24]

∂t Âi(t ) = {Âi(t ),H} = iLÂi(t ), (2.2a)

Âi(t ) = eiLt Âi(0). (2.2b)
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With the Liouville operator, the definitions of the matrices in
Eq. (2.1) can be written as

χi j = β〈δÂ∗
i δÂ j〉, (2.3a)

ω jk = β〈δÂ∗
jLδÂk〉, (2.3b)

mjk (t ) = β〈δÂ∗
jLQe−iQLQtQLδÂk〉. (2.3c)

Here, β−1 = kBT , i.e., the temperature T multiplied to the
Boltzmann constant kB, represents the scale of energy in
the system. As kB is a constant, its value is set to one
without any loss of generality. The generalized Langevin
equation [Eq. (2.1)] is derived [23] by splitting the Liouville
dynamics onto two orthogonal subspaces described by the
projectors

P =
∑
i, j

δÂi〉〈δÂ∗
i δÂ j〉−1〈δÂ∗

j = β
∑
i, j

δÂi〉χ−1
i j 〈δÂ∗

j , (2.4a)

Q = 1 − P . (2.4b)

The latter projector Q enters the matrix of memory functions
mi j (t ).

Guided by hydrodynamic description of fluids or magnetic
systems [6,25], conserved quantities and variables associated
with spontaneously broken continuous symmetries are chosen
as the hydrodynamic variables for an ordered solid. This in-
cludes nonideal crystals that possess finite concentrations of
point defects. Mass, three components of linear momentum,
and energy are the conserved variables in the system. The
fluctuations in the densities of the following set of relevant
variables:

{δ(Âi/V )} = (δρ̂g(q), δ ĵα=1,2,3(q), δê(q)) (2.5)

are chosen to describe the mechanical response and transport
processes in a three dimensional crystalline solid. In Eq. (2.5)
as well as in the rest of the paper, Greek indices like α, β

are used to denote Cartesian coordinates. Alphabets i, j, on
the other hand, denote numerical indices representing vari-
able identities or particle identities. Here, q is a wave vector
restricted to lie in the first Brillouin zone of reciprocal space,
and the limit q → 0 is of interest for deriving hydrodynamic
theories. For a thermodynamic system of volume V , the first
set of variables δρ̂g(q) are the density fluctuations with almost
the periodicity of the lattice; see their definition in Eq. (2.10)
below. They are indexed by the reciprocal lattice vectors g,
whose number we call N . While N → ∞ is the relevant limit,
considering N finite helps in interpreting some algebraic ma-
nipulations later on. The finite values g �= 0 reflect the broken
translational symmetry of an ordered phase. The relation of
δρ̂g(q) to the microscopic particle density ]Eq. (2.7)] justifies
its use as the relevant variable associated with the conserva-
tion of mass as well. The second set δ ĵα=1,2,3 and the third
variable δê are the fluctuations in the three components of
linear-momentum densities and the energy density. The re-
spective conservation laws are given in Eqs. (2.13) and (2.14).

All the conservation laws in this section have the general
form of the continuity equation

∂t ρ̂
Ai (q, t ) + iqα ĵAi

α (q, t ) = 0 (2.6)

for the density ρ̂Ai and current ĵAi of a conserved variable
Ai. Here, the equations are given in reciprocal space. In real

space, these equations state that for a conserved quantity, like
the total energy of the system, any small temporal change in
its density at some spatial point r will be due to a resultant
current of that quantity to or from a small volume element
around that spatial point. We denote microscopic operators
with a hat on the symbol of the variable to distinguish it
from the averaged quantity of the same variable [for example,
see Eq. (2.12)]. The use of microscopic operators, which are
functions of the canonical coordinates of the phase space,
further implies that these conservation laws are obeyed lo-
cally for any microscopically defined phase space function.
Macroscopic conservation laws relating the average densities
to averaged currents, in the complex dynamical system, can be
obtained through ensemble or coarse-grained averages. This is
the conceptual basis [6] for deriving the generalized Langevin
equations [Eq. (2.1)].

With particles of unit mass, the microscopic particle den-
sity operator is ρ̂(r, t ) =∑Np

i=1 δ(r − ri(t )), where the sum
runs over all Np particles, indexed by i, in the system. In the
Fourier space, it is

ρ̂(k, t ) =
∫

d3re−ik·rρ̂(r, t )

=
Np∑
i=1

e−ik·ri (t ) =
Np∑
i=1

e−i(g+q)·ri (t ). (2.7)

The total wave vector k = g + q is written as a sum of the
reciprocal lattice vector g and the wave vector q of the first
Brillouin zone. This separation is possible because, in equilib-
rium crystals and in the thermodynamic limit, the averages of
ρ̂(g + q, t ) only have contributions at reciprocal lattice vec-
tors and thus the ensemble averaged Bragg peak amplitudes
at g are

ng = 1

V
〈ρ̂(g, t )〉 = 1

V

〈 Np∑
i=1

e−ig·ri (t )

〉
. (2.8)

The reciprocal lattice vectors g form a Bravais lattice [26]. In
the absence of thermal fluctuations for an ideal crystal, with
rigidly fixed particles at each lattice site, ng simplifies to the
inverse of the volume of the lattice unit cells. But, in any other
scenario, the deviations in ng result from particle motions
due to thermal fluctuations or defect diffusion. In ordered
structures like crystalline solids, the Bogoliubov inequality
[6,27] indicates a long-range correlation of the density fluc-
tuations δρ̂g(q), whose correlation function diverges as ∝ q−2

for wave vectors close to all nonzero reciprocal lattice vectors
g �= 0. This is the argument for the inclusion of the density
fluctuation close to a reciprocal lattice vector, δρ̂g(q), in the
set of slow variables [Eq. (2.5)]. With the continuity equa-
tion for the mass density or number density for particles of
unit mass

∂t ρ̂(g + q, t ) + i(g + q)α ĵα (g + q, t ) = 0, (2.9)

the amplitude at g = 0 still serves as the slow hydrodynamic
variable associated with the conservation of mass.

In Eq. (2.9) and subsequent equations, the Einstein con-
vention of summation over repeated indices is used. Here,
ĵα is a component of the density of the linear momentum.
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The Fourier representation of the space and time-dependent
number densities allows us to circumvent the necessity of
defining the fields of elasticity attached to a reference lattice
structure. Instead, the microscopic operator corresponding to
the fluctuations in the density close to Bragg peaks

δρ̂g(q, t ) = ρ̂(g + q, t ) − ngV δq0 (2.10)

are defined as deviations from the equilibrium ensemble-
averaged Bragg peak amplitudes ng [Eq. (2.8)] for reciprocal
lattice vectors g. Now averaging δρ̂g(q, t ) over the linear
response many-body distribution yields the observable micro-
scopic field for the density fluctuations measured within the
linear hydrodynamic regime [10] when evaluated in the small
q limit:

δng(q, t ) = 〈δρ̂g(q, t )〉lr. (2.11)

Here we want to reiterate the distinct notations used for mi-
croscopic operators and averaged variables in Eq. (2.11). In all
our calculations, we use symbols with a hat for microscopic
density operators like ρ̂g(q, t ) to distinguish them from their
averaged counterparts 〈ρ̂g(q, t )〉lr. For notational clarity, we
choose to represent all average fluctuations by latin letters
and thus use the symbol δng(q, t ) instead of 〈δρ̂g(q, t )〉lr

[this connects to the notation in Eq. (2.8)]. These conventions
are consistently followed for all variable notations in this
paper.

The next set of slow, relevant fluctuations are given by

δ jα (q, t ) = 〈 ĵα (q, t )〉lr, (2.12)

justified by the conservation of linear momentum

∂t ĵα (q, t ) + iqβσ̂αβ (q, t ) = 0, (2.13)

derived from the operator for the momentum density
components ĵα (r, t ) =∑Np

i=1 pα (ri )δ(r − ri(t )) and their
corresponding spatial Fourier transforms ĵα (q, t ) =∫

d3re−iq·r ĵα (r, t ). The term σ̂αβ is the stress tensor; see
Appendix A 1 for its definition. The conservation of energy

∂t ê(q, t ) + iq · ĵe(q, t ) = 0 (2.14)

in an isolated system also provides a relevant variable and its
coupling with number density is related to heat transport and
thermal expansion in the system. The spatial Fourier trans-
form for the microscopic energy density

ê(r, t ) =
Np∑
i=1

E (ri )δ(r − ri(t )) (2.15a)

=
∑

i

p̂α (ri ) p̂α (ri )

2m
δ(r − ri ) + 1

2

∑
i �= j

V (ri j )δ(r − ri )

(2.15b)

is given by

ê(q, t ) =
∫

d3re−iq·rê(r, t ), (2.16)

similar to the mass and momentum densities. The microscopic
definition of the energy current ĵe is given in Appendix A 1.
Following arguments similar to the momentum conservation

law, the relevant fluctuations for the energy are denoted by

δe(q, t ) = 〈δê(q, t )〉lr . (2.17)

Note that the lattice periodicity suggests that the average
energy density is also periodically modulated and possesses
finite order parameters, eg = 1

V 〈êg〉 �= 0 for g �= 0. This sug-
gests including energy fluctuations around reciprocal lattice
sites into the list of relevant variables following the logic via
Bogoliubov’s inequality. We neglect these energy fluctuations
at finite reciprocal lattice vectors because we assume a smooth
average energy field, viz. eg �=0 ≈ 0, quite in contrast to the
rapidly varying average density.

This concludes the introduction of the slow variables en-
listed in Eq. (2.5) and required in providing a microscopic
basis for the hydrodynamic equations of a crystalline solid,
including all dissipative processes such as heat and defect
diffusion.

B. Microscopic basis for the equations of motion
in the hydrodynamic limit

To understand the dynamics of the relevant variables that
impact the macroscopic properties like the elastic constants
and the different transport coefficients, we first need to focus
on the microscopic definitions of the three key quantities
χi j, ωi j and mi j [Eqs. (2.3)] of the generalized Langevin equa-
tion [Eq. (2.1)]. In the following Secs. II B 1–II B 3, we define
and discuss each of these quantities. Finally, in Sec. II B 4 we
present the microscopic time evolution equations for the set of
N + 4 relevant variables.

1. The static susceptibility matrix and intensive variables

The static susceptibility matrix χ contains the direct and
the cross correlations, measured at equilibrium, between the
different relevant variables [see Eq. (2.3a)]. In the linear re-
sponse framework, the equilibrium susceptibility quantifies
the small change in a system property, for example, density,
on being subjected to an external field, for example, a chang-
ing chemical potential. Reading this relation in the opposite
direction, intensive variables Ãi conjugate to the selected slow
variables can be introduced. The set of these conjugate vari-
ables {Ãi} is built from the general form

〈δÃi〉lr =
∑

j

χ−1
i j 〈δÂ j〉lr. (2.18)

The generalized Langevin equation in Eq. (2.1) translates
to a simpler one written in terms of these conjugate vari-
ables; see Eq. (2.25) below. Equation (2.18) also helps in
interpreting χi j . The comparison with phenomenological ap-
proaches, e.g., the one in Ref. [3], can take place on the level
of equations combining conjugate variable sets. Moreover,
the intensive variables are used in nonlinear projection op-
erator formalism extending our linear response study [17].
Therefore, we use conjugate sets of variables in the fol-
lowing presentation and derive explicit expressions for their
equations of motion. Starting with the relation between the
three sets of relevant variables [see Eqs. (2.5), (2.11), (2.12),
and (2.17)], their respective thermodynamic conjugates are
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defined using the static susceptibility matrix:⎡
⎢⎣

δag(q, t )

δb(q, t )

δv(q, t )

⎤
⎥⎦ = V χ−1

⎡
⎢⎣

δng(q, t )

δe(q, t )

δj(q, t )

⎤
⎥⎦. (2.19)

As the terms on the left side of the above Eq. (2.19) are
conjugates to the densities of number of particles, energy,
and momentum, one can intuit their relations to chemical
potential, temperature and velocity. A more explicit derivation
of their physical interpretation cannot be achieved without
establishing their connections to the thermodynamic free en-
ergy, which we present later in Sec. IV. Here, in Eq. (2.19),
ng(q, t ) and its conjugate ag(q, t ) denote components of N-
dimensional column vectors. The components, indexed using
g (the set of N reciprocal lattice vectors), correspond to fluctu-
ations around the respective gs. The three-dimensional vectors
j [Eq. (2.12)] and v are comprised of the three Cartesian com-
ponents of the linear momentum density and their respective
conjugates. Finally, b is the thermodynamic conjugate to the
internal energy density e [Eq. (2.17)] of the system. Conse-
quently, the static susceptibility matrix is a (N + 4) × (N + 4)
dimensional matrix denoted by χ. The matrix χ contains
blocks representative of self- and cross correlations between
the different sets of hydrodynamic variables. Thus, it may be
written as

χ(q) =

⎡
⎢⎢⎣

χ
ρρ
(N×N ) χ

ρe
(N×1) χ

ρ j
(N×3)

χ
eρ
(1×N ) χee

(1×1) χ
e j
(1×3)

χ
jρ
(3×N ) χ

je
(3×1) χ

j j
(3×3)

⎤
⎥⎥⎦ (2.20a)

=

⎡
⎢⎣

χ
ρρ
(N×N ) χ

ρe
(N×1) 0

χ
eρ
(1×N ) χee

(1×1) 0

0 0 χ
j j
(3×3)

⎤
⎥⎦. (2.20b)

The general form of χ can be ascertained using arguments
pertaining to the time-reversal symmetries of density, en-
ergy, and momentum [6]. While density and energy are even,
momentum is odd with respect to time reversal. Quantities
with opposite parity under time reversal cannot have nonzero
static correlations, i.e., the blocks χρ j , χe j and their com-
plex conjugates are null matrices. Constituent components of
the matrices χ

ρρ
(N×N ), χ

ρe
(N×1), and χee

(1×1) are β〈δn∗
g(q)δng′ (q)〉,

β〈δn∗
g(q)δe(q)〉, and β〈δe∗(q)δe(q)〉, respectively.

