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Neural networks have been used successfully in a variety of fields, which has led to a great deal of interest
in developing a theoretical understanding of how they store the information needed to perform a particular task.
We study the weight matrices of trained deep neural networks using methods from random matrix theory (RMT)
and show that the statistics of most of the singular values follow universal RMT predictions. This suggests that
they are random and do not contain system specific information, which we investigate further by comparing the
statistics of eigenvector entries to the universal Porter-Thomas distribution. We find that for most eigenvectors the
hypothesis of randomness cannot be rejected, and that only eigenvectors belonging to the largest singular values
deviate from the RMT prediction, indicating that they may encode learned information. In addition, a comparison
with RMT predictions also allows to distinguish networks trained in different learning regimes—from lazy to
rich learning. We analyze the spectral distribution of the large singular values using the Hill estimator and find
that the distribution cannot in general be characterized by a tail index, i.e., is not of power-law type.
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I. INTRODUCTION

The application of deep neural networks (DNNs) to a wide
range of problems has been tremendously successful in recent
years [1–6]. Beyond the classification of images [3], DNNs
have been able to learn games beyond human capabilities [7],
and have made significant progress in solving hard problems
like protein folding [8]. Given these achievements, it is not
surprising that neural networks are being applied to a variety
of physics problems as well [5]. Applications range from
quantum state tomography [9,10], locating classical [11], and
quantum phase transitions [12–15], fluid turbulence [16,17],
troposphere temperature prediction [18] to classifying events
in the Large Hadron Collider in search of physics beyond the
standard model [19,20].

Interestingly, successful neural networks are often highly
overparametrized [21–32], such that one might have doubts
regarding their capability to generalize beyond the training
data set. Furthermore, DNNs can effortlessly memorize large
amounts of random training data [33,34], but still generalize
well if there is a rule to be learned. According to the traditional
concept of a “bias-variance tradeoff” [35], one would indeed
expect these networks to overfit and fail in predicting unseen
data. However, it turns out that their generalization capability
exhibits a so-called double descent behavior [36–38] as a
function of the number of network parameters, such that they
perform well in the highly overparameterized limit. The ap-
parent contradiction between overparameterization and good
generalization performance is further resolved by emerging
evidence that ultrawide neural networks are inherently bi-
ased toward simple functions [6,39–41]. For the analysis of
such highly overparameterized networks we use random ma-
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trix theory (RMT) [42–46] as a zero information hypothesis,
where deviations from RMT are indications of system specific
information. This approach has already proven to be useful
for many other problems with inherent randomness such as
the analysis of nuclei spectra [43,45–47], the investigation
of stock market correlations [48–54], and for the analysis of
biological networks [55,56].

Previously RMT has been applied to neural networks for
estimating the asymptotic performance of single-layer net-
works [57,58], and for analyzing the generalization dynamics
of linear networks [59]. Outliers and the random part of preac-
tivation covariance matrices were studied in Ref. [60]. Other
work focused on the spectra of Jacobians at initialization [61]
and on the eigenvalue distribution of the Hessian of the loss
matrix [62,63]. The spectral evolution of weight matrices dur-
ing training was analyzed in Ref. [64], with the main results
that for smaller or older networks there is a scale in the singu-
lar value spectrum separating signal from noise, while in state
of the art DNNs the spectral density exhibits a power-law tail,
reminiscent of the spectrum of heavy-tailed random matrices
[65,66]. These results were subsequently used to assess the
quality of pretrained DNNs [67] by computing spectral norms
of weight matrices and by assessing the exponent of a power-
law fit to the tail of the singular value spectrum.

Here, we employ a variety of RMT tools to demonstrate
that the weight matrices of deep and overparameterized neural
networks are predominantly random. Specifically, we com-
pare the singular values of several DNNs with the Wigner
nearest-neighbor spacing distribution and find that the bulk of
the singular values follows the RMT prediction, even when
the networks are fully trained. This finding is also corrob-
orated by the analysis of the number variance of weight
matrix singular value spectra. The advantage of analyzing
these RMT predictions for spectral correlations is that they
are universal properties of random matrices, in contrast to the
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distribution of singular values which depends sensitively on
the specific type of random matrix. The idea that a large frac-
tion of singular values does not encode information is tested
by comparing the distribution of eigenvector components to
the universal Porter-Thomas distribution. Only for a small
fraction of eigenvectors with large singular values do we find
significant deviations from the Porter-Thomas distribution,
indicating that learned information is encoded in them.

In principle, it is also possible that information is stored
in weights that match RMT predictions: For example, for a
teacher-student setup with random teacher, one cannot locate
information by an RMT analysis even for a perfect student of
the same architecture—thus, the absence of deviations from
RMT predictions is no guarantee that no information was
learned. This example shows that the success of the zero-
information hypothesis approach depends on the structure of
the data set on which the DNN is trained. We show here, how-
ever, that the RMT analysis is particularly fruitful for image
classification problems where networks trained on datasets
such as MNIST, CIFAR, or ImageNet learn a rule in the
images that can be encoded in a low-rank matrix such that the
trained weights consist of a random bulk from initialization
and a low-rank contribution.

In addition, we train networks in different learning regimes
from lazy networks for which weights barely change during
training to rich networks where the final weights signif-
icantly differ from the initial ones [68–71]. We find that
networks trained in the lazy regime follow RMT predic-
tions, different from networks trained in the rich and in the
intermediate regime. Thus, the form of the weight spec-
trum and the comparison of singular vector entries to the
Porter-Thomas distribution allows to distinguish between the
learning regimes where the best generalization performance is
found in between both extremes.

Furthermore, we apply the Hill estimator to study the ques-
tion of whether large singular values of weight matrices can
be described by a power-law tail of the distribution [64,67].
In contrast to previous results based on fitting the probability
density function to a power law, both the Hill estimator anal-
ysis and p values for the significance of power-law fits reveal
that the singular value distribution for most of the considered
cases cannot be characterized by a tail exponent, implying that
the tail is generally not described by a power law.

II. MAIN RESULTS

In this section, we illustrate our main results using a feed-
forward DNN with three hidden layers, each containing 512
neurons denoted as MLP512. In the subsequent sections, we
provide more details and show that our results are valid more
generally for a variety of network architectures. The code
needed to reproduce all results is open source and has been
made available online [72].

