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Kinetic theory of one-dimensional inhomogeneous long-range interacting N-body systems
at order 1/N2 without collective effects
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Long-range interacting systems irreversibly relax as a result of their finite number of particles, N . At order
1/N , this process is described by the inhomogeneous Balescu-Lenard equation. Yet, this equation exactly
vanishes in one-dimensional inhomogeneous systems with a monotonic frequency profile and sustaining only 1:1
resonances. In the limit where collective effects can be neglected, we derive a closed and explicit 1/N2 collision
operator for such systems. We detail its properties, highlighting in particular how it satisfies an H theorem for
Boltzmann entropy. We also compare its predictions with direct N-body simulations. Finally, we exhibit a generic
class of long-range interaction potentials for which this 1/N2 collision operator exactly vanishes.
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I. INTRODUCTION

Because they are composed of a finite number of particles,
long-range interacting N-body systems unavoidably relax to-
wards their thermodynamical equilibrium [1–4], should it
exist [5,6]. Such a dynamics is sourced by Poisson shot
noise: for a fixed total mass, the larger the number of par-
ticles, N , the slower the diffusion. Kinetic theory aims at
describing this long-term relaxation. Here, we are interested
in inhomogeneous systems, i.e., systems with a nontrivial
mean-field orbital structure [2]. When limited to 1/N ef-
fects, i.e., two-body correlations, the system’s evolution is
generically described by the inhomogeneous Balescu-Lenard
(BL) equation [7,8]. When collective effects are neglected,
i.e., when one neglects the system’s ability to amplify its
own self-generated fluctuations [9], this intricate kinetic equa-
tion becomes the inhomogeneous Landau equation [10]. Since
both equations are valid at order 1/N , they describe evolutions
on timescales of order NTd, with Td being the dynamical time.

For one-dimensional (1D) inhomogeneous systems with
a monotonic frequency profile and sustaining only 1:1 reso-
nances, the BL equation collision term vanishes exactly (see,
e.g., Refs. [11–19]). This is a kinetic blocking and we refer to
Ref. [20] for a detailed review of the literature on that regard.
Kinetically blocked systems can only evolve under the effect
of three-body correlations. Their relaxation occurs therefore
on a timescale of order N2Td, or even larger. In this paper,
we derive an appropriate kinetic equation for this (very) slow
process.

Steps in that direction were successively performed as
follows: (i) in Ref. [21] a first attempt was made at
deriving a 1/N2 equation for the one-dimensional (homo-
geneous) Hamiltonian mean field model (HMF) model [22]
starting from the Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) hierarchy and neglecting collective effects; (ii) this
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was further clarified in Ref. [23], which emphasized the main
properties of this collision operator and compared it with
numerical simulations; and (iii) finally, these results were
generalized in Ref. [20] to homogeneous systems with an
arbitrary interaction potential.

The kinetic equation derived in Ref. [20] was restricted to
homogeneous 1D systems. Here, we go beyond this limitation
and focus on inhomogeneous systems, while still neglecting
collective effects. In the limit where collective amplification
can be neglected, we present a closed, explicit, and well-posed
kinetic equation that describes these systems’ relaxation on
N2Td timescales. In addition to reviewing the key properties
of this collision operator, we also quantitatively compare its
predictions with direct N-body simulations. Remarkably, we
present a class of interaction potentials for which this 1/N2

collision term exactly vanishes whatever the system’s distri-
bution function: we call this a second-order kinetic blocking.

The paper is organized as follows. In Sec. II, we spell out
the inhomogeneous 1/N2 kinetic equation, as given by Eq. (4).
In Sec. III, we present the main properties of this equation,
while in Sec. IV, we investigate its steady states. In Sec. V, we
quantitatively compare the prediction of this theory with di-
rect numerical simulations of particles interacting on the unit
sphere. Finally, we conclude in Sec. VI. In all these sections,
technical details are deferred either to the Appendices or to
appropriate references.