Acquiring explicit expressions of the variables δag, δb, and
δvα in terms of the relevant variables [see Eq. (2.19)], requires
χ−1 and some shorthand definitions for the constituent matrix
blocks of χ. The simple block diagonal form of the matrix
[Eqs. (2.20)] allows the independent inversion of the diagonal
blocks [see Eq. (B1)]. The diagonal block χ

j j
(3×3) involving the

correlations between the momentum density fluctuations can
be inverted easily using the classical equipartition theorem
〈pi

α pj
β〉 = mkBT δi jδαβ . With the mass per particle m set to

one, the correlations between the fluctuations of the densities
of different components of linear momentum

χ j j (q) = β〈δ ĵ∗α (q)δ ĵβ (q)〉 = n0V δαβ (2.21)

leads to the identification of the field conjugate to mo-
mentum; it is the velocity as given in Eq. (2.22c) (see

Appendix B). The block diagonal structure and the matrix
identities in Eq. (B1) are used to perform the inversion of
the (N + 1) × (N + 1) submatrix in χ and to derive the rela-
tion between the remaining pairs of thermodynamic conjugate
variables:

δag(q, t ) =
∑

g′
J∗

gg′δng′ (q, t ) − Ug(q)δb(q, t ), (2.22a)

δb(q, t ) = −L−1(q)
∑

g′
U ∗

g′ (q)δng′ (q, t ) + L−1(q)δe(q, t ),

(2.22b)

δvα (q, t ) = n−1
0 δ jα (q, t ). (2.22c)

Each of the terms Jgg′ , Ug, and L needs further interpretation.
Given the general form [Eq. (2.3a)] for the components of
the matrix χ, first we focus on the block χ

ρρ
(N×N ). Let us

define an (N × N ) dimensional matrix Jρρ such that Jρρ =
(χρρ )−1. This inverse density correlation matrix Jρρ has com-
ponents Jgg′ and is Hermitian. The Ornstein-Zernike relation
[Eq. (2.23a)] provides a connection between the density cor-
relations and the inverse density correlation matrix. Moreover,
the components Jgg′ can be obtained [see Eq. (2.23b)] from the
direct correlation function c(r1, r2). Previous works [11,14]
by the authors explored this connection in great detail and here
we present these relations for the sake of completeness, which
are

kBTV δgg′′ =
∑

g′
〈δρ̂∗

g (q, t )δρ̂g′ (q, t )〉Jg′g′′(q), (2.23a)

Jgg′ (q) = kBT

V

∫
d3r1

∫
d3r2eig.r1 e−ig′.r2 eiq.(r1−r2 )

×
[
δ(r1 − r2)

n(r1)
− c(r1, r2)

]
. (2.23b)

Next, we define L and Ug through the introduction of some
shorthand notations to represent components of specific cor-
relations in the matrix χ [Eqs. (2.20)]:

Kg(q) = β〈δê∗(q)δρ̂g(q)〉, (2.24a)

K (q) = β〈δê∗(q)δê(q)〉, (2.24b)

L(q) = K (q) −
∑
gg′

Kg(q)Jgg′ (q)K∗
g′ (q), (2.24c)

Ug(q) =
∑

g′
J∗

gg′ (q)Kg′ (q). (2.24d)

The term Kg(q) is the correlation between the fluctuations
in energy density and Bragg peak amplitude around a re-
ciprocal lattice vector g. K (q) is the q-dependent second
moment of the energy density. The inverse density correlation
components Jgg′ (q) have been defined already in Eqs. (2.23).
Multiplicative combinations of these three terms show up as
L(q) [Eq. (2.24c)] and Ug(q) [Eq. (2.24d)] in the components
of the matrix χ−1. In matrix representation, these constitute
the matrix χ−1 (see Appendix B), finally leading to the re-
lations given in Eqs. (2.22). These microscopically defined
quantities L(q) and Ug(q) will be revisited [see Eqs. (3.7)],
their small wave vector q limits will be examined [see
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Eqs. (3.8)], and the implications of their symmetry properties
will be discussed in Sec. III B.

Incorporating the thermodynamic conjugates of Âi [see
Eqs. (2.18) and (2.22)], the generalized Langevin equa-
tions Eq. (2.1) can be rewritten as

〈∂t Âk (t )〉lr = i
∑

j

ω∗
k j〈δÃ j (t )〉lr

−
∑

j

∫ t

0
dτm∗

k j (τ − t )〈δÃ j (τ )〉lr. (2.25)

Note the use of notations Âi and Ãi to denote microscopic
dynamical variables and their respective thermodynamic con-
jugates. The projectors in Eqs. (2.4), constructed from the set
of relevant variables, can now be given a more specific form
for our system of interest and may be written as

P = βV −1
∑

q

(∑
g′

δag′ (q)〉〈δn∗
g′ (q) + δb(q)〉〈δe∗(q)

+ δvα (q)〉〈δ j∗α (q)

)
. (2.26)

Equation (2.26) highlights the relation between the projection
operator and the pairs of conjugate variables in Eq. (2.19).

Before we present explicit versions of Eq. (2.25) for the
crystalline solid with local defects, we simplify its terms fur-
ther, in Secs. II B 2 and II B 3 to finally derive the equations of
motion in Sec. II B 4.

2. The frequency matrix

Once we have defined and simplified the components of
matrix χ, we attempt to first simplify and then evaluate the
components of the (N + 4) × (N + 4) dimensional frequency
matrix ω. This, as defined in Eq. (2.3b), governs the reversible
dynamical response of a system, pushed slightly out of equi-
librium by an external perturbing field. Given the expression
Eq. (2.3b) for the components of the frequency matrix, the
symmetry of the relevant variables with respect to time re-
versal renders the components of ω

ρρ
(N×N ), ω

ρe
(N×1), ωee

(1×1), and

ω
j j
(3×3) to zero [6]. The rest of the components have been eval-

uated, from their microscopic definitions, in Appendix A 3
[Eqs. (A9) and (A10)].

ω(q) =

⎡
⎢⎢⎣

ω
ρρ
(N×N ) ω

ρe
(N×1) ω

ρ j
(N×3)

ω
eρ
(1×N ) ωee

(1×1) ω
e j
(1×3)

ω
jρ
(3×N ) ω

je
(3×1) ω

j j
(3×3)

⎤
⎥⎥⎦ (2.27a)

=

⎡
⎢⎢⎣

0 0 ω
ρ j
(N×3)

0 0 ω
e j
(1×3)

ω
jρ
(3×N ) ω

je
(3×1) 0

⎤
⎥⎥⎦. (2.27b)

Since our calculations seek to provide connections between
microscopically derived equations of motion to well-defined
macroscopic thermodynamic variables, we need to interpret
the different correlation functions in the small q limit. To
this end, we present here the definitions of the nonzero

components ω
ρ j
(N×3), ω

jρ
(3×N ), ω

e j
(1×3), and ω

je
(3×1) of the fre-

quency matrix at q → 0:

ωρ j
gα (q) = β〈δρ̂∗

g (q)Lδ ĵα (q)〉 = −V (g + q)αn∗
g + O(q2),

(2.28a)

ω jρ
αg(q) = β〈δ ĵ∗α (q)Lδρ̂g(q)〉 = −V (g + q)αng + O(q2),

(2.28b)

ωe j
α (q) = β〈δê∗(q)Lδ ĵα (q)〉 = −qαV (e0 + p0) + O(q2),

(2.28c)

ω je
α (q) = β〈δ ĵ∗α (q)Lδê(q)〉 = −qαV (e0 + p0) + O(q2).

(2.28d)

We evaluate them in terms of familiar thermodynamic pa-
rameters like energy and pressure. The explicit derivations
of these terms from the microscopic expressions of the cor-
relations are given in Appendix A 3 [Eqs. (A9) and (A10)].
It is important to note that the expressions for e0 and p0 are
achieved by taking the small wave vector q limit of the mi-
croscopically defined, spatially varying energy and pressure,
as depicted in Appendix A 2. Section III A will once again
take up the discussion of this frequency matrix ω(q) after
identifying, through coarse graining, the connection between
these definitions and the hydrodynamic definition of the anal-
ogous quantities in terms of the elastic fields like macroscopic
density and displacements.

3. The memory matrix

Next we focus on the memory matrix m introduced in
Eq. (2.1) and defined in Eq. (2.3c). Invoking the general con-
tinuity equation [Eq. (2.6)] and the definition of the Liouville
operator [Eqs. (2.2)], it becomes evident that the memory
terms deal with the overlap between currents of the relevant
variables. Therefore, these terms are expected to have finite
correlation times. This again is a (N + 4) × (N + 4) dimen-
sional Hermitian matrix separated into blocks similar to the
susceptibility and the frequency matrix:

m(q, t ) =

⎡
⎢⎣mρρ

(N×N ) mρe
(N×1) mρ j

(N×3)

m∗ρe
(1×N ) mee

(1×1) me j
(1×3)

m∗ρ j
(3×N ) m∗e j

(3×1) m j j
(3×3)

⎤
⎥⎦. (2.29)

The components of the constituent matrix blocks are given as
follows:

mρe
g (q, t ) = β〈δρ̂∗

g (q)LQe−iQLQtQLδê(q)〉. (2.30)

The explicit expression for mρe
g (q, t ) is pro-

vided here and the rest of the memory terms
mρρ

gg′ (q, t ), mρ j
gβ (q, t ), mee(q, t ), me j

β (q, t ), m j j
αβ (q, t ) are

analogous in their expressions. Since the memory terms
represent the dissipative dynamics of the relevant variables
and are interpreted as the overlaps between currents of
conserved quantities, they are expected to have finite
relaxation timescales. This we present as justification for our
Markovian approximation [23] to simplify our equations by
writing∫ t

0
dτmjk (q, t − τ )�Ã j (τ ) = � jk (q)�Ã j (t ). (2.31)
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In the small q limit, the reduced dynamics of QLQ can
be replaced (for proof, see Refs. [6,28]) with the dynamics of
L. The Markovian approximation [Eq. (2.31)] in the hydrody-
namic limit (q → 0) gives the matrix comprising of Onsager
transport coefficients presented in Eq. (2.32). In the time
evolution equation of the densities of the relevant variables,
the reactive parts of the currents results from coupling [see
Eq. (2.3b)] of the time derivative of one variable to another
variable with opposite signs under time reversal. The dissi-
pative parts, on the other hand, result from coupling of time
derivatives of variables with same parity under time rever-
sal. The Onsager transport coefficients � jk (q) follow from
the Markovian approximation of the memory terms and are
explicitly defined as follows:

�
ρe
g (q)

V
= β

V

∫ ∞

0
dt 〈δρ̂∗

g (q)LQe−iLtQLδê(q)〉. (2.32)

Here we only give the example of �
ρe
g (q) as the other

elements, �
ρρ

gg′ (q), � j j
αβ (q), �ee(q) are built completely in

analogy. Physical significance of these transport coefficients
will be examined in Sec. III A by seeking their relations to
familiar quantities like viscosity, heat conductivity, etc. These
microscopic descriptions of the transport coefficients will pro-
vide opportunities to examine [29] the spatiotemporal regimes
of validity of the Markovian approximation.

4. Equations of motion

The equations of motion for the relevant variables, intro-
duced in Sec. II A Eq. (2.5), for the crystalline solid with
a finite concentration of point defects can now be obtained.
Here, in addition to the simplifying approximations in the
small wave-vector limit, we invoke the thermodynamic con-
jugates, derived in Eq. (2.22), of the relevant variables. The
relatively, simplified equations of motion for the microscopic
relevant variables are given by

∂tδng(q, t ) =
(

ω
ρ j
gα (q)

V
− �

ρ j
gα (q)

V

)
δvα (q, t )

−
∑

g′

�
ρρ

gg′ (q)

V
δag′ (q, t ) − �

ρe
g (q)

V
δb(q, t ),

(2.33a)

∂tδe(q, t ) =
(

ω
e j
α

V
− �

e j
α (q)

V

)
δvα (q, t )

−
∑

g

�
eρ
g (q)

V
δag(q, t ) − �ee

V
δb(q, t ),

(2.33b)

∂tδ jα (q, t ) = −�
j j
αβ

V
δvβ (q, t )

+
(∑

g

ω
jρ
αg

V
−
∑

g

�
jρ
αg(q)

V

)
δag(q, t )

+
(

ω
je
α

V
− �

je
α (q)

V

)
δb(q, t ). (2.33c)

These equations convey little intuition about the actual system
without the frame of the system’s thermodynamic properties
to provide context. This connection is achieved by coarse
graining (see Sec. III A) the high-dimensional space of the
microscopic dynamics to the space of relevant thermody-
namic variables. Besides substituting the components of the
frequency matrix using Eqs. (2.28), we also show how the
Onsager transport coefficients [Eq. (2.32)] relate to constants
[Eq. (3.16)] obtained from the dissipative dynamics in the
system.