We train MLP512 networks on the CIFAR-10 dataset [30],
which consists of images x(k) (3072 pixels each) and cor-
responding labels y(k), which categorize the images into 10
different classes. Therefore, in total the network has five layers
with sizes n = [3072, 512, 512, 512, 10].

Except for the input layer, each layer i has an associated
weight matrix Wi, a bias vector bi, and an activation function

fi(x) which we choose to be a rectified linear unit (ReLU)
f (x) = max(x, 0) for the hidden layers and softmax fout (x) =
exp x/

∑
i exp xi for the output layer. The activation of the

input layer a0 is defined as the input image presented to the
network

a(k)
0 = x(k), (1)

and then the network propagates the activations through each
layer such that the activation in layer i is given by

a(k)
i = fi

(
Wia

(k)
i−1 + bi

)
. (2)

Here, the Wi are ni × mi weight matrices, with ni denoting
the width of layer i and mi denoting the width of layer i − 1.
The output of the network is defined as the activation of the
last layer, using the largest entry of a(k)

out as prediction for the
class of the input image x(k).

Before training, weights are initialized using the distribu-
tion Glorot uniform [73] while the biases are set to zero.
Hence, the initial weight matrices are random matrices and
obey RMT predictions (we note that Glorot initialization and
random Gaussian initialization do not differ in the singular
value distribution and other statistical properties). The net-
work’s weights and biases are trained by minimizing the
cross-entropy cost function

l (W , b) = − 1

N

N∑
k=1

y(k) · ln
(
a(k)

out

)
(3)

on the training dataset using gradient descent on mini-batches
of size 32. Further details of the training procedure are de-
scribed in Appendix A.

By analyzing the singular values of weight matrices in
trained DNNs using methods of RMT, in the following we
argue that a large fraction of the weights remains random even
after training, while the learned information is encoded in
relatively few large singular values and corresponding vectors.
We focus on the second fully connected layer of MLP512,
and obtain the singular values ν via the singular value de-
composition W = U diag(ν) VT of the corresponding weight
matrix W. Here, U and V are orthogonal matrices, and diag(ν)
is a diagonal matrix containing the singular values which we
assume to be rank-ordered in the following.

We compare the trained weight matrices to their initial-
ized states obtained by drawing entries of an n × m matrix
independently and identically from a Glorot uniform distri-
bution [73] with variance σ 2. The singular values follow the
Marchenko-Pastur distribution [74–76],

P(ν) =
{

n/m
πσ̃ 2ν

√(
ν2

max − ν2
)(

ν2 − ν2
min

)
ν ∈ [νmin, νmax],

0 else,
(4)

where νmax
min

= σ̃ (1 ± √
m/n) and σ̃ = σ

√
n. We assume with-

out loss of generality that m � n. In the case of the second
hidden layer weights, we have n = m = 512. While the distri-
bution Eq. (4) is a parameter free description of the untrained
network, the trained network deviates from the Marchenko-
Pastur law (see also the discussion in Ref. [64]). In the
absence of a microscopic theory for the spectrum of a trained
weight matrix, we estimate its random part by fitting the

054124-2



RANDOM MATRIX ANALYSIS OF DEEP NEURAL NETWORK … PHYSICAL REVIEW E 106, 054124 (2022)

FIG. 1. Distribution of the singular values ν of the weight ma-
trix of the second hidden layer of the three hidden layer network
MLP512. The spectral distributions are calculated by broadening
with a window size of 15 singular values. The red curve shows the
distribution directly after random Glorot initialization, and the blue
line depicts the result after fully training the network. The dashed,
black lines are fits to the Marchenko-Pastur distribution Eq. (4).
After random initialization, the spectrum agrees well with the RMT
prediction, and even after training the bulk of the singular values
still follows a modified Marchenko-Pastur distribution with similar
parameters.

empirical spectra with a modified Marchenko-Pastur law in
the following way: we set νmin equal to the smallest empir-
ical eigenvalue, and then use νmax and σ 2 as fit parameters.
This method has an additional free parameter as compared to
the strict Marchenko-Pastur distribution, where the additional
parameter can be understood as an estimate of the percent-
age of the spectrum that still follows the Marchenko-Pastur
distribution.

Comparing the singular value spectra of the random
weights at initialization (red line in Fig. 1) with those of the
trained network (blue line in Fig. 1), it becomes apparent
that the bulk of the singular values still follows a modi-
fied Marchenko-Pastur distribution with similar parameters
(dashed, black line in Fig. 1). In addition, there are some larger
singular values, which do not occur in the spectrum of the
random control.

To further see that the majority of singular values of trained
networks are indeed random and do not encode information,
we consider the distribution of nearest-neighbor spacings of
unfolded singular values. Here, unfolding refers to normaliz-
ing the mean density of states of the singular values νi to unity,
yielding the unfolded spectrum ξi [42–46]. In contrast to the
singular value distribution, which is nonuniversal and depends
on the system at hand, the spacing distribution is a universal
property of random matrices. For real random matrices in
the universality class of the Gaussian orthogonal ensemble
(GOE), the level spacings sk = ξk+1 − ξk , i.e., the differences
between neighboring singular values, are distributed accord-
ing to the Wigner surmise [42–47]

PGOE(s) = πs

2
exp

(
−π

4
s2

)
. (5)

FIG. 2. Spacing distributions of unfolded singular values of the
weight matrix of the second hidden layer of MLP512. The main
panel depicts the probability density histogram and the inset shows
the cumulative distribution. In addition, the RMT prediction (Wigner
surmise) Eq. (5) for matrices from the GOE is indicated by a
dashed black line. The prediction is confirmed both visually and
by a Kolmogorov-Smirnov test, which at the 40% confidence level
cannot reject the hypothesis that the Wigner surmise is the correct
distribution.

The nearest-neighbor spacings of the weight matrix singular
values are in excellent agreement with the RMT prediction
Eq. (5) even after training the networks (Fig. 2). This is sup-
ported by a Kolmogorov-Smirnov test of the empirical data
against Eq. (5) that cannot reject the null hypothesis even at a
significance level as high as α = 0.40.