II. KINETIC EQUATION

We consider a population of N particles of individual
mass μ = Mtot/N , with Mtot being the system’s total mass.
The 1D canonical (specific) phase coordinates are denoted
by w = (θ, J ), with θ being the 2π -periodic angle and J the
action [2]. The system’s total specific Hamiltonian reads

H =
N∑

i=1

Uext (wi ) +
N∑

i< j

μU (wi, w j ), (1)
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with Uext (w) being a given external potential and U (w, w′)
the pairwise interaction potential between the particles. We
assume that the pairwise interaction satisfies the symme-
tries U (w, w′) = U (|θ − θ ′|, {J, J ′}). When Fourier expanded
with respect to the angles, it becomes

U (w, w′) =
+∞∑

k=−∞
Uk (J, J ′)eik(θ−θ ′ ), (2)

where the coefficients Uk (J, J ′) ∈ R satisfy the symmetries (i)
U−k (J, J ′) = Uk (J, J ′) and (ii) Uk (J ′, J ) = Uk (J, J ′).

We describe the system with its distribution function
(DF), F = F (w), normalized to

∫
dwF = Mtot. The

system is in a quasistationary equilibrium, so that both
the mean DF, F = F (J ), and the mean Hamiltonian,
H0(w) = Uext (w) +∫

dw′ U (w, w′)F (w′) = H0(J ), depend
only on the action. The present system is said to be
inhomogeneous because (i) the coupling coefficients
Uk (J, J ′) depend on the particles’ actions and (ii) to every
action is associated an orbital frequency, �(J ) = dH0/dJ .
Characterizing relaxation amounts to characterizing
∂F (J, t )/∂t .

In the limit where only 1/N effects are accounted for,1 the
dynamics of F (J, t ) is described by the inhomogeneous BL
equation [7,8]. It reads

∂F (J )

∂t
= 2π2μ

∂

∂J

[ ∫
dJ1

∣∣ψd
tot (J, J1)

∣∣2
δD

(
�[J] − �[J1]

)
×

(
∂

∂J
− ∂

∂J1

)
F (J ) F (J1)

]
, (3)

where we dropped the time dependence of the DFs for
clarity. Here, the total coupling coefficients follow from
|ψd

tot (J, J1)|2 = ∑
k |k||ψd

kk (J, J1, k�[J])|2; the detailed ex-
pression of the dressed coupling coefficients ψd

kk′ (J, J1, ω)
can be found in Appendix G of Ref. [24]. Importantly, we
emphasize that the symmetry of Eq. (2) imposes ψd

kk′ ∝ δkk′ ;
i.e., only 1:1 resonances are permitted.

For a system with a monotonic frequency profile,2

J �→ �(J ), the diffusion flux from Eq. (3) exactly vanishes.
Indeed, the resonance condition δD(�[J] − �[J1]) imposes
that only local two-body resonances of the form J1 = J are
permitted. This leads to ∂F/∂t = 0 in Eq. (3). As a con-
sequence, one-dimensional inhomogeneous systems with a
monotonic frequency profile and sustaining only 1:1 reso-
nances generically have a vanishing BL flux. This is a kinetic
blocking (see, e.g., Refs. [12,14,16,17]); i.e., these systems
cannot relax via two-body correlations of order 1/N . Relax-
ation is then significantly delayed as it can only occur through
the weaker 1/N2 three-body correlations. This is our focus
here.

1We must also assume that the mean DF is linearly stable, i.e., the
linearized Vlasov equation, ∂δF/∂t + [δF, H0] + [F, δH (δF )] = 0
(see Appendix A), supports no unstable modes (see, e.g., Chap. 5.3
in Ref. [2]).

2For example, this is the case in 1D homogeneous systems where,
up to prefactors, one has (J,�[J]) → (v, v), with v being the veloc-
ity.

In order to derive an appropriate 1/N2 kinetic equation for
the present system, we generalize the result from Ref. [20],
which focused on homogeneous systems with an arbitrary in-
teraction potential. Yet, accounting for inhomogeneity makes
it so that calculations become rapidly difficult to handle given
the large number of terms appearing. All these aspects are
dealt with within a MATHEMATICA code that is distributed in
the Supplemental Material [25].