III. THE COARSE-GRAINED FIELDS OF ELASTICITY

A. Coarse-graining procedure

To derive connections between the microscopic equa-
tions of motion and the fields associated with the elasticity
of a crystalline solid, the following ansatz was introduced in
Ref. [10]:

δng(q, t ) = −inggαδuα (q, t ) + ng

n0
δn(q, t ). (3.1)

The ansatz in Eq. (3.1) assumes that the fluctuations in the
Bragg peak amplitudes in a crystal with local defects will
have contributions from both displacements as well as coarse-
grained density fluctuations. The description in the Fourier
space does not require any reference lattice for the definition
of the displacement fields. This allows the inclusion of density
fluctuations originating from mobile point defects like vacan-
cies and interstitials. Equation (3.1) is more general than the
relation in an ideal crystal, where the coarse-grained density
fluctuation is equal to the divergence of the displacement field
defined with respect to a fixed reference lattice.

Consistent with the ansatz Eq. (3.1), Ref. [10] proposed
two linear combinations that led to the standard thermody-
namic variables, i. e., the number density and the displacement
fields from the Bragg peak amplitudes:

δn(q, t ) = n0

N0

∑
g

n∗
gδng(q, t ), (3.2a)

δuα (q, t ) = iN−1
αβ

∑
g

n∗
ggβδng(q, t ). (3.2b)

The two normalizations in Eqs. (3.2) are N0 =∑g |ng|2
and Nαβ =∑g |ng|2gαgβ . We get, accordingly, 〈n(q, t )〉 =
Nδq,0 and 〈uα (q, t )〉 = 0. Also, the symmetry argument,∑

g |ng|2gβ = 0, essentially ensures orthogonality of δn(q, t )
and δuα (q, t ). Here we want to point out how our definition
of the density field [Eq. (3.2a)] is different from alternative
approaches addressing the question of mechanical response
in crystals with defects. The deviations in the coarse-grained
density fields in the theories developed by Haussmann [17]
and Mabillard and Gaspard [21] arise from density fluctu-
ations only around the center of reciprocal space (viz., at
g = 0) while we define the fluctuations in the density field
[Eq. (3.2a)] as a sum over fluctuations around all reciprocal
lattice vectors in the system. Implications of this difference
will become discernible only through future implementation
of these approaches to study specific crystalline solids.

The large set of variables δng(q) [Eq. (2.11)], having
been reduced to four coarse-grained variables δn(q) and
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δuα=1,2,3(q) through the ansatz Eq. (3.1), leaves us with
eight coarse-grained hydrodynamic variables. These vari-
ables, paired with their respective thermodynamic conjugates,
give us a coarse-grained version of Eq. (2.19):⎡

⎢⎢⎢⎢⎣
δa(q, t )

δy(q, t )

δb(q, t )

δv(q, t )

⎤
⎥⎥⎥⎥⎦ = V χ−1

⎡
⎢⎢⎢⎢⎣

δn(q, t )

δu(q, t )

δe(q, t )

δj(q, t )

⎤
⎥⎥⎥⎥⎦. (3.3)

Each pair of conjugate variables, along with reference to linear
response relations, are derived and discussed in Sec. III B
as well as Appendix D. Attention is given to the vector δu
constituted of δuα=1,2,3 in three dimensions since its relation
to its conjugate δy with constituents δyα=1,2,3 leads to the
coefficients of stiffness within linear elasticity.

B. The coarse-grained projectors and coarse-grained intensive
variables

Now that we have established the ground work by deriv-
ing the important connections between the microscopic and
coarse-grained frameworks, we can go on to derive the equa-
tions of motion for the coarse-grained relevant variables [see
Eqs. (3.19)]. The initial step toward deriving and interpreting
these equations of interest is to obtain the coarse-grained
projection operators, which shall be denoted by P̃ and Q̃. For
that, we need to revisit the thermodynamic conjugate variables
in Eqs. (2.19) and (2.22). Then we define δa, δb using the
coarse-graining ansatz. Let us first establish the relations be-
tween the coarse-grained thermodynamic conjugates δa and
δyα and their microscopic counterpart δag. Drawing analogy
to Eqs. (3.2), these quantities are

δa(q, t ) = 1

n0

∑
g

n∗
gδag(q, t ), (3.4a)

δyα (q, t ) = i
∑

g

gαn∗
gδag(q, t ). (3.4b)

Next we substitute the δng with the fluctuating fields δn and
δuα using the ansatz in Eq. (3.1) in the definitions of δag and
δb given in Eq. (2.22) and repeated here with the substitutions

δag(q, t ) = 1

n0

∑
g′

J∗
gg′ng′δn(q, t ) − i

∑
g′

J∗
gg′ng′g′

αδuα (q, t )

−Ug(q)δb(q, t ), (3.5a)

δb(q, t ) = −L−1

n0

∑
g′

U ∗
g′ (q)ng′δn(q, t )

+ iL−1
∑

g′
U ∗

g′ (q)ng′g′
αδuα (q, t ) + L−1(q)δe(q, t ).

(3.5b)

The relations in Eq. (2.22) between the pairs of conjugate
variables shown in Eq. (2.19) require the inversion of the static
correlation matrix. Appendix B, Eq. (B3), explains how this
involves the terms defined in Eqs. (2.24). Here, for deriving
the relations given in Eqs. (3.6), similar mathematical manip-
ulations [28] are used in conjunction with the coarse-graining

ansatz Eq. (3.1). Plugging in the expression for δag from
Eq. (3.5a) to the equations in Eqs. (3.4) leads to expressions
for δa [Eq. (3.6a)] and δyα [Eq. (3.6c)] in terms of the gen-
eralized elastic coefficients ν, μα, λαβ given in Appendix C 1.
This allows us to write δa, δb, δyα [Eq. (3.6)] in terms of the
fields of elasticity δn, δuα and quantities like ν, μα, λαβ, θ, τα

which characterize the generalized material response of the
solid. The relation between δ jα and its conjugate δvα is re-
peated in this list to complete the set of relevant variables.
Thus, we obtain

δa(q, t ) = ν

n2
0

δn(q, t ) − μβ (q)

n0
δuβ (q, t )

− θ∗(q)

n0
δb(q, t ), (3.6a)

δb(q, t ) = L−1(q)

(
−θ (q)

n0
δn(q, t ) + τα (q)δuα (q, t )

)

+ L−1(q)δe(q, t ), (3.6b)

δyα (q, t ) = −μ∗
α (q)

n0
δn(q, t ) + λαβ (q)δuβ (q, t )

+ τ ∗
α (q)δb(q, t ), (3.6c)

δvα (q, t ) = n−1
0 δ jα (q, t ). (3.6d)

As already mentioned in Sec. III A, the variables δyα (q)
are components of the three-dimensional vector δy which is
conjugate to the three-dimensional vector δu constituted of
the displacement fields δuα (q). The relation [Eqs. (3.2)] of
δn and δuα to the microscopic fields are reflected in their
respective coarse-grained conjugates δa and δyα . It would
be pertinent here to note that the closed-form representation
[Eqs. (3.6)] of the coarse-grained conjugate fields δa(q, t ),
δb(q, t ), and δyα (q, t ) require the use of a set of gener-
alized elastic coefficients λαβ (q), μα (q), and ν(q), which
were derived and validated in previous papers. Appendix C
summarizes their microscopic definitions for the sake of
completeness. References [10,11,14] present these important
mechanical properties and by detailing their relation to the
inverse density correlation matrix [Eqs. (2.23)] show ways
of determining them in crystalline solids with local defects.
Unlike this contribution, the previous works formulate the
theory keeping only the reversible contributions [only the first
term on the right-hand side of Eq. (2.1)] to the time evolution
equations of the relevant variables and ignores all contribu-
tions of energy fluctuations or transport. They enter via two
new coefficients

τα (q) = i
∑

g

U ∗
g (q)nggα, (3.7a)

θ (q) =
∑

g

U ∗
g (q)ng, (3.7b)

defined using quantities given in Eqs. (2.24). Appendix C 2
discusses τα (q), θ (q) to explain their microscopic origin and
symmetries in the thermodynamic limit. Given the definition
of τα (q) in Eqs. (3.7), Eq. (3.5b) transforms to Eq. (3.6b).

As material properties at long wavelengths are of inter-
est to us, here we present the q → 0 limit of the variables
defined in Eqs. (2.24) and Eqs. (3.7). The mathematical
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manipulations, starting with the initial definitions and leading
to the final expressions, are detailed in Appendix C 2. Here,
we recapitulate the final expressions for all the quantities
τα (q), θ (q), L(q), λαβ (q), μαβ (q), ν(q) at q → 0. In the limit
of macroscopic lengths, the first three of these quantities
become

lim
q→0

θ (q) = θ, (3.8a)

lim
q→0

τα (q) = iqβταβ, (3.8b)

lim
q→0

L(q) = L. (3.8c)

where the leading order terms in θ (q) and L(q) become q
independent real constants. τα (q) at q → 0, on the other hand,
has symmetries similar to the generalized elastic constant
μα (q) which is associated [11] with the coupling between
the coarse-grained density δn and displacement fields δuα in
a defect rich crystal; the symmetery holds ταβ = τβα , as can
be shown with the rotational LMBW equation [11,30,31]. As
we show in the Appendix C 1, the elastic coefficients λαβ ,
μα and ν are the same as the ones in [10,11,14] and in the
hydrodynamic limit, they become

lim
q→0

λαβ (q) = λαβγ δqγ qδ, (3.9a)

lim
q→0

μα (q) = iμαβqβ, (3.9b)

lim
q→0

μ∗
α (q) = −iμαβqβ, (3.9c)

lim
q→0

ν(q) = ν. (3.9d)

Therefore, the conjugate variables in Eqs. (3.6), in the
q → 0, are as follows:

δa(t ) = ν

n2
0

δn(t ) − μαβ

n0
δuαβ (t ) − θ

n0
δb(t ), (3.10a)

δb(t ) = L−1

(
− θ

n0
δn(t ) + ταβδuαβ (t ) + δe(t )

)
, (3.10b)

δyαβ (t ) = −μαβ

n0
δn(t ) + ταβδb(t )

+ (λαγβδ + λαδγβ − λαβγ δ )δuγ δ (t ). (3.10c)

Here,

δyα = −iδyαβqβ (3.11)

has been used as the definition of δyαβ to obtain Eq. (3.10c)
from δyα of Eq. (3.6c). Due to the symmetries [11,14] μαβ =
μβα , ταβ = τβα and λαβγ δ = λβαγ δ = λαβδγ = λγδαβ , the sec-
ond rank tensor δyαβ = δyβα is also symmetric.

The field δyα , introduced [Eq. (3.3)] as the conjugate to
the displacement δuα , has the dimensions of force. The force
can also be written as the divergence of the stress tensor yαβ

as given in Eq. (3.11). Note how this relation between yα

and yαβ translates Eq. (3.6c) to Eq. (3.10c) in the limit of
small wave vector. The displacement field δuα in Eq. (3.6c)
is substituted with its gradient to obtain the strain field δuαβ

of Eq. (3.10c); viz, iqβδuα (q → 0) = δuαβ . The definition
of δyαβ in Eq. (3.11) is also a reference to the fact that in
our calculations, we have chosen to restrict the displacement
fluctuations to linear orders in strain. Moreover, the orgin of

the third term in Eq. (3.10c) can be tracked [11,28] to the
definition of the symmetric strain field [Eq. (3.12)]. Because
of the symmetry of μαβ, ταβ , as well as of λαβγ δ , only the
symmetric part of the strain tensor enters. We therefore can
redefine

δuαβ → 1

2
(δuαβ + δuβα ) = 1

2
i(qβδuα + qαδuβ ). (3.12)

As conjugates to strains δuαβ , the quantity δyαβ can be inter-
preted as linear stress variables. The relation between δuαβ

and δyαβ as a pair of thermodynamic conjugates is discussed
in the context of thermodynamic free energy in Sec. IV B [see
Eqs. (3.3) and (4.4)].

Having derived the coarse-grained hydrodynamic variables
and their thermodynamic conjugates, now we can define the
coarse-grained projection operators that will allow us to ob-
tain the macroscopic equilibrium and transport properties of
the system. The conservation law [see Eq. (2.9)] implies

QL δρ̂g(q) = −(g + q)αQ δ ĵα (g + q), (3.13)

where the microscopically defined projector Q is acting on
the mass conservation equation. Let us then take the time
derivative of the coarse-graining ansatz in Eq. (3.1) and look
at the dynamics projected by Q:

iQLδng(q) = −i2nggαQLδuα (q) + ng

n0
iQLδn(q) (3.14a)

⇒ QLδng(q) = −nggαQ̃δu̇α (q). (3.14b)

In Eq. (3.14a), the second term on the right, related to
mass current Lδn vanishes if one postulates the conserva-
tion of number density ∂tδn = iqαδ jα (q, t ) and realizes that
the linear momentum densities belonging to the eigenspace
of the projector do not contribute to the dynamics pro-
jected by Q̃. Arriving at Eq. (3.14b) through this Q̃Lδn(q) =
−qαQ̃δ jα (q) = 0 uses the fact that the components of linear
momentum jα (q) in the first BZ are conserved variables.
However, that does not automatically imply conservation of
jα (g + q) for g �= 0.