Another prediction of RMT that allows to test the random
nature of weight matrices is the level number variance, which
is sensitive to long range correlations in the spectrum. The
number variance describes fluctuations in the number of un-
folded singular values Nξi (l ) in intervals of length l around
each singular value ξi,

�2(l ) = 〈(Nξ (l ) − l )2〉ξ . (6)

For random matrices from the GOE universality class, the
level number variance depends on the interval width � accord-
ing to �2(l ) ∝ ln(2π l ) in the regime l � 1 [43–46] (dashed,
black line in Fig. 3). This is in very good agreement with
empirical results for the trained example network (Fig. 3). In
particular, there are only small differences between randomly
initialized weights (red lines in Fig. 3) and the fully trained
weight matrices.

In addition, we consider the normalized eigenvectors of the
m × m matrix W†W (the right singular vectors of W), whose
components in the case of a random matrix are described
by the Porter-Thomas distribution [43,45,46], i.e., a Gaussian
distribution with mean of zero and a standard deviation which
is fixed by the normalization of the vector’s length to unity as
1/

√
m. To verify whether the observation that most singular

values of trained networks are random also carries over to the
associated eigenvectors, we test the empirical distribution of
the entries of each eigenvector against such a Gaussian distri-
bution using a Kolmogorov-Smirnov test. If the test returns a
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FIG. 3. Level number variance �2 of singular values of the
weights for the second hidden layer of MLP512, after initialization
(red) and after fully training the network (blue). The dashed black
line is the theory prediction for the GOE. We find that even after
training, the level number variance grows only logarithmically, as
predicted by RMT.

large p value, then the hypothesis of a Gaussian distribution
cannot be rejected, which we interpret as an indication that
the corresponding vector contains only noise. The rejection of
the Gaussian hypothesis for small p values is an indication for
stored information. To reveal a trend in the data, we average
the resulting p values over neighboring singular values with a
window size of 15. Indeed, we find that most eigenvectors are
random, especially those belonging to small singular values
(Fig. 4). For large singular values, we observe a decrease of
the p values, indicating that relevant information is stored
in the corresponding eigenvectors, which is also consistent
with the results [64].

We further analyze the tail region of the singular value
distribution, which was recently described in terms of power-
law fits to the probability distribution function [64,67]. To this
end, we consider the eigenvalues λ = ν2 of the matrix W†W,
and analyze a potential power-law decay of the cumulative
distribution function using the Hill estimator [77] obtained by
averaging the inverse local slopes of the log-log cumulative
distribution. A power-law tail would manifest itself in an
extended flat region of a Hill plot, which is absent in Fig. 5. In
Sec. VII we extend this analysis to a variety of overparameter-
ized DNNs and do not find evidence for a power-law behavior
in most of them, in contrast to the characterization of DNNs in
terms of power-law fits to the distribution function of weight
matrix singular values [64,67]. These findings are consistent
with an analysis of p values for power-law fits.

III. UNIVERSALITY OF LEVEL SPACING DISTRIBUTION

To demonstrate that the results presented in the previous
section are typical of trained DNNs, we consider several
networks with different architectures and sizes here and in
the following sections: (a) a fully connected feedforward
network with layers of size [3072, 1024, 512, 512, 10] de-
noted as MLP1024 and (b) a convolutional network called
miniAlexNet consisting of two convolutional layers followed

FIG. 4. Randomness of eigenvectors as a function of the singular
value position in the spectrum: we quantify the agreement with
the RMT Porter-Thomas distribution by computing the p value of
a Kolmogorov-Smirnov test on the entries of the eigenvectors of
W†W for the second hidden layer of MLP512. On the x axis, we
plot the positions according to the rank ordered singular values,
such that 0 corresponds to the smallest and 1 to the largest singular
value of the weight matrix. The results are averaged over neighboring
singular values with a window size of 15. For large singular values,
the hypothesis of random eigenvectors is rejected, indicating that
information is stored in these singular values and eigenvectors.

by three dense layers, both trained on the CIFAR-10 [30]
dataset. In addition, we analyze the two large networks (c)
AlexNet [78] and (d) VGG19 [31], whose models trained on
the ImageNet [79] dataset are available via pytorch [80]
and tensorflow [81]. More details on the definition of the
networks, training parameters, and performance of the fully
trained networks can be found in Appendix A.

FIG. 5. Estimate of the tail exponent of the singular value spec-
trum of the second hidden layer of MLP512 obtained by averaging
the inverse local slopes obtained via a Hill estimator with window
size a = 20. The absence of a flat plateau region shows that no
power law is present, even though this is not immediately evident
in a double logarithmic plot of the cumulative distribution (inset).
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TABLE I. Kolmogorov-Smirnov (K-S) test results of the distribution of unfolded singular value spacings of the weight matrices against
the Brody distribution with β = 1. Rejection of the null hypothesis is based on the α = 0.05 significance level. The p value indicates how
likely it is to obtain a distribution with at least as much cumulative density function deviation as the one tested for drawing random numbers
from a Brody distribution with β = 1. In addition, we show the results of a fit of a Brody distribution with free parameter β to the cumulative
density function of the computed level spacings. The error was determined by a bootstrap sampling method. We find excellent agreement with
the Wigner surmise for a variety of network architectures.

Reject null hypothesis? K-S test p value Brody β from fit

Network Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3

MLP512 (seed 1, Sec. II) No No No 0.347 0.401 0.812 0.79 ± 0.09 1.01 ± 0.10 1.04 ± 0.12
MLP512 (seed 2) No No No 0.993 0.421 0.844 0.99 ± 0.11 1.01 ± 0.11 0.99 ± 0.11
MLP512 (seed 3) No No No 0.768 0.784 0.863 0.95 ± 0.11 0.93 ± 0.10 0.92 ± 0.09
MLP1024 No No No 0.799 0.812 0.792 0.94 ± 0.07 0.91 ± 0.11 1.03 ± 0.10
miniAlexNet (second conv. layer) No 0.859 0.85 ± 0.14
AlexNet (dense layers)—torch No No No 0.670 0.229 0.160 0.96 ± 0.04 0.95 ± 0.04 0.83 ± 0.07
VGG16 (dense layers)—tensorflow No No No 0.923 0.312 0.309 0.99 ± 0.04 0.92 ± 0.04 0.92 ± 0.07
VGG19 (dense layers)—torch No No No 0.376 0.652 0.557 0.97 ± 0.04 0.95 ± 0.04 0.92 ± 0.07