Building upon Ref. [20], the key steps of the derivation are
highlighted in Appendix A. In short, we proceed by (i) writing
the usual BBGKY coupled evolution equations for the one-,
two- and three-body DFs [26]; (ii) rewriting these equations
as evolution equations for the one-body DF, F (J, t ), and the
two- and three-body correlation functions using the cluster
expansion [27]; (iii) truncating these equations at order 1/N2

and splitting the two-body correlation function in its 1/N and
1/N2 components [21]; (iv) neglecting collective effects by as-
suming that the system is dynamically hot enough so as to not
strongly amplify its own self-generated perturbations;3 and (v)
solving explicitly a sequence of four differential equations.
Once these steps have been implemented, it remains to per-
form a large number of integration by parts, symmetrizations,
and relabelings to reach a simple expression for the final 1/N2

collision operator. This is, by far, the most challenging part of
the calculation where the use of a computer algebra system
appears mandatory. All the details are given in Ref. [25].

Ultimately, the kinetic equation reads

∂F (J )

∂t
= 2π3μ2 ∂

∂J

[ ∑
k1,k2

1

k2
1 (k1 + k2)

P
∫

dJ1

(�[J] − �[J1])4

×
∫

dJ2 Uk1k2 (J) δD[k·�]

(
k· ∂

∂J

)
F3(J)

]
, (4)

where the sum over k1 and k2 is restricted to the integers such
that k1, k2, and (k1 + k2) are all nonzero, and P stands for
Cauchy principal value. In that expression, we also shortened
the notations by introducing the vectors J = (J, J1, J2),
� = (�[J],�[J1],�[J2]), k = (k1 + k2,−k1,−k2), and
F3(J) = F (J )F (J1)F (J2). Equation (4) finally involves the
(positive) coupling coefficients Uk1k2 (J), whose detailed
expression is given in Appendix B. We note that Eq. (4)
is sourced by three-body correlations, i.e., it involves the
DF three times. Therein, relaxation occurs only when the
three-body resonance condition δD[k · �] is satisfied. Finally,
Eq. (4) also differs from Eq. (3) because it does not involve
collective effects.

In the limit of a homogeneous system, one may replace (i)
the action J by the velocity v, (ii) the orbital frequency �(J )
by v, and (iii) the action-dependent coefficients Uk (J, J ′) by
the velocity-independent ones, Uk . Following such replace-
ments, one exactly recovers the homogeneous 1/N2 kinetic
equation already derived in Ref. [20].

Equation (4) is the main result of this work. It de-
scribes the (very) long-term relaxation of dynamically hot
one-dimensional inhomogeneous systems, as driven by 1/N2

3It is the same assumption that allows one to derive the (simpler)
Landau equation from the BL one, at order 1/N [10].
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effects. Equation (4) is rather general since it applies to any
arbitrary long-range interaction potential that follows Eq. (2).
In the coming section, we explore some of the main properties
of this kinetic equation.

III. PROPERTIES

A. Conservation laws

Equation (4) satisfies a couple of important conservation
laws. Up to prefactors, those are

M(t ) =
∫

dJ F (J, t ) (total mass);

P(t ) =
∫

dJ J F (J, t ) (total momentum);

E (t ) =
∫

dJ H0(J ) F (J, t ) (total energy). (5)

We refer to Appendix C 1 for the proof of these conservations.

B. Dimensionless rescaling

It is enlightening to estimate the typical relaxation time
predicted by Eq. (4) using a dimensionless rewriting. We
denote the system’s typical frequency with �0 and set the dy-
namical time to Td = 1/�0. We define the typical DF’s action
dispersion J0 = [〈(J − 〈J〉)2〉]1/2 with 〈X 〉 =∫

dwXF/Mtot ,
and we introduce the dimensionless DF F = J0F/Mtot . Fi-
nally, we assume that the interaction potential satisfies
U ∝ G. Injecting these various elements into Eq. (4), we find
∂F/∂t = 1/(N2Q4) . . ., with t = t/Td and all the remaining
terms being dimensionless. Here, we introduced the system’s
dimensionless stability parameter (see, e.g., Ref. [28])

Q = J0 �0

G Mtot
. (6)

The larger Q is, the hotter the system is, i.e., the weaker the
collective effects are.4 The system’s relaxation time Tr, when
driven by Eq. (4), therefore scales like

Tr 
 Q4N2Td. (7)

As expected, the hotter the system is, the slower the long-term
relaxation is. Given that Eq. (4) has been derived by neglect-
ing collective effects, it can only be applied to systems with
Q � 1.