In Eqs. (3.14), we arrive at the relation between the micro-
scopic projector Q and Q̃ obtained after the coarse-graining
ansatz Eq. (3.1). The coarse-grained space of a considerably
smaller number of slow relevant variables contains the number
density δn, three components of linear momentum δ jα , three
components of displacement fields δuα , and energy density δe.
These eight variables are compatible with the eight hydrody-
namic modes expected [3] in an equilibrium crystalline solid
at finite temperatures. This new smaller set of coarse-grained
relevant variables requires appropriate projectors written us-
ing them. Thus, we obtain

P̃ = 1 − Q̃
= βV −1

∑
q

[δa(q)〉〈δn∗(q) + δyα (q)〉〈δu∗
α (q)

+ δb(q)〉〈δe∗(q) + δvα (q)〉〈δ j∗α (q)]. (3.15)

A comparison of this coarse-grained projector to the mi-
croscopic projector in Eq. (2.26) shows how all the terms
involving fluctuations of Bragg peak amplitudes at the re-
ciprocal lattice vectors get included in the first two terms
in the coarse-grained projector [Eq. (3.15)] through the use
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of the ansatz Eq. (3.1). Before we can go on to obtain the
dynamical equations of the coarse-grained variables, we need
to determine the implication of the ansatz Eq. (3.1) for the
dissipative terms in the equations of motion [Eqs. (2.33)].

C. The dissipative terms or the memory terms derived
for the coarse-grained fields

Equipped with the coarse-grained projectors P̃ and Q̃, we
try to make sense of the transport coefficients in Eq. (2.32).
We rewrite them with the coarse-grained projector and using
the relation in Eq. (3.14b) so

�
∗ρρ

gg′ (q)

V
= β

V
ngn∗

g′gαg′
β

∫ ∞

0
dt 〈δu̇∗

α (q)Q̃e−iLtQ̃δu̇β (q)〉∗

= ngn∗
g′gαg′

βζαβ, (3.16a)

�
∗ρe
g (q)

V
= β

V
nggαqβ

∫ ∞

0
dt 〈δu̇∗

α (q)Q̃e−iLtQ̃ je
β (q)〉∗

= nggαqβξ�
αβ, (3.16b)

�
∗eρ
g (q)

V
= β

V
n∗

ggβqα

∫ ∞

0
dt 〈 je∗

α (q)Q̃e−iLtQ̃δu̇β (q)〉∗

= n∗
ggβqαξαβ. (3.16c)

Note how the QLδng replaced by −nggαQ̃δu̇α (q) in
Eq. (3.17) is related to the fluctuations of linear momentum
at g �= 0 through the conservation law in Eq. (2.9) and hence
Eq. (3.13). In the limit of long time and small wave vectors,
the integrals in Eqs. (3.16) represent the transport coefficients
ζαβ , ξαβ , and ξT

αβ . Their symmetries are consistent [28] with
the Onsager reciprocal relations [32,33] dictated by the sym-
metry of the Hamiltonian under time reversal. The physical
significance of these transport coefficients will become evi-
dent when discussed in Secs. III D and IV C in the context of
the dynamical equations of the hydrodynamic variables.

Next consider the Onsager transport coefficient �
j j
αβ (q) and

then, in it, substitute the term Lδ ĵα (q) using the conservation
of the linear momentum [Eq. (2.13)]. This leads to the viscos-
ity tensor ηαβγ δ given by the integral in Eq. (3.17). Thus, we
obtain

�
j j
αβ (q)

V
= qβqγ ηαβγ δ

= β

V
qβqγ

∫ ∞

0
dt 〈σ ∗

αβ (q)Q̃e−iLtQ̃σγ δ (q)〉∗. (3.17)

Another transport coefficient arises from the memory term
associated with the energy conservation [Eq. (2.14) so

�ee(q)

V
= qαqβκαβT

= β

V
qαqβ

∫ ∞

0
dt 〈 je∗

α (q)Q̃e−iLtQ̃ je
β (q)〉∗. (3.18)

Note that both projectors Q and Q̃ could be used in Eqs. (3.17)
and (3.18) as they act identically in both kernels. The reason
is time parity.

The components of �
ρ j
(N×3), �

e j
(1×3), and their conjugate

transposes in the dynamical equations Eqs. (2.33) have been

neglected in our calculations. It can be shown [28] that the
leading q-dependent term for these components arises from
O(q(g + q)) while all other components of � has O(g + q)
[see Eqs. (3.16)–(3.18)] leading order terms.

After writing the complete equations of motions for the
coarse-grained relevant variables in Sec. III D, the physical
significance of these transport coefficients will be discussed
in Sec. III D as well as in Sec. IV C.

D. Equations of motion of the coarse-grained fields of elasticity

Incorporating all the coarse-grained variables in the mi-
croscopic equations of motion in Eqs. (2.33), one obtains
the full time evolution equations for the fields of elasticity.
Appendix E explains the steps involved in the derivation of
these final equations [Eqs. (3.19)]. This derivation of the hy-
drodynamic Eqs. (3.19) in conjunction with the definitions of
the material constants in Sec. III B and the Onsager transport
coefficients in Sec. III C provides a microscopic basis for all
the reactive and dissipative coefficients that govern the macro-
scopic static and dynamic properties of crystalline solids with
local defects. Thus, we obtain the hydrodynamic equations

∂tδn(q, t ) = −in0qαδvα (q, t ), (3.19a)

∂tδe(q, t ) = −i(e0 + p0)qαδvα (q, t )

− qαξαβδyβγ (q, t )qγ − qαqβκαβT δb(q, t ),

(3.19b)

∂tδ jα (q, t ) = −in0qαδa(q, t ) + iδyαβ (q, t )qβ

− i(e0 + p0)qαδb(q, t ) − qβqγ ηαβγ δδvδ (q, t ),

(3.19c)

∂tδuα (q, t ) = δvα (q, t )

+ iζαβδyβγ (q, t )qγ − iqβξ�
αβδb(q, t ). (3.19d)

At this point, we have the time-evolution equation of the
eight slow variables in the system. Comparing Eqs. (3.19) to
the analogous equations in case of a fluid [6,34], one imme-
diately concludes that the terms with δyαβ would be absent in
the fluid. In case of a fluid, there are only five hydrodynamic
modes and a displacement field is ill-defined. So, only five
equations of motion specifying the time evolution of number
density, energy density, and linear-momentum density would
be relevant. This analogy to fluid equations will allow us to
identify the viscosity ηαβ and transport coefficient for heat
conductivity καβ . We are left with two more dissipative con-
stants ζαβ and ξαβ each of which arises in an ordered solid
where the displacement fields need to be treated as separate
variables justified by the spontaneous breaking of translational
invariance. This enters the possibility of defect motion into
Eqs. (3.19), because the divergence of the displacement field
is not tied to the density change as would hold in an ideal solid
without defects.

IV. CONNECTION TO THERMODYNAMICS

The original Mori-Zwanzig projection operator formalism
that eventually leads to these equations does not provide a
recipe for choosing an optimal set of slow variables that
best captures the macroscopic properties of a given system.
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Conventionally, the variables associated with conservation
laws or spontaneously broken continuous symmetries are
found to be best suited for this purpose. Validating our chosen
set of relevant variables requires examination of how our
equations of motion, in the small wave vector limit, relates to
the thermodynamic parameters determining the equilibrium
ensemble of the system. In Sec. IV, we present a detailed
derivation of the connections between the dynamics of the
relevant variables and thermodynamics of the crystal with
finite concentration of local defects.

A. Free energy expansion and thermodynamic identities

Any thermodynamic system at equilibrium is characterized
by a minimum in the free energy and a maximum in the
entropy. Therefore, small changes in the thermodynamic pa-
rameters characterizing the system result in small increments
in the free energy. Relying on this conceptual premise, the
free energy density of a point-defect rich crystalline solid
[25] can be expanded around the free energy density of a
reference undeformed (∇βuα = 0) crystal phase at density
and temperature n0 and T0, respectively. We find

f (n0 + δn, 0 + δuαβ, T0 + δT )

= f 0 + μ0δn + 1

2
A

(
δn

n0

)2

+ Bαβδuαβ

δn

n0

+ 1

2
Cn

αβγ δδuαβδuγ δ − s0δT + Ds
δn

n
δT

+ 1

2
EδT 2 + FαβδT · δuαβ. (4.1)

The linear strain field δuαβ = 1

2
(∇βuα + ∇αuβ ) is sym-

metrized in its definition because an asymmetry in the strain
field in the thermodynamic limit amounts to a free energy
conserving rotation of the entire system. The strain multiplied
with the system volume V is an extensive thermodynamic
variable and we define hαβ as its conjugate intensive field.
The coefficients of the quadratic couplings between the ther-
modynamic parameters are related to the curvature of the free
energy along specific directions of the thermodynamic param-
eter space. Thus, the leading order terms in this expansion
provide important information related to the mechanical and
thermal constants in the system.

The thermodynamic conjugates of the three independent
variables n, uαβ , and T are the chemical potential μ, a tensor
hαβ , and entropy density s. Here, we are working with the
free energy density f = F/V and hence we use densities of
the extensive variables like number of particles or entropy
per volume. From the free energy expansion Eq. (4.1) and
knowledge [25] about the pair of thermodynamic conjugates,
we get the following relations:

δμ = A

n2
0

δn + Bαβ

n0
δuαβ + Ds

n0
δT, (4.2a)

δhαβ = Bαβ

n0
δn + Cn

αβγ δδuγ δ + FαβδT, (4.2b)

−δs = Ds

n0
δn + Fαβδuαβ + EδT (4.2c)

for the deviations of the conjugate fields around their equilib-
rium values, which are μ0 for the chemical potential, s0 for the
entropy density, and h0

αβ = 0 for the stress field conjugate to
strain in this ensemble. From these relations, one can proceed
to obtain the following thermodynamic derivatives and their
Maxwell relations:

∂2 f

∂n2

∣∣∣
uαβ ,T

= ∂μ

∂n

∣∣∣
uαβ ,T

= A

n2
0

, (4.3a)

∂2 f

∂n∂uαβ

= ∂μ

∂uαβ

∣∣∣
n,T

= ∂hαβ

∂n

∣∣∣
uγ δ,T

= Bαβ

n0
, (4.3b)

∂2 f

∂uαβ∂uγ δ

∣∣∣
n,T

= ∂hαβ

∂uγ δ

∣∣∣
n,T

= Cn
αβγ δ, (4.3c)

∂2 f

∂n∂T
= ∂μ

∂T

∣∣∣
uαβ ,n

= − ∂s

∂n

∣∣∣
uγ δ,T

= Ds

n0
, (4.3d)

∂2 f

∂T 2

∣∣∣
uαβ ,n

= − ∂s

∂T

∣∣∣
uαβ ,n

= E , (4.3e)

∂2 f

∂T ∂uαβ

= − ∂s

∂uαβ

∣∣∣
n,T

= ∂hαβ

∂T

∣∣∣
uγ δ ,n

= Fαβ. (4.3f)

The second derivatives of the free-energy density provide
coefficients of elasticity and coupling constants between
different thermodynamic variables which can be used in ob-
taining certain useful measurable quantities like isothermal
compressibility, heat capacity per unit volume at constant vol-
ume and thermal expansion coefficient (see, e.g., Ref. [28]).
One of the aims of this paper is to provide the microscopic ba-
sis to these material constants. In the subsequent Sec. IV B, we
present the connections between the constants that we identi-
fied in the relations Eqs. (4.3) and the quantities that arise in
the reactive and dissipative terms of the hydrodynamic equa-
tions we derived [Eq. (3.19)] using the projector Eq. (3.15)
after identifying the relevant dynamical variables and their
respective thermodynamic conjugates [see Eq. (3.3)].

B. Revisiting the conjugate variables

In Sec. II, when we first introduced the thermodynamic
conjugate variables to the microscopic relevant variables in
Eq. (2.19) and then later reframed them in Eqs. (3.10) using
the coarse-graining ansatz, we never mentioned the physical
significance of these quantities in the broader context of ther-
modynamic parameters. In this section and Appendix D we
address this point.