To compare the various RMT predictions with the proper-
ties of empirical weight matrices, we compute their singular
value decompositions. While this is straightforward for dense
layers, in the case of convolutional layers we first reshape
the four dimensional weight tensors to a rectangular shape
(for details see Appendix B) and then compute their singular
values and vectors. To obtain smooth probability densities for
the singular value spectra, we perform a Gaussian broadening
[44,82] by approximating the probability density as a sum of
Gaussian functions centered around each of the m singular
values νk with widths σk = (νk+a − νk−a)/2, where a is the
window size of the broadening [51,83]

P(ν) ≈ 1

m

m∑
k=1

1√
2πσ 2

k

exp

[
− (ν − νk )2

2σ 2
k

]
. (7)

To compare the RMT prediction Eq. (5) with the level spac-
ing of the networks weights, we have to unfold the singular
value spectrum first. Here, unfolding is a transformation that
maps the singular values νi to uniformly distributed singular
values ξi [42–44,46,51]. For this purpose, we first determine
the probability density P(ν) using Eq. (7) and calculate the
corresponding cumulative distribution

F (ν) = m
∫ ν

−∞
P(x) dx. (8)

The unfolded singular values are defined as ξi = F (νi ). We
then obtain the spacings of the unfolded and sorted singular
values ξi via

sk = ξk+1 − ξk. (9)

We find excellent agreement with the RMT predictions for
all network architectures and layers (Fig. 6). This is also
supported by Kolmogorov-Smirnov tests (see Table I) with
null hypothesis that the distribution is described by the Wigner
surmise Eq. (5). We infer from the tests that for all network
types, for fully connected as well as for convolutional layer,
the null hypothesis cannot be rejected on the α = 0.05 signif-
icance level. The p values of the Kolmogorov-Smirnov tests
(Table I) even show that in many cases a rejection for much
higher α is also not possible.

Furthermore, we consider the more general case of a Brody
distribution [42,43,46]

PBr(s) = B(1 + β )sβ exp(−Bs1+β ), (10)

with B = {�([β + 2]/[β + 1])}1+β . For β = 1 this reduces to
the Wigner surmise Eq. (5). Fits of the Brody distribution
Eq. (10) to the data show very good agreement with β ∼ 1
(see Table I). To obtain β and the error estimate, we use
bootstrap sampling [84–86], fit the Brody distribution to each

FIG. 6. Nearest-neighbor spacing distributions of unfolded sin-
gular values of weight matrices for various neural networks. The
main panels depict the probability density histograms and the insets
show the cumulative distribution functions. In addition, we depict the
Wigner surmise theory prediction Eq. (5) for the GOE with dashed,
black lines. (a) Results for the second hidden layer weight matrix
of MLP1024. In addition, results for (b) the second convolutional
layer in the CNN miniAlexNet, (c) the second fully connected layer
in AlexNet, and (d) for the third dense layer in VGG19. In all cases
there is excellent visual agreement with the RMT predictions. This is
further supported by Kolmogorov-Smirnov tests which cannot reject
the null hypothesis at a significance level of (a) 81%, (b) 85%,
(c) 31%, and (d) 96%.
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sample, and then calculate β as the mean and the error as the
standard deviation of all fit results.

The level spacing results suggest that the majority of
weights is random even after training. This indicates that the
weights, even in the case of the large networks trained on
ImageNet, have rather low information density.

IV. LEVEL NUMBER VARIANCE

The nearest-neighbor spacing distribution investigated
above probes the level statistics locally. To probe long-range
correlations between singular values, we compute the level
number variance Eq. (6), which is considerably more sensi-
tive to details of the singular value distribution [43,44]. To
determine the level number variance numerically from the
unfolded spectrum, for each l we repeatedly draw values
ξ0 ∈ [min(ξi ) + l/2, max(ξi ) − l/2] and count the number n
of ξi in the interval [ξ0 − l/2, ξ0 + l/2]. These values are used
to compute an estimate of the variance according to Eq. (6).
For random matrices from the Gaussian orthogonal ensemble
(GOE) universality class, for large l the level number variance
is given by [43,44,46]

�2
GOE(l ) ≈ 2

π2

[
ln(2π l ) + γ + 1 − π2

8

]
, (11)

where γ is the Euler-Mascheroni constant. It is known for
GOE matrices that this formula is also a good approximation
in the range of smaller l [44], but one needs to keep in
mind that the level number variance computed for empirical
spectra depends on the window size a chosen for broadening
the spectrum. We do not plot the level number variance for
large � 
 a as the unfolding procedure breaks down when the
window size is much larger than the window over which the
distribution is averaged. This limited plot range still allows
to make the important distinction between a linearly grow-
ing level number variance (uncorrelated singular values) and
logarithmic growth (singular values of a matrix with random
bulk).

We find good agreement of Eq. (11) (dashed, black line
in Fig. 7) with the results for trained networks (Fig. 7) using
a window size a = 15. In particular, there are only small
differences between randomly initialized weights (red lines in
Fig. 7) and the fully trained weight matrices.

V. DISTRIBUTION OF ENTRIES
OF THE SINGULAR VECTORS

In addition to the singular values, we also analyze the
singular vectors of the weight matrices of trained DNNs.
For an n × m weight matrix W, we consider the eigenvec-
tors of W†W (right singular vectors) if m � n or WW† (left
singular vectors) otherwise. For a completely random ma-
trix of rank m, RMT predicts that the entries of normalized
eigenvectors follow a Gaussian distribution with zero mean
and standard deviation σ = 1/

√
m. We test for agreement

between the empirical distribution of the m entries of each
singular vector with this RMT prediction with the help of the
Kolmogorov-Smirnov test, and average the resulting p values
over neighboring rank ordered singular values with a window
size of 15. A large p value indicates a random singular vector,

FIG. 7. Level number variance of singular values of the weights
for (a) the second hidden layer of MLP1024, (b) the second convolu-
tional layer in the CNN miniAlexNet, (c) the second fully connected
layer in AlexNet, and (d) for the third dense layer in VGG19. Red
curves show the results for initialized weights and blue lines depict
level number variances for fully trained networks. The dashed, black
lines depict the theory prediction Eq. (11) for the GOE. In all cases,
the level number variance grows logarithmically even after training.
Particularly for large networks in panels (c) and (d), where the
statistics are most reliable, deviations from the RMT prediction are
small.

as observed for small and intermediate singular values for
the MLP1024 network and the large pretrained networks in
the left panels of Figs. 8(a) and 8(b), respectively. For large
singular values, the p values decrease, suggesting that the
Gaussian hypothesis is rejected, and that information is stored
in these vectors. For the convolutional layer of the CNN in
Fig. 8(c), we note that eigenvectors corresponding to both
small and large singular values show significant deviations
from random behavior. However, the resulting matrix WW†

only has rank 300 which makes the analysis less reliable due
to statistical uncertainty.