In Appendix D, we connect (i) the change in the density
of an extensive variable (like n) induced by the change in its
intensive thermodynamic conjugate (like βμ) [see Eq. (2.8)]
to (ii) correlations between the densities of the extensive
thermodynamic variables [see Eq. (2.9)]. The matrix block
χnue, corresponding to the correlations between fluctuations
in density (n), displacement fields u with components uα and
energy density e, of the coarse-grained susceptibility matrix
χ is identified as matrix of thermodynamic derivatives; see
Eq. (2.1). These relations follow from evaluating the variances
in the generalized grand-canonical ensemble [6,11,25]. The
final outcome of Appendix D is the identification of δa, δy,
and δb in terms of the intensive thermodynamic quantities
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showing up in the expansion of the free energy in Eq. (4.1).
This we summarize here and find

δa = β−1δ(βμ) = T δ
(μ

T

)
= δμ − μ0

T
δT, (4.4a)

δyαβ = β−1δ(βhαβ ) = T δ

(
hαβ

T

)
= δhαβ, (∵ h0

αβ = 0),

(4.4b)

δb = −β−1δβ = T δ

(
− 1

T

)
= 1

T
δT . (4.4c)

Using the information in Eqs. (4.2a) and (4.2b), we rewrite the
expressions for δa, δyαβ , and δb as

δa = δμ − μ0

T
δT = A

n2
0

δn + Bαβ

n0
δuαβ + Ds

n0
δT − μ0

δT

T
,

(4.5a)

δyαβ = δhαβ = Bαβ

n0
δn + Cn

αβγ δδuγ δ + FαβδT, (4.5b)

and then compare them to Eqs. (3.10) to obtain

∂μ

∂n

∣∣∣
uαβ ,T

= A

n2
0

= ν

n2
0

, (4.6a)

∂μ

∂uαβ

∣∣∣
n,T

= Bαβ

n0
= −μαβ

n0
, (4.6b)

∂hαβ

∂uγ δ

∣∣∣
n,T

= Cn
αβ = (λαγβδ + λαδγβ − λαβγ δ ). (4.6c)

Here we have invoked the set of Eqs. (4.2) and (4.3) for the
relations in Eqs. (4.6). First, we focus on the coefficients of δn
and δuαβ and take up the identification of the coefficients to
δT separately. The thermodynamic relation given in Eq. (4.3b)
shows Bαβ to be a coupling between the displacement and
the density fields. Previous theoretical perspectives derived by
Szamel et al. [4,5] neglected the contribution of this coupling
to the linear elastic response of crystals with point defects.
However, following the definition given by Walz et al. [10],
later studies [11,14,15] evaluated this quantity in isothermal
crystalline systems [12,15,35,36] with known direct correla-
tion functions from classical density functional theory. In this
paper, with a more general treatment of the thermodynamics,
we recover [see Eq. (4.6b)] the definition of this coupling term
while identifying similar cross correlations of density and dis-
placements with temperature [see Eqs. (4.3d) and (4.3f)]. We
explain [see Eqs. (4.9)] how these quantities can be defined in
terms of coefficients derived from microscopic fluctuations.

At this stage, before proceeding to reconsider the inter-
pretations of the equations of motion [Eq. (3.19)], we need
a thermodynamic basis for the terms θ, ταβ , and L, that we
introduced in our derivations of the dynamical equations. So
we examine the connections between θ, ταβ, L and Ds, E , Fαβ

[Eqs. (4.3)]. Following from the first and second laws of
thermodynamics, the relation between the density of entropy
and internal energy for a system at constant volume and no
external strain is given by [6]

1

T
δe = δs + μ

T
δn. (4.7)

This relation is identical to the ones employed in the context
of the hydrodynamic description of a simple one-component
fluid [6]. Now, let us reconsider the variable δb [Eq. (3.10b)],
which now has been established [Eq. (4.4c)] as an intensive
thermodynamic field. In Eq. (3.10b), substitute δb and δe
using Eqs. (4.4c) and (4.7), respectively. Rearranging the sub-
stituted equation gives Eq. (4.8). Compare this expression for
δs with Eq. (4.2c) to obtain relations between microscopically
defined variables like θ , ταβ , L and the thermodynamic coeffi-
cients in the expansion of the free energy density [Eq. (4.1)].
Thus, we obtain

−δs =
(

μ

T
− θ

n0T

)
δn − L

T 2
δT + ταβ

T
δuαβ. (4.8)

Equating the coefficients of δn, δT and δuαβ in Eqs. (4.8) and
(4.2c) leads to the following relations:

θ = μn0 − T Ds, (4.9a)

L = −T 2E , (4.9b)

ταβ = T Fαβ. (4.9c)

This concludes the thermodynamic interpretation of all the
microscopically defined variables derived and used in the
equations of motion in Sec. III D.

C. Equations of motion

In this section, we want to re-examine the hydrodynamic
equations [Eqs. (3.19)] with the knowledge of the thermody-
namic relations derived in Sec. IV B. Inserting the conjugate
variables δa, δb, and δyα from Eqs. (4.4) into the time evo-
lution equations [Eqs. (3.19)] of the relevant variables, one
obtains

∂tδn(q, t ) = −in0qαδvα (q, t ), (4.10a)

∂tδe(q, t ) = −i(e0 + p0)qαδvα (q, t )

+ qαqγ ξαβδhγ β (q, t ) − qαqβκαβδT (q, t ),

(4.10b)

∂tδ jα (q, t ) = iqβδhαβ (q, t ) − iqβδp(q, t )δαβ

− qβqγ ηαβγ δδvδ (q, t ), (4.10c)

∂tδuα (q, t ) = δvα (q, t ) + iqγ ζαβδhγ β (q, t )

− iqβξ�
αβ

δT (q, t )

T
. (4.10d)

Acquiring this version of the equation for the density of the
linear momentum [Eq. (4.10d)] required further simplifica-
tion. First, using p = −e + μn + T s and the Gibbs–Duhem
relation, δp = nδμ + sδT , one arrives at

n0δa + (e0 + p0)δb = n0δμ + e0 + p0 − μn0

T
δT (4.11a)

= δp, (4.11b)

which simplifies the equation of motion of the momentum
density given in Eq. (3.19c) to the following:

∂tδ jα (q, t ) = − iqαδp(q, t ) − δyα (q, t )

− qβqγ ηαβγ δvδ (q, t ). (4.12)
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As we additionally identified all the intensive thermody-
namic variables conjugate to their extensive counterparts [see
Eqs. (4.4)], the final hydrodynamic equations of motion of
a real crystal have been obtained starting from microscopic
variables. Now, we can consider their reactive and dissipative
contributions. One of the obvious outcomes of the reactive
couplings between momentum density and number density as
well as the displacement fields are the coefficients of elasticity.
These coefficients, derived from the microscopic perspective
of Mori-Zwanzig formalism have been discussed in great
detail in Refs. [10,11,14]. The focus of these previous stud-
ies is on the derivation of the isothermal reversible reactive
couplings between the relevant hydrodynamic variables and
their proper validation through implementation in appropriate
local-defect rich crystalline solids. In this contribution, in
addition to deriving the microscopic basis for the dissipative
terms, we also obtain the equation of motion of the energy
density [Eq. (4.10b)].

D. Implications of our results

The phenomenon of heat transport in a solid medium at
finite temperature is observed to be diffusive. Consistent with
existing macroscopic theory perspectives [3,21], our equa-
tions yield diffusive heat transport with two separate transport
coefficients ξαβ, καβ [see Eq. (4.14c)] and their respective
microscopic definitions [Eqs. (3.16c) and (3.18)]. For an equi-
librated fluid or a crystalline solid with constant point-defect
concentration and in absence of any external deforming fields,

one can define a variable q̂(r, t ) = ê(r, t ) − e0 + p0

n0
n̂(r, t )

whose fluctuation, in the thermodynamic limit, is

δq = δe − e0 + p0

n0
δn. (4.13)

It can be shown [6,34] that δq is related to the entropy S of the
system through the relation δq = T n0δ(S/N ). Thus, following
the second law of thermodynamics, q can be interpreted as
the heat density in the system. Rearranging the terms in the
Eq. (4.10b) for the energy density

∂tδe(q, t ) + i(e0 + p0)qαδvα (q, t )

= qαqβξαβδhαβ (q, t ) − qαqβκαβδT (q, t ) (4.14a)

⇒ ∂tδe(q, t ) − e0 + p0

n0
∂tδn(q, t )

= qαqβξαβδhαβ (q, t ) − qαqβκαβδT (q, t ) (4.14b)

⇒ ∂tδq

= qαqβξαβδhαβ (q, t ) − qαqβκαβδT (q, t ), (4.14c)

where δvα (q) was substituted using the mass conservation
equation Eq. (4.10a), one ends up with the two dissipative
contributions ([Eq. 4.14c)] to the diffusion of heat in a crystal
with point defects. Here we point out the distinctive aspects of
the dissipative terms which distinguish a crystalline solid from
a fluid. The analog to the dissipative coefficient tensor καβ in
a fluid is a scalar representing heat conductivity. In case of the
crystalline solid, καβ is a second rank tensor whose symmetry
is determined by the symmetry of the concerned crystalline
structure. Moreover, the additional dissipative coupling term

ξαβ , arising due to the coupling between energy and displace-
ment fields, appears in the time evolution equation for energy
[Eq. (4.10b)]. Because of Onsager symmetry, its transpose ξT

αβ

appears in the time evolution equation for the displacement
fields Eq. (4.10d). The tensor ξαβ is characteristic for a system
with long-range order.

In a crystalline solid, the two diffusive hydrodynamic
modes are heat transport and diffusion of point defects
[2,3]. Remaining consistent with our previous contributions
[10,11,14], we define the field of fluctuating point-defect con-
centration as

δc(q, t ) = −δn(q, t ) − n0iqαδuα (q, t ). (4.15)

Taking the time derivative of Eq. (4.15), then substituting
∂tδn(q, t ) and ∂tδuα (q, t ) using Eqs. (4.10a) and (4.10d)
immediately shows that the ansatz Eq. (4.15) leads to the
following:

∂tδc(q, t ) = n0qαqγ ζαβδhγ β (q, t ) − n0qαqβξ�
αβ

δT (q, t )

T
(4.16)

for the time evolution of the point-defect concentration. Equa-
tions (4.14)(4.14c) and (4.16) show that the leading order
contributions to the time evolution equations for the heat
density and the point-defect density are of the order q2. This
is consistent with the phenomenological theories [3,21] and
predicts the transport processes for heat and point defects in a
crystalline solid to be diffusive.

The definition of the fluctuation of the point-defect con-
centration [Eq. (4.15)] will help to rationalize how the present,
more general, perspective reduces to our previous microscopic
dissipationless description of isothermal elastic properties of a
point-defect rich crystal [11]. Substitution of the density fluc-
tuation δn(q, t ) in terms of the defect density concentration
δc(q, t ) and the displacement fields δuα (q, t ) in Eq. (E5a),
followed by some mathematical manipulations [28], result in
the following equation for the density of linear momentum:

∂tδ jα (q, t ) = − �αβ (q)δuβ (q, t )

− Vα (q)δc(q, t ) − Z∗
α (q)

T
δT (q, t ), (4.17)

where

�aβ (q) = λαβ (q) − iqαμβ (q) + iqβμ∗
α (q) + qαν(q)qβ

≈ �αβγ δqβqδ, (4.18a)

�αβγ δ = λαγβδ + λαδγβ − λαβγ δ

+ δαβμγδ + μαβδγ δ + νδαβδγ δ, (4.18b)

Vα (q) = 1

n0
[μ∗

α (q) − iqαν(q)]

≈ 1

n0
[−iμαβqβ − iνqα], (4.18c)

Z∗
α (q) = τ ∗

α (q) + iqα[e0 + p0 − θ∗(q)]

≈ −iταβqβ + iqα[e0 + p0 − θ ]. (4.18d)

The second lines in the expressions for �αβ (q) [Eq. (4.18a)],
Vα (q) [Eq. (4.18c)], and Z∗

α (q) [Eq. (4.18d)] represent the
leading terms in the q → 0 limit of the respective quantities.
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Since the aim is to show how to recover our previous results
from a more general description, we have chosen to keep only
the reversible parts in Eq. (4.17). In this limit, Eq. (4.10d)
reduces to ∂tδu = v, in which v is related to j through the
relation in Eq. (3.6d). If the system is isothermal, setting δT to
zero, the time derivative of Eq. (4.17) leads to the isothermal
wave equation for the linear momentum, derived in Ref. [10].
Moreover, the quantity �αβ (q) is identical to the dynamical
matrix associated with the isothermal elastic properties of the
crystal with constant defect concentration. Thus the defini-
tions of the quantities �αβ (q) and Vα (q) given in Eqs. (4.18)
have the same interpretations as in Refs. [10,11,14].

If one chooses to write the reversible part of the density of
the linear momentum while considering δq(q, t ) and δc(q, t )
as the relevant variables, the following equation is obtained

∂tδ jα (q, t ) = −�ad
αβ (q)δuβ (q, t )

−V ad
α (q)δc(q, t ) − L−1Z∗

α (q)δq (4.19)

where

�ad
aβ (q) = �αβ (q) + L−1(q)Z∗

α (q)Zβ (q)

≈ �αβγ δqβqδ + L−1(ταγ qγ − qα[e0 + p0 − θ ])

× (τβδqδ − qβ[e0 + p0 − θ ]), (4.20a)

V ad
α (q) = Vα (q) − L−1(q)Z∗

α (q)

(
e0 + p0 − θ∗(q)

n0

)

≈ −i

n0
(μαβqβ − νqα )

+ i

n0
L−1(ταβqβ − qα[e0 + p0 − θ ])

× (e0 + p0 − θ ). (4.20b)

Examining the q → 0 limit of V ad
α (q) and L−1Z∗

α (q) reveals
that for both of them, the leading order term is O(q). This
becomes clear from the q → 0 limit, given in Appendix C,
of the constituent variables μα (q), ν(q), τα (q), θ (q) of these
two terms. From Eqs. (4.14c) and (4.16), we know that time
derivatives of δq and δc has leading order O(q2) contributions.
Therefore, time derivative of the momentum density equa-
tion Eq. (4.19) yields O(q2) contributions from the first term
while the q dependence is of the order O(q3) for the terms
associated with ∂tδq(q, t ) and ∂tδc(q, t ). Ignoring the terms
with higher order q dependence, after substituting ∂tδuα (q, t )
with Eq. (4.10d), we arrive at the wave equation

∂2
t δ jα (q, t ) = −n−1

0 �ad
αβ (q)δ jβ (q, t ). (4.21)

The matrix �ad
αβ (q), defined in Eq. (4.20a), is the adiabatic

dynamical matrix [37] for the crystalline solid. It is associ-
ated with all the adiabatic elastic coefficients and governs the
longitudinal and transverse speeds of sound in the crystalline
solid under adiabatic conditions where heat and local defects
can adjust freely.

In defining the viscosity tensor ηαβγ δ [Eq. (3.17)], we
have not decomposed the longitudinal and transverse contri-
butions of the stress fluctuations. In case of a simple fluid,
the attenuation of the propagative sound waves associated
with longitudinal components of the current correlation func-
tions [38] is shown [6] to be related to the viscosity tensor.

Components of the viscosity tensor are also shown to govern
the diffusion of the transverse shear waves associated with the
transverse components of the current correlation functions.
There, the reactive part of the time evolution equation of the
momentum density is given by the pressure gradient alone,
the second term in Eq. (4.10c). Our calculations reveal that,
in the case of a crystalline solid, an additional reactive con-
tribution arises in the equation of motion of the momentum
density. From the literature [3,21] on the macroscopic hy-
drodynamics of crystalline solids, it is well-known that this
indicates the emergence of propagating shear waves. This
marks another important difference between a system of sim-
ple fluid and a solid with long range order. A completely
microscopic definition of the viscosity tensor proves to be
another important result of this paper.

V. CONCLUSIONS AND OUTLOOK

Mechanical properties and transport coefficients, in a crys-
talline phase with a finite concentration of point defects, are
derived in this paper from a completely microscopic clas-
sical description. The hydrodynamic equations of the three
components of the displacement vectors and the variables
governing the local conservation of mass, energy, and lin-
ear momentum are derived. Our results are based on the
Zwanzig-Mori formalism, which requires a choice of the
considered variables, and on an ansatz for the microscopic
density fluctuations in terms of the coarse-grained fields,
Eq. (3.1). The choice of the relevant variables is dictated
by conservation laws and spontaneous symmetry breaking.
The ansatz for the displacement field [Eq. (3.2b)], suggested
by Szamel and Ernst [4] has been tested in hard spheres
[15] and cluster crystals [14]. How this hydrodynamic de-
scription relates to the equilibrium thermodynamic properties
like free energy and entropy was rigorously worked out too.
Our approach allows us to derive the transport coefficients
associated with the Green-Kubo relations. The rank of the
transport coefficient tensors reflect the crystal symmetries and
their explicit microscopic origin provides the possibility of
evaluating them from inputs obtained from atomistic sim-
ulations of appropriate systems. Theoretical and simulation
studies in Ref. [14] show how theoretical frameworks de-
rived in Refs. [10,11] can be successfully implemented to
obtain quantitative insights regarding mechanical response of
solids. Though the previous studies [11,14] were restricted to
reversible mechanical response in isothermal crystals, the suc-
cess of the theory in predicting elastic properties of a model
known to mimic crystalline phases in DNA-based dendritic
nanostructures [13], illustrate the scope of applicability of this
formulation.

This paper provides a complete microscopic formulation
of all the constants of linear elasticity and coefficients govern-
ing diffusive and wave-transport processes for crystals. It has
been established [11,14,15], albeit in a much more simplified
purely reversible version of this theory, that the predictions
can be validated using inputs from atomistic simulations of
crystalline phases of particles interacting via ultrasoft po-
tentials [13,39]. Recent advances in experimental techniques
allow the tracking of single particle dynamics in a thermo-
dynamic ensemble of soft materials [40,41]. This offers the
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exiting possibility of understanding the emergent macroscopic
properties from experimentally observable microscopic
dynamics through the lens of a statistical mechanics theory
derived from first principles.

From a macroscopic phenomenology perspective, heat
transport is an irreversible process related to the production of
entropy in the system. Reference [22], a study of metastable
polycrystals by some of the authors, presents a completely
different point of view centered around the relation of en-
tropy to statistical microstates. In this case, our extensive
atomistic simulations give us insights about the relative sta-
bility of topological-defect rich polycrystalline configurations
and allows us to discern the role of entropy in it. There-
fore, combining the theoretical phenomenology of this paper
and its predecessors [10,11,14] with simulations similar to
Ref. [22] can lead to unique ways of interpreting reversible or
irreversible thermomechanical response of crystalline solids
and understanding transport processes driven by gradients in
intensive thermodynamic fields like temperature.

Defining the displacement fields unambiguously in a sys-
tem with long-range periodicity and diffusing defects proves
to be one of the conceptual challengers to phenomenologi-
cal or atomistic theories attempting to explain macroscopic
mechanical response [42]. Our approach of representing the
system in reciprocal space resolves this problem by defining
displacements, particle number density, or defect density in
terms of density fluctuations close to Bragg peaks. A natural
extension of this would be to examine the possibility of em-
ploying similar principles to study systems subjected to large
deformations near the onset of plasticity.

Some recent research employs spatial projection operators
[43–45] to segregate microscopic displacement fluctuations
associated with macroscopic elastic or plastic response in
defect-free crystals. This interpretation of displacement fields
helps explain [46] the origin of rigidity and the shear rate
dependence of the yield point [47] in an ideal crystal. In

this paper, the projection operators derive the dynamics of
variables chosen because of their slow relaxation timescales.
The propagating longitudinal or transverse sound modes, de-
scribed here, exhibit dispersion relations that vanish linearly
with decreasing wave vector. The slopes of their dispersion
relations in the small wave-number limit also give the moduli
of linear elastic response encoded in the dynamical matrix
appearing in the wave equation of the displacement fields
[10]. The spatial projection of Ref. [43] may present a way to
separate the contribution of affine macroscopic deformations
and local particle motions to the total microscopic displace-
ment fluctuations in a defect-rich crystal. Therefore, one of
the future avenues for investigation will be an attempt to
understand the onset of plasticity through the convergence of
these perspectives.

Identifying connections between the current theoretical
framework and reversible or irreversible isothermal and adi-
abatic processes in the crystal with local defects will pave the
path for future endeavors to evaluate macroscopic mechanical
constants and transport coefficients of materials of theoretical
and practical interest.
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APPENDIX A: SOME CONVENTIONS AND DEFINITIONS

1. The microscopic variables and their Fourier transforms

Assuming an interaction potential V (|ri − r j |) = V (ri j )
dependent on the distance ri j between particles i and j, in
Fourier space, the microscopic stress tensor and the micro-
scopic energy current reads

σ̂(q, t ) = −
∑

i

p̂(ri, t )p̂(ri, t )

m
e−iq·ri (t ) + 1

2

∑
i �= j

ri j (t )ri j (t )

ri j (t )
V ′(ri j (t ))

e−iq·r j (t ) − e−iq·ri (t )

iq · ri j (t )
, (A1)

ĵe(q, t ) =
∑

i

E (ri, t )
p̂(ri, t )

m
e−iq·ri (t ) − 1

4

∑
i �= j

p̂(ri, t ) + p̂(r j, t )

m
· ri j (t )ri j (t )

ri j (t )
V ′(ri j (t ))

e−iq·r j (t ) − e−iq·ri (t )

iq · ri j (t )
, (A2)

and one can indeed verify that [48]

∫
dre−iq·r

∫ 1

0
ds δ(r − ri + sri j ) = e−iq·r j − e−iq·ri

iq · ri j
. (A3)

In the microscopic definitions for the energy density [Eqs. (2.15)], stress [Eq. (A1)], and energy current [Eq. (A2)], the per
particle mass m appears. This, however, is set to one without any loss of generality and therefore it does not appear in any other
equations in the rest of the paper.

2. Equilibrium values

We can define an equilibrium pressure, using the virial equation for the average pressure:

p0 = n0kBT − 1

6V

〈∑
i �= j

ri jV
′(ri j )

〉
. (A4)
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The last quantity that is not equally zero at equilibrium is the energy density:

〈ê(r)〉 =
〈∑

i

Eiδ(r − ri )

〉

=
〈∑

i

p̂2
i

2m
δ(r − ri )

〉
+ 1

2

〈∑
i �= j

V (ri j )δ(r − ri )

〉

= 3

2
kBT n(r) + 1

2

〈∑
i �= j

V (ri j )δ(r − ri )

〉
. (A5)

Nonlocally, taking an ensemble and volume average, we get

e0 = 1

V

∫
dr 〈e(r)〉 = 3

2
n0kBT + 1

2V

〈∑
i �= j

V (ri j )

〉
. (A6)

In reciprocal space, they translate to

e0 = 1

V
〈ê(q = 0)〉 = 3

2
n0kBT + 1

2V

〈∑
i �= j

V (ri j )

〉
. (A7)

3. Matrix components

The momentum-momentum density correlation is straightforward with the equipartition principle:

〈δĵ∗(q)δĵ(q)〉 = n0kBTV I. (A8)

With L = −i d
dt and Eq. (2.9), we get the first element of the frequency matrix:

ω jρ
gα = β〈δ ĵ∗α (q)Lδρ̂g(q)〉 = −V (g + q)αng, (A9a)

ωρ j
gα = β〈δ ĵ∗α (q)Lδρ̂g(q)〉∗ = −V (g + q)αn∗

g. (A9b)

The second one reads

β−1ω je = β−1ωe j = 〈δj∗(q)Lδe(q)〉 = −q · 〈δĵ∗(q)ĵe(q)〉 (A10a)

= −q ·
〈∑

i,k

E (ri )
p̂i

m
p̂ke−iq·rik

〉
+ q ·

〈
1

4

∑
k

∑
i �= j

p̂i + p̂ j

m
· ri jri j

ri j
p̂kV

′(ri j )
e−iq·r j − e−iq·ri

iq · ri j
eiq·rk

〉
(A10b)

= −q ·
〈∑

i,k

p̂2
i

2m

p̂i

m
p̂ke−iq·rik

〉
− q ·

〈∑
k

∑
i �= j

V (ri j )
p̂i

2m
p̂ke−iq·rik

〉
+ q ·

〈
kBT

2

∑
i �= j

ri jri j

ri j
V ′(ri j )

sin(q · ri j )

q · ri j

〉
(A10c)

= −q
5

2
N (kBT )2 − q

1

2
kBT

〈∑
i �= j

V (ri j )

〉
+ q

kBT

6

〈∑
i �= j

ri jV
′(ri j )

〉
+ O(q3) (A10d)

= −qkBTV (e0 + p0) + O(q3), (A10e)

with at equilibrium rαrβ = 1

3
r2δαβ , and

〈p̂ip̂k〉 = mkBT δikI,〈
p̂2

i

〉 = 3mkBT,〈
p̂2

i p̂ip̂k
〉 = 5(mkBT )2δikI,〈

p̂2
i p̂kp̂k

〉 = (3 + 2δik )(mkBT )2I. (A11)
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APPENDIX B: INVERSION OF THE STATIC SUSCEPTIBILITY MATRIX

In the following matrix identities, the matrix blocks A, B,C, D are square matrices. We use these identities [Eq. (B1)] to
perform the inversion of the static susceptibility matrix χ [Eq. (B2)].[

A 0
0 B

]−1

=
[

A−1 0
0 B−1

]
,

[
A B
C D

]−1

=
[

A−1 + A−1B
(
D − CA−1B

)−1
CA−1 −A−1B

(
D − CA−1B

)−1

−(D − CA−1B
)−1

CA−1
(
D − CA−1B

)−1

]
(B1)

χ(q) =

⎡
⎢⎣χ

ρρ
(N×N ) χ

ρe
(N×1) χ

ρ j
(N×3)

χ
eρ
(1×N ) χee

(1×1) χ
e j
(1×3)

χ
jρ
(3×N ) χ

je
(3×1) χ

j j
(3×3)

⎤
⎥⎦ =

⎡
⎣χ

ρρ
(N×N ) χ

ρe
(N×1) 0

χ
eρ
(1×N ) χee

(1×1) 0
0 0 χ

j j
(3×3)

⎤
⎦ (B2)

Reiterating Eqs. (2.20) and noting the block diagonal struc-
ture of χ [Eq. (B2)], first the individual diagonal blocks are
inverted using identity Eq. (B1a). The first diagonal block,
comprising of correlation matrices χρρ , χρe, and χee is in-
verted using identity Eq. (B1b). The second diagonal block,
with correlation between components of momentum densities,
is easier to invert using the classical equipartition [Eq. (2.21)].
Thus, the explicit expressions for the inverse matrix

χ−1(q) =
⎡
⎣(Jρρ + UL−1U∗) −L−1U 0

−(L−1U)∗ L−1 0
0 0 n−1

0 I.

⎤
⎦ (B3)

is acquired where Jρρ = (χρρ )−1 with components Jgg′

[Eqs. (2.23)]. The scalar L(q) and the components Ug of the
vector U are given in Eqs. (2.24).