As a second measure for the randomness of singular vec-
tors, we study their degree of localization as measured by the
inverse participation ratio (IPR) [43,45,46]:

IPR(v) =
m∑

i=1

|vi|4. (12)

To get some intuition for the IPR, we consider two exam-
ples: (i) for a normalized uniform m-dimensional vector with
equal entries 1/

√
m, the IPR is given by 1/m, the inverse

of the number of relevant components. In the case (ii) of
a vector with only one nonzero entry, the IPR is equal to
unity, again the inverse of the number of relevant components.
Since eigenvectors of GOE matrices have many relevant com-
ponents, the IPR random vectors is on the order of 1/m,
while a larger value indicates deviations from RMT and the
presence of learned information. This analysis is in very good
agreement with that of the p values (see right panels in Fig. 8)
for large singular values.
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FIG. 8. Analysis of the eigenvectors of W†W. The left panels
depict the p values of Kolmogorov-Smirnov tests of the eigenvector
entries versus a Gaussian distribution. The right panels show the
inverse participation ratios of eigenvectors computed according to
Eq. (12). All results are averaged over neighboring eigenvectors with
a window size of 15. The x direction describes the position of rank
ordered singular values, such that 0 corresponds to the smallest and 1
to the largest singular value of each weight matrix. We show results
for (a) the second hidden layer of MLP1024, (b) the first dense layer
of the large pretrained DNNs AlexNet (blue) and VGG19 (green),
and (c) the second convolutional layer (blue) and first dense layer
(orange) of the CNN miniAlexNet. The results for the p values are
consistent with those for the inverse participation ratio, indicating
that relevant information is stored in eigenvectors corresponding to
large singular values.

VI. RMT ANALYSIS OF DIFFERENT
LEARNING REGIMES

It was shown [34,87–91] that neural networks can achieve
good generalization accuracies even when their weights
change only by very small amounts during training. The
opposite to this lazy learning is denoted as rich learning,
where the final weights W after training deviate significantly
from the initial ones W 0. Based on this, a criterion for
estimating the learning regime was proposed by Chizat et al.
[69]: For a neural network fW that maps an input x to an
output, and an accuracy function A( fW , {x}, {y}), where {x}
is a dataset with labels {y}, one computes the network’s lin-
earization around the initial weights W 0:

f̃W (x) = fW 0 (x) + (W − W 0) · ∇W fW |W 0 (x). (13)

FIG. 9. Comparison of training and test accuracies for full
MLP512 networks (blue crosses) and linearized networks (green cir-
cles) around the initial weights of the second layer as a function of the
laziness hyperparameter α. The black symbols indicate accuracies
for α = 1, similar to the training presented in Sec. II. For small
α < 1 accuracies of linearized and full networks deviate significantly
which indicates rich learning, while for large α > 1 performance
differences are small indicating lazy learning.

In the lazy learning regime, where W ≈ W 0, linearization
is a good approximation such that the accuracies are barely
different, i.e.,

A( fW , {x}, {y}) ≈ A( f̃W , {x}, {y}). (14)

On the contrary, in the rich learning regime, one expects
significant deviations such that

A( fW , {x}, {y}) 
 A( f̃W , {x}, {y}). (15)

This criterion has the advantage that it can also be stud-
ied on a layer-wise basis by linearizing around a single
weight matrix only, and as accuracies are in the range [0,1],
it gives a scale for laziness comparable between different
network architectures. A disadvantage is that it requires to
compute the linearization which can be resource-intensive
for large networks. For obtaining f̃W , we use the autodiff
implementation in the jax python package together with the
neural_tangents package [92].

We train several MLP512 networks, where laziness is con-
trolled by introducing a hyperparameter α that modifies the
output activations via [69]

aL = softmax[α(WLaL−1 + bL )] (16)

and the cost function as

l (W , b) = − 1

Nα2

N∑
k=1

y(k) · ln
(
a(k)

out

)
. (17)

Here, a large α > 1 scales down the gradient updates and
therefore encourages lazy learning, while small α < 1 steers
training toward the rich learning regime [69]. In the following,
we focus on the second hidden layer of MLP512 networks
considered in Sec. II (see Appendix C for other layers).
Figure 9 depicts training accuracy (left panel) and test accu-
racy (right panel) as a function of the laziness parameter α. As
expected, the networks are in the rich regime for α < 1, where
the full networks (blue crosses) perform significantly better
than the linearized networks (green circles), while we observe
lazy learning for α > 1. The network with α = 1 (black sym-
bols), lies about in the middle between the two regimes, where
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FIG. 10. Random matrix theory analysis of second layer weights of MLP512 networks trained in different learning regimes: rich learning
(α = 0.5, top panel), typical learning (α = 1, middle panel), and lazy learning (α = 5, bottom panel). We show (a) the spectra for trained
(blue) and randomly initialized networks (red) together with fits of modified Marchenko-Pastur laws (dashed, black), (b) unfolded level spacing
distributions (main panel, blue, window size 15) and corresponding cumulative distributions (insets) together with the Wigner surmise (dashed,
black), (c) unfolded level number variance (trained: blue, initialized: red), and (d) p values for a comparison of singular vector entries to a
Porter-Thomas distribution. While trained networks in all cases follow universal RMT predictions (b and c), indicating a random bulk, lazy
networks can be distinguished from typical and rich networks by the spectral distributions in panel (a) and p values in panel (d).

we also find the best test accuracy. We therefore denote α = 1
as typical learning.

A comparison between the RMT analysis in the three
regimes, rich α = 0.5 (top panel), typical α = 1 (middle
panel), and lazy α = 5 (bottom panel) in Fig. 10 reveals:

(1) For all networks, the bulks of the spectra are random
such that the universal properties, i.e., level spacings [panel
(b)] and level number variance [panel (c)] agree with RMT
predictions. By comparing the level number variance curves
for networks trained with various α (not shown), we confirm
that the level number variances in panel (c) display typical
deviations from the RMT prediction such that there is no trend
of slower grow for networks with larger α.

(2) The rich network has more large singular val-
ues compared to the typical one, while the lazy net-
work has almost an unchanged Marchenko-Pastur spec-
trum [panel (a)]. It is therefore surprising that it still
achieves a respectable test accuracy of 50.4%, compared
to 52.7% for the rich network and 55.2% for the typical
network.

(3) The p values for Kolmogorov-Smirnov tests of the
eigenvector entries against a Porter-Thomas distribution
[panel (d)] are small only for large singular values in the
typical case. In the rich case, we observe small p values also
for singular vectors corresponding to the smallest singular
values, and for the lazy network all p values fluctuate only
slightly around 0.5 as expected for random weights.

These findings indicate that networks trained in the lazy
regime do not deviate from RMT predictions after training,
in striking contrast to rich and typical networks. Thus, an
analysis of singular value spectra and singular vector entry
distributions can be used to estimate the learning regime of
a network on the level of the individual weights, without the

need for a potentially resource intensive linearization of the
networks.

The almost perfect agreement with RMT predictions in the
lazy regime raises the question whether the information that
allows the network to still generalize quite well is encoded
in parts of the spectrum that follow bulk statistics. If this
was the case, then it would seem impossible to locate this
information by means of an RMT analysis. However, we
argue in the following that this is in fact not the case for the
networks considered here. However, the RMT analysis in the
lazy regime faces two major obstacles that make it difficult to
detect the information hidden by the dominant random bulk:
(i) an individual layer in the lazy network might carry very
little information, as it is for example the case for the second
hidden layer of the lazy MLP512 network shown in Fig. 10,
where by replacing the final weight with the initial one for
this layer, the generalization accuracy of the network only
drops from 50.4% to 42.3%. It is therefore not surprising that
no extended region in the spectrum containing information is
found by the RMT analysis. (ii) In the lazy case, the difference
δW = W − W0 between initial weight W0 and the final weight
after training W is small, i.e. ||δW ||/||W0|| � 1. In this case,
the sensitivity of RMT is not sufficient to detect signatures
of δW in W : For instance, the crossover from the Gaussian
unitary ensemble to Poisson statistics has been studied in
Ref. [93], and it turns out that δW would need to be much
larger than in our case to have a noticeable effect compared to
the bulk statistics from W0.

As a solution, we suggest analyzing the statistical prop-
erties of the difference matrix δW instead of the full weight
matrix. Such an analysis indeed indicates that δW consists of a
random bulk and a low-rank contribution that encodes relevant
information (see Appendix C).
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VII. HILL ESTIMATOR FOR TAIL SPECTRA

In previous work [64,67], it has been argued that the spec-
tral density of the singular values of DNN weight matrices
can be fitted by a power law. To study the distribution of
large singular values further, we employ the Hill estimator
for power-law tail exponents [77], which has been widely
used in the applied finance, economics, and statistics literature
[95–101]. In addition, we also study p values of power-law fits
and find agreement with the results based on Hill estimators.

For this purpose, we first rank order the eigenvalues λi =
ν2

i of the weight matrices and compute the corresponding
cumulative distribution function as

F (λi ) = i

N
, (18)

where a small index corresponds to a small eigenvalue. The
Hill estimator h is then obtained from the local inverse slopes

ζi = − ln[λi+1/λi]

ln[F (λi+1)/F (λi )]
(19)

by averaging over a surrounding eigenvalues

λ̃i = 1

a

a/2∑
j=−a/2

λi+ j, (20)

h(λ̃i) =
(

1

a

a/2∑
j=−a/2

ζi+ j

)−1

. (21)

The Hill estimator is sensitive to changes in the slopes of the
log-log cumulative distribution. In the presence of a power-
law tail, the value of the Hill estimator depends only weakly
on the eigenvalue range over which it is determined, and the
extrapolation 1/λ2 → 0 yields the tail exponent of the distri-
bution. According to this criterion, we do not find evidence
of power-law tails for (i) MLP1024, (ii) miniAlexNet, or (iii)
AlexNet [Figs. 11(a)–11(c)]. Only in the case of VGG19
[Fig. 11(d)] there is a region of intermediate singular values
in the Hill plot with a power-law exponent of approximately
one, but in the asymptotic regime of large singular values the
exponent drops to approximately two, invalidating the concept
that a single power law characterizes the distribution.

To substantiate these findings, we additionally fit power
laws p(x) ∝ x−α to the spectra, compute their respective p
values using the algorithm by Clauset et al. [94], and com-
pare the hypothesis of a power law to a truncated power
law p(x) ∝ x−αe−λx with log-likelihood ratio tests (see also
Appendix D). The fitting procedure and the comparison of the
power-law hypothesis to other distributions is implemented
in the powerlaw package while the p values are computed
by numerical approximation of the test statistic with 2500
synthetic power-law fits followed by a Kolmogorov-Smirnov
test as described in Ref. [94]. Of the four spectra analyzed, the
Hill plot does not look consistent with a straight line in cases
(a), (c), and (d), while case (b) fluctuates around a straight
line. Indeed, for AlexNet (panel c) and MLP512 (panel a) the
p values reject the power-law hypothesis. For the third dense
layer in VGG19 (panel d), a power law cannot be rejected
based on p = 0.059, slightly larger than the threshold. From
the likelihood ratio test however, we find better agreement for
a truncated power law (in agreement with Ref. [64])

FIG. 11. Analysis of the cumulative distribution of DNN singular
values in the tail region. Hill estimators of the weight matrix spectra
for (a) the second layer weight matrix of MLP1024, (b) the second
convolutional layer of the CNN miniAlexNet, (c) the second fully
connected layer of AlexNet, and (d) the third fully connected layer
of VGG19. The Hill estimators are obtained using Eq. (20) and
Eq. (21) with a window size a = 20. The insets depict the corre-
sponding log-log cumulative distributions (blue). In addition, we
show results of a power-law fit p(x) ∝ x−α (solid gray or red) and
a truncated power-law fit p(x) ∝ x−αe−λx (dashed gray or green) to
the tails, where a power-law tail corresponds to a flat Hill estimator
at −(α − 1) starting from νmin. We show rejected fits in gray and
accepted fits colored, based on p values [94] for the power laws
and log-likelihood ratio tests versus truncated power laws (see also
Table III in the Appendix).