APPENDIX C: SMALL WAVELENGTH LIMIT OF
COEFFICIENTS RELATED TO THE INVERSE DENSITY
CORRELATION FUNCTION AND HENCE THE DIRECT

CORRELATION FUNCTION

1. The generalized elastic coefficients

The elastic coefficients, which are the same as the ones in
Refs. [10,14], are summarized

λαβ (q) =
∑
g′g′′

g′
αn∗

g′J∗ρρ

g′g′′ ng′′g′′
β = λαβγ δqγ qδ + . . . , (C1a)

μα (q) =
∑
g′g′′

n∗
g′J∗ρρ

g′g′′ ng′′ ig′′
α = iμαβqβ + . . . , (C1b)

μ∗
α (q) =

∑
g′g′′

−ig′
αn∗

g′J∗ρρ

g′g′′ ng′′ = −iμαβqβ + . . . , (C1c)

ν(q) =
∑
g′g′′

n∗
g′J∗ρρ

g′g′′ ng′′ = ν + . . . , (C1d)

and then derived here for the sake of completeness.
Substituting J∗

g′g using Eqs. (2.23) in the expression for
λαβ (q) in Eq. (C1a) and utilizing the expansion of the gradient
of the average density distribution

∇αn(r) =
∑

g

igαngeig.r (C2)

in terms of the Bragg peak amplitudes ng, one obtains

λαβ (q) = kBT

V

∫
d3r1

∫
d3r2∇αn(r1)∇βn(r2)e−iq.(r1−r2 )

×
[
δ(r1 − r2)

n(r1)
− c(r1, r2)

]
. (C3)

Upon using an equation derived by Lovett, Mou, Buff,
Wertheim (LMB [30] W [31]),

∇α (n(r))

n(r)
=
∫

d3r′c(r, r′)∇αn(r′) (C4)

and realizing that the gradient of the equilibrium density
∇αn(r) is real i.e.,

∑
g igαngeig.r =∑g −igαn∗

ge−ig.r, one gets

λαβ (q) = kBT

V

∫
d3r1

∫
d3r2∇αn(r1)∇βn(r2)c(r1, r2)

× (1 − e−iq·(r1−r2 ) ) (C5a)

≈ λαβγ δqγ qδ + O(q4), (C5b)

Similar arguments lead to the expression for

μα (q) = kBT

V

∫
d3r1

∫
d3r2n(r1)∇αn(r2)c(r1, r2)

× (1 − e−iq·(r1−r2 ) ) (C6a)

≈ iμαβqβ + O(q2) (C6b)

It can, however, be shown [14] that for a crystal with
inversion symmetry, the correction in the small q expansion
of μα (q) is O(q3). Finally, the generalized elastic coefficient
ν(q), whose leading order contribution comes from the homo-
geneous constant ν, is given by

ν(q) = kBT

V

∫
d3r1

∫
d3r2n(r1)n(r2)e−iq.(r1−r2 )

×
[
δ(r1 − r2)

n(r1)
− c(r1, r2)

]
(C7a)

≈ ν + O(q2). (C7b)

It can be shown [10] that, as a consequence of the r1 ↔ r2

symmetry, ν(q) is real and has contributions from even powers
in a long wavelength expansion in q.
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2. The coefficients coupling to energy

In this section, we derive the small wave-vector limit
for the coefficients τα, θ and L. The initial definition of τα

[Eqs. (3.7)],

τα (q) = i
∑

g

U ∗
g (q)nqgα, (C8)

uses the abbreviated notation of Ug defined in terms of the
inverse density correlation function Jgg′ [see Eqs. (2.23)] and
the correlation between fluctuation in energy and Bragg peak
amplitudes Kg [see Eqs. (2.24)]. Therefore, plugging in these
definitions, τα can be written in terms of the direct correlation
function c(r1, r2) and symmetry of these functions can be
exploited to derive an expression for τα in the small q limit.

τα (q) = (βV )−1
∑
g,g′

∫
d3r1

∫
d3r2inggαeig·r1 K∗

g′ (q)e−ig′ ·r2 e−iq·(r1−r2 )

[
δ(r1 − r2)

n(r1)
− c(r1, r2)

]
(C9a)

= (βV )−1
∑

g′

∫
d3r2∇αn(r1)K∗

g′ (q)e−ig′ ·r2 e−iq·(r1−r2 )

[
δ(r1 − r2)

n(r1)
− c(r1, r2)

]
(C9b)

= (βV )−1
∑

g′

∫
d3r2K∗

g′ (q)e−ig′r2

∫
d3r1∇αn(r1)c(r1, r2)(1 − e−iq·(r1−r2 ) ) (C9c)

= V −2
∑

g′

∫
d3r2

〈∑
jk

E je
−iq·(r j−rk )eig′ ·rk

〉
e−ig′r2

∫
d3r1∇αn(r1)c(r1, r2)[1 − iq.r12 + . . . ] (C9d)

= iqβταβ + O(q2), (C9e)

where the second rank tensor ταβ is

ταβ = (βV )−1
∑

g′

∫
d3r2K̄∗

g′e−ig′r2

∫
d3r1∇αn(r1)c(r1, r2)r12,β . (C10)

Note the analogy between the definitions of μα and τα .
From this analogy, symmetry arguments applicable for μαβ

[Eqs. (C1)] (also see Ref. [10]) holds for ταβ as well. The sym-
metry c(r1, r2) = c(r2, r1) and the LMBW equation indicates
ταβ = τβα . The term K∗

g′ (q), in Eqs. (2.4), is a q-dependent
correlation function [see Eq. 2.24a)] between the energy den-
sity and Bragg diffraction amplitudes. In the q → 0 limit,
the leading order term, in the expansion of the q-dependent

exponential in its expression, is a constant K̄∗
g′ and q-

independent macroscopic property of the system. Similar to
the correlations in Eqs. (A9), this quantity is expected to have
the periodicity of the lattice structure.

Next we take up the coefficient θ . While deriving
the explicit expressions for θ in terms of c(r1, r2), we
draw attention to the analogy between the definitions of θ

and ν:

θ (q) =
∑

g

U ∗
g (q)ng =

∑
g,g′

K∗
g′ (q)J∗

g′g(q)ng (C11a)

= (βV )−1
∑
g,g′

∫∫
d3r1d3r2ngeig·r1 K̄∗

g′e−ig′ ·r2 e−iq·(r1−r2 )

[
δ(r1 − r2)

n(r1)
− c(r1, r2)

]
(C11b)

= (βV )−1
∑

g′

∫∫
d3r1d3r2n(r1)K̄∗

g′e−ig′ ·r2 e−iq·(r1−r2 )

[
δ(r1 − r2)

n(r1)
− c(r1, r2)

]
,

∵ n(r1) =
∑

g

ngeig·r1 (C11c)

= (βV )−1
∑

g′

∫
d3r2K̄∗

g′e−ig′ ·r2 − (βV )−1
∑

g′

∫∫
d3r1d3r2n(r1)K̄∗

g′e−ig′ ·r2 c(r1, r2)[1 − iq.r12 + . . . ]. (C11d)

The above equation shows how, in the long-wavelength limit,

θ = (βV )−1
∑

g′

∫
d3r2K̄g′e−ig′ ·r2 − (βV )−1

∑
g′

∫∫
d3r1d3r2n(r1)K̄∗

g′e−ig′ ·r2 c(r1, r2) (C12)
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is a q-independent real constant similar to ν. Here, similar
to ταβ , we have used K̄∗

g′ as the long-wavelength expectation
value for K∗

g′ (q).

Utilizing the microscopic expressions for the energy fluc-
tuations [see Eqs. (2.15) and (2.16)] in the definition of L
[Eq. (2.24c)] and taking Taylor expansion of the exponential
functions of q leads to

L(q) = β〈δê∗δê〉 −
∑
g,g′

Kg(q)Jgg′ (q)K∗
g′ (q) (C13a)

= β〈δê∗δê〉 − (βV )−1
∑
g,g′

∫∫
d3r1d3r2K̄geig·r1 K̄∗

g′e−ig′ ·r2

[
δ(r1 − r2)

n(r1)
− c(r1, r2)

]
e−iq·(r1−r2 ) (C13b)

= β〈δê∗δê〉 − (βV )−1
∑
g,g′

∫∫
d3r1d3r2K̄geig·r1 K̄∗

g′e−ig′ ·r2

[
δ(r1 − r2)

n(r1)
− c(r1, r2)

]
[1 − iq.r12 + . . . ], (C13c)

with the small wavelength limit of L(q), given by a constant

L = β〈δê∗δê〉 − (βV )−1
∑
g,g′

∫∫
d3r1d3r2K̄geig·r1 K̄∗

g′e−ig′ ·r2

[
δ(r1 − r2)

n(r1)
− c(r1, r2)

]
. (C14)

Here, once again, in the q → 0 limit, the leading order con-
tributions from the terms Kg(q) are q-independent constants
like K̄g. The arguments related to the term Jgg′ (q), in the small
q limit, are identical to the ones given for the calculation of
ν(q) (see Eqs. (C7) and Refs. [10,14,28]).

APPENDIX D: COARSE-GRAINED STATIC
SUSCEPTIBILITY

This Appendix aims to derive relations between (i) the
intensive thermodynamic conjugate fields defined within the
Mori-Zwanzig projection formalism and appearing on the left-
hand side of the Eq. (3.3), and (ii) the thermodynamic fields
introduced in the expansion of the free energy in Eq. (4.1) and
now used to represent the partition function in Eq. (D3) [also
appearing on the left-hand side of Eq. (D8)].

The relation between the coarse-grained thermodynamic
variables in Eq. (3.3) is given by the static susceptibility
matrix. The block diagonal structure of the coarse-grained
susceptibility matrix χ, similar to its microscopic higher di-
mensional analog in Eqs. (2.20), decouples a 3 × 3 diagonal
block of correlations between the linear momentum densities,
χ j j , from the 5 × 5 matrix block χnue, allowing one to sepa-
rately consider

V −1χnue

⎡
⎣δa

δy
δb

⎤
⎦ =

⎡
⎣δn

δu
δe

⎤
⎦, (D1)

decoupled from the correlations to linear momentum. The ma-
trix χnue represents the static correlations between fluctuations
in number density, displacement fields and energy density
[see Eq. (2.1)]. In this Appendix, we focus on interpreting
the coarse-grained thermodynamic conjugate variables after
defining the static correlation matrix χnue

lim
q→0

χnue(q) = lim
q→0

β

⎛
⎝〈δn∗(q)δn(q)〉 〈δn∗(q)δuγ (q)〉 〈δn∗(q)δe(q)〉

〈δu∗
α (q)δn(q)〉 〈δu∗

α (q)δuγ (q)〉 〈δu∗
α (q)δe(q)〉

〈δe∗(q)δn(q)〉 〈δe∗(q)δuγ (q)〉 〈δe∗(q)δe(q)〉

⎞
⎠ (D2)

in terms of thermodynamic derivatives [see Eqs. (D9)]. These
relations follow from evaluating the static correlations be-
tween the thermodynamic density fields [see Eqs. (D4)] in
the generalized grand-canonical ensemble [6,11,25]. But for
that, first we will have to define the partition function [see
Eq. (D3)]. In case of three-dimensional systems, u is a three-
dimensional vector with components uα corresponding to the
three Cartesian coordinates. For ease of representation, in
Eq. (D2), we choose to show the correlations and the thermo-
dynamic derivatives corresponding to one of the components
of u. These expressions are representative of more general
susceptibility matrices with dimensions appropriate for the
systems concerned. Reference [11] explicitly derives these

relations for an isothermal crystalline solid without consid-
ering heat transport associated with the fluctuations in energy
density δe. For the isothermal case, the coarse-grained sus-
ceptibility matrix, representing the correlations between the
density δn and displacement δuα fluctuations, is a matrix of
dimensions 4 × 4. In this paper, with the additional energy
fluctuations δe, the size of the static correlation matrix χnue
increases to 5 × 5 to account for the additional thermody-
namic correlations. Apart from this increase in the number
of correlations involved, the main thermodynamic arguments
remain identical.

Now we examine how the correlations in Eq. (D2) can be
represented as thermodynamic derivatives obtained starting
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from the partition function. Drawing analogy to the statis-
tical mechanics of ordered ferromagnetic states in a system
with the Heisenberg Hamiltonian [25], we introduce the elas-
tic energy h · u in the Hamiltonian H. Here we follow the
definitions of intensive stress fields hαβ introduced as the ther-
modynamic conjugates to the symmetric linear strain fields
uαβ in the free energy expansion in Eq. (4.1). The partition
function Z corresponds to the equilibrium crystalline solid in
the limit of hαβ → 0:

Z =
∫

d�e−βH+βμN−βV h·u. (D3)

Within the linear response picture [1], the vector u has
six components representing the Voigt symmetric strain
fields uαβ : the independent components being for αβ =
11, 22, 33, 23 or 32, 13 or 31, 12 or 21. From a thermody-
namics perspective, the components of the conjugate stress
fields hαβ can be defined as in Eq. (4.3c) where the coefficients
of the stiffness tensor Cn

αβγ δ are the constants connecting
the conjugate pairs. For a thermodynamic variable density w

measured at q → 0, the following relations for various density
correlations can be derived from Eq. (D3) [25]:

∂w

∂ (βμ)

∣∣
β,βh = 〈δw∗δn〉 (D4a)

− ∂w

∂ (βhαβ )

∣∣
β,βμ,βhγ δ

= 〈δw∗δuαβ〉 (D4b)

− ∂w

∂ (β )

∣∣
βμ,βh = 〈δw∗δe〉. (D4c)

For our system of interest, the thermodynamic variable den-
sity w denotes number density n, energy density e, and
linear symmetric strain fields uαβ , which can be equivalently
represented in terms of the displacement fields as given in
Eq. (3.12). Consider representing fluctuations in these three
quantities in terms of the partial derivatives of the three in-
tensive fields βμ, βhαβ and β now introduced in Eqs. (2.3)
through the definition of the partition function in Eq. (2.2).