In summary, three of the four examples analyzed here
are not described by power-law tails. In Appendix D
Table III we present results for additional networks, and in
only two of eight cases a power law cannot be rejected. Hence,
we conclude that there is no evidence that the singular val-
ues of DNN weight matrices are generically described by a
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TABLE II. Neural network architectures and performance of trained networks. We use d to indicate a dense layer, c for a convolutional
layer, p for max pooling, f for flattening, and r for response normalization layer (with a depth radius of 5, a bias of 1, α = 1, and β = 0.5).

Network Dataset Training acc Test acc

(i) MLP512, seed 1 (Sec. II) {d 3072, d 512, d 512, d 512, d 10} [34] CIFAR-10 100% 54.7%
MLP512, seed 2 {d 3072, d 512, d 512, d 512, d 10} CIFAR-10 100% 55.1%
MLP512, seed 3 {d 3072, d 512, d 512, d 512, d 10} CIFAR-10 100% 55.2%

(ii) MLP1024 {d 3072, d 1024, d 512, d 512, d 10} CIFAR-10 100% 55.4%
(iii) miniAlexNet {c 300 5×5, p 3×3, r, c 150 5×5, p 3×3, r, f, d 384, d 192, d 10} [34] CIFAR-10 100% 78.5%
(iv) AlexNet [78]—torch ImageNet 56.5%
(v) VGG16 [31]—tensorflow ImageNet 67.6%
(vi) VGG19 [31]—torch ImageNet 72.4%

power-law tail distributions, and argue that the exponent re-
sulting from a power-law fit to the singular value probability
density function can only be viewed as a heuristic tool to
characterize different spectra but not a genuine property of
the tail of the distribution of singular values. In addition,
given the absence of power-law tails in most of the sin-
gular value distributions studied here, it is unclear whether
weight matrices of fully trained DNNs indeed belong to
an ensemble of heavy tailed random matrices as suggested
in Ref. [67].

VIII. CONCLUSIONS

The complexity of overparameterized DNNs makes it dif-
ficult to understand their learning and generalization behavior.
In light of this, we have applied RMT as a zero informa-
tion hypothesis to separate randomness from information. In
particular, since at initialization weights are chosen randomly
from a probability distribution, the corresponding weight ma-
trices agree perfectly with predictions of RMT before training.
Specifically, the singular value spectra of initialized networks
are governed by a Marchenko-Pastur distribution, the level
spacing distribution follows the Wigner surmise, and the level
number variance only grows logarithmically. By comparing
these characteristics between randomly initialized and trained
networks, one can understand which parts of the weight ma-
trix singular value spectrum stores information. This approach
works well for image classification problems where we find
that the underlying rule in the dataset is stored as a low-rank
contribution in the trained weights. It remains an open ques-
tion to what extent this can be applied to networks trained for
other types of problems.

We find that even in fully trained DNNs large parts of
the eigenvalue spectrum remain random. In particular, we
demonstrate that the agreement between the level spacing
distribution of the bulk of singular values for fully trained
networks and the parameter free Wigner surmise is excellent,
and that the even more sensitive level number variance con-
tinues to agree with the RMT prediction as well. In agreement
with the spectra, an analysis of the singular vectors reveals
that they are also predominantly random, except for the ones
corresponding to the largest singular values. This shows that
the majority of the weight matrix does not contain relevant
information, and that learned information may be concen-
trated in the largest singular values and associated vectors
only. Interestingly, we find the strongest deviations from RMT

predictions for networks trained in the so-called rich regime,
while for networks trained in the lazy regime the whole
spectrum and all eigenvectors follow RMT results. Since the
best generalization performance for learning is observed in
between lazy and rich regime, the ability to efficiently deter-
mining the learning regime on a layer-wise basis using the
singular value spectra and singular vectors could allow for
algorithms that dynamically steer the training toward the de-
sired regime. An analysis of the tails of the eigenvalue spectra
using the Hill estimator shows that the distributions are heavy
tailed but there is no evidence for a single power law in the
tail region of the distribution in general.

ACKNOWLEDGMENTS

This work has been funded by the Deutsche Forschungs-
gemeinschaft (DFG) under Grants No. RO 2247/11-1 and No.
406116891 within the Research Training Group RTG 2522/1.

APPENDIX A: DETAILS ON NEURAL NETWORKS

In this article, we consider a variety of different networks
to show that our results are valid for a wide range of architec-
tures. Table II lists the network architectures, training datasets,
and accuracies achieved on each dataset. We downloaded
the large pretrained networks (iv) AlexNet [78] via pytorch
[80], (v) VGG16 [31] via tensorflow [81], and (vi) VGG19
[31] via pytorch [80]. Networks (i–iii) are trained using
mini-batch stochastic gradient decent for 100 epochs. The
weights are initialized using the Glorot uniform distribution
[73] and the biases are initialized with zeros. We standardize
each image of the CIFAR-10 dataset by subtracting the mean
and dividing by the standard deviation. We set the learning
rate to 0.001 at the beginning and use an exponential learning
rate schedule with decay constant 0.95. For all networks, we
choose 0.95 as momentum and the mini-batch size is 32.
Network architectures (i–ii) in Table II are trained without L2

regularization, while we use an L2 regularization strength of
10−4 for training miniAlexNet networks (iii).