With
∑n

i=1

∂ f

∂xi
δxi = δ f being a general form for the total

derivative of a function f of variables x1, x2, . . . , xn, the quan-
tities δn, δuγ δ and δe can be written as follows:

∂n
∂ (βμ)

∣∣
β,βhδ(βμ) − ∂n

∂ (βhαβ )

∣∣
β,βμ,βhγ δ

δ(βhαβ ) − ∂n
∂ (β )

∣∣
βμ,βhδβ = δn (D5a)

∂uγ δ

∂ (βμ)

∣∣
β,βhδ(βμ) − ∂uγ δ

∂ (βhαβ )

∣∣
β,βμ,βhγ δ

δ(βhαβ ) − ∂uγ δ

∂ (β )

∣∣
βμ,βhδβ = δuγ δ (D5b)

∂e
∂ (βμ)

∣∣
β,βhδ(βμ) − ∂e

∂ (βhαβ )

∣∣
β,βμ,βhγ δ

δ(βhαβ ) − ∂e
∂ (β )

∣∣
βμ,βhδβ = δe. (D5c)

Einstein convention for summation over repeated indices has been used here. Since the linear symmetric strain fields δuαβ can
be written in terms of the displacement fields [Eq. (3.12)], we choose to follow the analogy of Eq. (3.11) to define the vector δh
in terms of the stress fields δhαβ such that the components of δh

δhα = −iδhαβqβ, (D6)

are conjugates to δuα . When δuαβ and δhαβ are substituted with δuα and δhα , respectively, in Eqs. (D5), they transform to

∂n
∂ (βμ)

∣∣
β,βhδ(βμ) − ∂n

∂ (βhα )

∣∣
β,βμ,βhγ

δ(βhα ) − ∂n
∂ (β )

∣∣
βμ,βhδβ = δn, (D7a)

∂uγ

∂ (βμ)

∣∣
β,βhδ(βμ) − ∂uγ

∂ (βhα )

∣∣
β,βμ,βhγ

δ(βhα ) − ∂uγ

∂ (β )

∣∣
βμ,βhδβ = δuγ , (D7b)

∂e
∂ (βμ)

∣∣
β,βhδ(βμ) − ∂e

∂ (βhα )

∣∣
β,βμ,βhγ

δ(βhα ) − ∂e
∂ (β )

∣∣
βμ,βhδβ = δe. (D7c)

The set of Eqs. (D7) can be contracted into the matrix form

V −1χnue

⎡
⎣δ(βμ)

δ(βh)
δβ

⎤
⎦ =

⎡
⎣δn

δu
δe

⎤
⎦ (D8)

if the matrix χnue is given by Eq. (D9a). Next, recall Eqs. (D4), which gives linear response relations between static correlation
functions and respective thermodynamic derivatives. This can now be used to obtain Eq. (D9b) from Eq. (D9a):

lim
q→0

χnue(q) = βV

⎛
⎜⎝

∂n
∂ (βμ)

∣∣
β,βh − ∂n

∂ (βhα )

∣∣
β,βμ,βhγ

− ∂n
∂β

∣∣
βμ,βh

∂uγ

∂ (βμ)

∣∣
β,βh − ∂uγ

∂ (βhα )

∣∣
β,βμ,βhγ

− ∂uγ

∂β

∣∣
βμ,βh

∂e
∂ (βμ)

∣∣
β,βh − ∂e

∂ (hα )

∣∣
β,βμ,βhγ

− ∂e
∂β

∣∣
βμ,βh

⎞
⎟⎠, (D9a)

χnue(q) = βV

⎛
⎝〈δn∗(q)δn(q)〉 〈δn∗(q)δuγ (q)〉 〈δn∗(q)δe(q)〉

〈δu∗
α (q)δn(q)〉 〈δu∗

α (q)δuγ (q)〉 〈δu∗
α (q)δe(q)〉

〈δe∗(q)δn(q)〉 〈δe∗(q)δuγ (q)〉 〈δe∗(q)δe(q)〉

⎞
⎠. (D9b)
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Finally, in Eq. (D9b), we have recovered the expression of the static susceptibility matrix χnue we presented in Eq. (D2)
from our consideration of the hydrodynamic variables in the Mori-Zwanzig formulation. In deriving Eqs. (D9), from a purely
thermodynamic starting point [Eq. (D3)], we establish the relations (recall h0

αβ = 0)

δa = β−1δ(βμ) = δμ − μ0

T
δT, (D10a)

δyαβ = β−1δ(βhαβ ) = δhαβ, (D10b)

δb = −β−1δβ = 1

T
δT . (D10c)

Comparing Eq. (D1) to Eq. (D8) derived through the steps presented in Eqs. (D5), (D7), and (D9) allows us to identify
the microscopically derived thermodynamic conjugate fields (see Sec. III B) δa, δyαβ , and δb in terms of the thermodynamic
intensive fields δ(βμ), δ(βhαβ ), and δβ, respectively. They are recalled in Eqs. (4.4) in the main text.

It is important to note here that Eq. (D10) identifying δa, δyα , and δb as intensive thermodynamic fields can be derived
also from considering the inverse route (see Ref. [28]). First, reconsider the relation between δa, δyα , δb and their respective
conjugates δn, δuγ , δe through χ−1

nue in Eq. (D8). After inverting the matrix χnue, using relations between partial derivatives of
thermodynamic variables, Eq. (D9a) leads to

lim
q→0

χnue
−1(q) = (βV )−1

⎛
⎜⎝

∂ (βμ)
∂n

∣∣
e,u

∂ (βμ)
∂uγ

∣∣
n,uα,e

∂ (βμ)
∂e

∣∣
n,u

− ∂ (βhα )
∂n

∣∣
e,u − ∂ (βhα )

∂uγ

∣∣
n,uα,e − ∂ (βhα )

∂e

∣∣
n,u

− ∂β

∂n

∣∣
e,u − ∂β

∂uγ

∣∣
n,uα,e − ∂β

∂e

∣∣
n,u

⎞
⎟⎠, (D11a)

which can be plugged in Eq. (3.3) to bring out the expressions for the variables δa, δb, and δyαβ given in Eqs. (D10).
This representation of the χnue

−1 makes certain thermodynamic relations, derived in Eqs. (4.3), explicit. The expression
for Cn

αβγ δ [Eq. (4.3c)] is specially cited here because it helps us understand how a Voigt symmetric stiffness tensor Cn
αβγ δ of

dimensions 6 × 6,

βCn
αβγ δqβqδ = ∂ (βhαβ )

∂uγ δ

∣∣∣
n,uαβ ,β

qβqδ = −∂ (βhα )

∂uγ

∣∣∣
n,uα,β

, (D12)

contributes to the 3 × 3 (in a three-dimensional system) block of correlations between the displacement fields in the χnue
−1

matrix. The results of this Appendix discussing the relations between the coarse-grained fields derived from the Mori-Zwanzig
projection operations and the corresponding thermodynamic fields is used in Sec. IV B.

APPENDIX E: EQUATION OF MOTION : MICRO TO MACRO

The equations of motion [Eqs. (2.33)] for the microscopic relevant variables transform to Eqs. (3.19) when the fluctuations in
the Bragg peak amplitudes δng(q, t ) are substituted with the two coarse-grained fields δuα (q, t ) and δn(q, t ) using the ansatz in
Eq. (3.1). Here we present the steps involved in deriving Eqs. (3.19) from Eqs. (2.33). We reiterate the microscopic equations of
motion [Eqs. (2.33)] in the first lines of Eqs. (2.6),

∂tδng(q, t ) = ω
ρ j
gα (q)

V
δvα (q, t ) −

∑
g′

�
ρρ

gg′ (q)

V
δag′ (q, t ) − �

ρe
g (q)

V
δb(q, t )

= −i(g + q)αngδvα (q, t ) −
∑

g′
ngn∗

g′gαg′
βζαβδag′ (q, t ) − qβξ�

αβnggαδb(q, t ), (E1a)

∂tδe(q, t ) = ω
e j
α

V
δvα (q, t ) −

∑
g

�
eρ
g (q)

V
δag(q, t ) − �ee

V
δb(q, t )

= −i(e0 + p0)qαδvα (q, t ) −
∑

g

n∗
ggβqαξαβδag(q, t ) − qαqbeκαβT δb(q, t ), (E1b)

∂tδ jα (q, t ) =
∑

g

ω
jρ
αg

V
δag(q, t ) + ω

je
α

V
δb(q, t ) − �

j j
αβ

V
δvβ (q, t )

= i
∑

g

n∗
g(g + q)αδag(q, t ) − i(e0 + p0)qαδb(q, t ) − qβqγ ηαβγ δvδ (q, t ), (E1c)
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before plugging in expressions for ω
ρ j
gα, ω

e j
α from Eqs. (2.28) and �

ρρ

gg′ , �
ρe
g , �

j j
αβ from Eq. (3.16), Eq. (3.17) in the second lines

of Eqs. (2.6). The components of �
ρ j
(N×3), �

e j
(1×3) and their conjugate transposes in the dynamical Eqs. (2.33) have been neglected

in our calculations. It can be shown [28] that the leading q-dependent term for these components arises from Oq(g + q) while
all the other components of � have O(g + q) [see Eqs. (3.16)–(3.18)] leading order terms.

Next we differentiate Eq. (3.2a) with respect to time and substitute ∂tδng using Eq. (E1a). Then, due to the symmetry argument∑
g |ng|2gβ = 0, several terms in Eq. (E1a) vanish and the time evolution of the density field is obtained:

∂tδn(q, t ) = −in0qαδvα (q, t ). (E2)

Similar steps are repeated to get the time evolution of the displacement fields δuα (q, t ), starting with Eq. (3.2b). It is differentiated
with respect to time and then using Eq. (2.33a) and Nαβ =∑g |ng|2gαgβ , one arrives at the following equation of motion for the
displacement fields:

∂tδuα (q, t ) = δvα (q, t ) − ζαβ

[
−μ∗

β (q)
δn(q, t )

n0
+ λβγ (q)δuγ (q, t ) + τ ∗

β (q)δb(q, t )

]
− iqβξ�

αβδb(q, t ) (E3a)

= δvα (q, t ) − ζαβδyβ − iqβξ�
αβδb(q, t ). (E3b)

Here we have made use of the fact that δag can be written in terms of the inverse density correlation matrix Jgg′ [see Eq. (3.5a)],
which ends up giving the expressions for the generalized material coefficients λαβ, μα, ν, τα, θ (see Appendix C). For a more
elegant representation of Eq. (E3a), we substitute the second term with δyβ from Eq. (3.6c)

The equation for the energy density [Eq. (E1b)] is taken up next. Once again using the definitions of the generalized material
coefficients (see Appendix C) and the expression for δyβ in Eq. (3.6c) leads to the following equations:

∂tδe(q, t ) = −i(e0 + p0)qαδvα (q, t ) + iqαξαβ

[
−μ∗

β (q)
δn(q, t )

n0
+ λβγ (q)uγ (q, t ) + τ ∗

β (q)δb(q, t )

]
− qαqβκαβT δb(q, t )

(E4a)

= −i(e0 + p0)qαδvα (q, t ) + iqαξαβδyβ − qαqβκαβT δb(q, t ). (E4b)

Finally, the equation for the density of the linear momentum in Eq. (E1c) can be written in terms of the conjugate fields
δa, δb, δvα, δyα defined in Eqs. (3.6). Here we have employed the same mathematical manipulations, as in case of the
equations for δn, δuα, δe, to identify the generalized material constants and their relations to the conjugate fields:

∂tδ jα (q, t ) = −in0qα

[
ν(q)

n2
0

δn(q, t ) − μβ (q)

n0
δuβ (q, t ) − θ∗(q)

n0
δb(q, t )

]

−
[
−μ∗

α (q)
δn(q, t )

n0
+ λαβ (q)δuβ (q, t ) + τ ∗

α (q)δb(q, t )

]
−i(e0 + p0)qαδb(q, t ) − qβqγ ηαβγ δvδ (q, t ) (E5a)

= −in0qαδa(q, t ) − δyα (q, t ) − i(e0 + p0)qαδb(q, t ) − qβqγ ηαβγ δvδ (q, t ). (E5b)

This Appendix shows how the eight hydrodynamic equations presented in Eqs. (3.19) can be derived from the (N + 4)
Mori-Zwanzig equations [Eqs. (2.33)] for the microscopic fields of a local-defect rich three-dimensional crystal through the
coarse-graining ansatz in Eq. (3.1).
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