APPENDIX B: RESHAPING OF CONVOLUTIONAL
LAYER WEIGHTS

In the case of convolutional layers we have to reshape
the filters before computing the singular value decomposition
[102]. We unfold the four dimensional weights in such a way
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FIG. 12. Level spacing distribution of a diagonal i.i.d. Gaus-
sian random matrix (blue) and for comparison for a tensor
10×10×600×600 where the 100 constituent matrices are diagonal
with i.i.d. Gaussian random entries (green). To compute the singular
value decomposition of the tensor, it is reshaped to size 60000×600
as described in Eq. (B1). We find that reshaping conserves the Pois-
son statistics that is very different from the Wigner surmise (black).

that the number of rows corresponds to the largest dimension
of the weights. Each row is then filled with the remaining three
dimensions that are listed with the smallest dimensions last
to keep points that are close in the 3D tensor also close in
1D. In formal terms, this means that for a convolutional layer
W of the form (K, L, M, N ), where without loss of generality
K � L � M � N , the reshaped matrix W̃ with dimensions
(K, L · M · N ) is related to the original matrix in the following
way:

W̃k,(l·M·N+m·N+n) = Wk,l,m,n. (B1)

All indices start at zero. While this procedure is to some
degree arbitrary we convinced ourselves that similar methods
give the same qualitative results. We further checked that this
reshaping preserves the structure of the original filters: we
construct a 4D tensor of shape 10×10×600×600 by drawing
100 times a diagonal, i.i.d., Gaussian 600×600 matrix, for
which the level spacing distribution is a Poisson distribution.
After reshaping, we find that the resulting level spacing distri-
bution of the 2D matrix remains Poisson distributed (Fig. 12).
This is the theoretically expected distribution of a diagonal
matrix [42].

FIG. 13. Comparison of training and test accuracies for full
MLP512 networks and linearized networks around the initial weights
of several layers (first layer: brown, second layer: blue, third layer:
green, output layer: orange) as a function of the laziness hyperparam-
eter α. Crosses show the ratio between linearized and full network
accuracy and lines are a guide to the eye. The black crosses indicate
accuracy ratios for α = 1, similar to the training presented in Sec. II.

FIG. 14. Random matrix theory analysis for the difference
δW (l ) = W (l ) − W (l )

0 between the trained weights W (l ) and the initial
weights W (l )

0 for the lazy MLP512 network trained with α = 5. We
show results for the first hidden layer (brown), second hidden layer
(blue), and third hidden layer (green). (a) Singular value spectra
obtained via Gaussian broadening. (b) Level spacing statistics of the
unfolded singular value spectra. (c) Level number variance of the
unfolded spectra. (d) Averaged p values for a comparison between
singular vector entries and the Porter-Thomas distribution with win-
dow size a = 15. The spectrum of δW (l ) agrees well with the Wigner
surmise and a logarithmically growing level number variance. How-
ever, the p values in panel (d) indicate that again large parts of
the spectrum of δW (l ) are random and that information is stored in
the largest singular values and corresponding vectors of δW (l ). In
addition, the singular value spectrum is not of Marchenko-Pastur
type.

APPENDIX C: LEARNING REGIMES
OF OTHER MLP512 LAYERS

We additionally compare test and training accuracies sim-
ilar to main text Fig. 9 for the other layers of the MLP512
networks trained with various laziness parameters α. In
Fig. 13, we show the ratio of the training accuracy between
linearized and full networks, where a large ratio ≈1 indicates
lazy learning and small values indicate rich learning. We find
that for the second layer, α interpolates nicely between lazy
and rich regime, the first layer tends toward rich learning, and
the weights for the third layer are closer to lazy learning. The
weight of the output layer, which has only rank ten, is always
lazy. We note that this imbalance between the layers could be
lifted by using different learning rates per layer.

In the lazy learning regime the trained weights W (l ) re-
main close to the initial random matrices W (l )

0 such that the
random bulk dominates any RMT analysis of W (l ) and there-
fore masks small local deviations from the bulk statistics. We
thus consider the deviations from the initial weights δW (l ) =
W (l ) − W (l )

0 , which again have random bulk statistics. Their
unfolded spectra follow the Wigner surmise [Fig. 14(a)], and
one finds a logarithmic increase of the level number variance
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(panel c). In contrast to the full weight matrix, the difference
matrix has a qualitatively different distribution function of
the singular values (panel a) and the p values (panel d) are
consistent with information being stored in parts of the spec-
trum corresponding to large singular values similar to what
we found in the main text for networks in the typical learning
regime.

APPENDIX D: DETAILS ON THE TAIL DISTRIBUTIONS
OF WEIGHT SPECTRA

In addition to the results of Fig. 11, we fit power laws
to the tails of the other dense layers of the pytorch model
of AlexNet and VGG19, also considered in Ref. [64]. We
also provide the p values for the power-law fits [94] and the
results of log-likelihood ratio tests between truncated power
law pTPL(x) ∝ x−αe−λx and power law pPL(x) ∝ x−α . The
log-likelihood ratio for n data points in the tail xi is defined
as [94]

R = 1√
2nσ

ln
n∏

i=1

pTPL(xi )

pPL(xi )
, (D1)

where σ is the empirical standard deviation of the difference
ln pTPL(xi ) − ln pPL(xi ). A positive sign of R thus indicates
that a truncated power law is a better fit, and a negative sign
indicates a better fit for a power law. The p2 value is then
defined as the probability to obtain a ratio with magnitude
of at least |R| from a distribution p(R) centered at zero with
standard deviation σ , i.e., the probability that the sign is only

TABLE III. Power-law fit results and log-likelihood ratio tests
between truncated power law and power law for the dense layers
of AlexNet, VGG19, and the weights considered in Fig. 11. Here,
d denotes a dense layer and c a convolutional layer. We reject the
power law if p < 0.05 or in the case where the two-distribution test
favors a truncated power law (positive R, p2 < 0.05) [94].

PL fit 2-distr. 2-distr. PL fit PL fit Reject
Network Layer p R p2 α xmin PL

MLP1024 d2 0.0019 2.50 0.000 2.51 3.389 Yes
mAlexNet c2 0.9628 1.02 0.363 2.14 0.852 No
AlexNet d1 0.0004 1.55 0.359 2.29 0.418 Yes

d2 0.0004 1.25 0.211 2.25 0.480 Yes
d3 0.9990 −0.003 0.999 3.02 2.046 No

VGG19 d1 0.0011 2.01 0.142 2.27 0.275 Yes
d2 0.0007 1.98 0.055 2.19 0.291 Yes
d3 0.0590 2.26 0.001 2.07 0.690 Yes

due to fluctuations. Therefore, small p2 < 0.05 indicate a
reliable sign of R, while large p2 indicate an unreliable sign
from fluctuations and hence an inconclusive test. For the dense
layers of the large pretrained networks (see Table III), we only
accept a power law in a single case, the third dense layer of
AlexNet. For the third dense layer of VGG19, a power law is
not rejected, however, a truncated power law yields a better fit.
For the other layers, already the power law is rejected based
on p < 0.05.
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