C. Well-posedness

Because it involves a high-order resonance denominator, it
is not obvious that Eq. (4) is well-posed, i.e., that there are
no divergences when J1 → J . Following the same approach
as in Ref. [20], we show in Appendix C 2 that one can rewrite
Eq. (4) under an alternative form for which the principal value
can be computed.

4The typical scaling of Q can readily be found from the system’s
inhomogeneous response matrix (see Chap. 5.3 in Ref. [2]).

IV. STEADY STATES

A. H theorem

Up to prefactors, the system’s entropy is defined as

S(t ) = −
∫

dJs[F (J, t )], (8)

with s[F ] = F ln(F ) being Boltzmann’s entropy.5 As detailed
in Appendix D 1, one can show that Eq. (4) drives an evolution
of the entropy according to

dS

dt
= 2π3μ2

3

∑
k1,k2

∫
dJ

Uk1k2 (J)

k2
1 (k1 + k2)2

P
(

1

(�[J] − �[J1])4

)

× δD[k · �]

F3(J)

(
(k1 + k2)

F ′(J )

F (J )
− k1

F ′(J1)

F (J1)
− k2

F ′(J2)

F (J2)

)2

.

(9)

All the terms in this integral are positive. Hence, Eq. (4)
satisfies an H theorem, i.e.,

dS

dt
� 0. (10)

Equation (4) therefore drives an irreversible relaxation.

B. Boltzmann distribution

For the present case, the thermodynamical equilibria, i.e.,
the Boltzmann DFs, are generically of the form

FB(J ) ∝ e−βH0(J )+γ J , (11)

with β and γ being two Lagrange multipliers associated with
the conservation of E (t ) and P(t ) in Eq. (5). When injected in
Eq. (4), the DF from Eq. (11) gives

∂FB(J )

∂t
∝ δD[k · �] {−β [k · �] + γ [(k1 + k2) − k1 − k2]}
= 0. (12)

As expected, Boltzmann DFs are equilibria of Eq. (4).

C. Constraint from the H theorem

Following the calculation of dS/dt in Eq. (9), let us now
investigate what are the most generic steady states of Eq. (4).
For simplicity, we assume that there exists (k1, k2) such that
Uk1k2 (J) �=0 when k · � = 0, i.e., at resonance. An obvious
way of ensuring dS/dt = 0 is for the last term in Eq. (9) to
systematically vanish. Since J �→ �(J ) is monotonic, we can
define the function G(�) = F ′(J[�])/F (J[�]) and we find
the constraint

∀�1,�2 : G

(
k1�1 + k2�2

k1 + k2

)
= k1G(�1) + k2G(�2)

k1 + k2
, (13)

namely, a weighted average. For this constraint to be satisfied
for all �1 and �2, the function � �→ G(�) must necessarily
be affine; i.e., one has

G(�) = −β � + γ . (14)

5Boltzmann’s entropy is expected, a priori, to be the system’s
entropy in the present weak-coupling limit [27].
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Integrating once with respect to J , Eq. (14) recovers the Boltz-
mann DF from Eq. (11). Provided that there exists one (k1, k2)
for which Uk1k2 (J) �=0 at resonance, the only equilibrium DFs
of Eq. (4) are the Boltzmann DFs.

D. Second-order kinetic blocking

It is interesting to determine whether or not one can design
an interaction potential and a frequency profile so that for all
(k1, k2) one has Uk1k2 (J) = 0 at resonance. Following Eq. (9),
this would then impose dS/dt = 0 whatever the considered
DF. For simplicity, in this section, we assume the simple
frequency profile �(J ) ∝ J .

In Appendix D 2, we show that potentials of the form

U (w, w′) ∝ |J − J ′|α
+∞∑
k=1

k≡0 [mod d]

1

|k|α cos[k (θ − θ ′)], (15)

with α being an arbitrary power law index and d �1 an arbi-
trary integer, are generically blocked for the 1/N2 dynamics
driven by Eq. (4). More precisely, such potentials ensure that
the coupling function Uk1k2 (J) (Appendix B) satisfies

∀k1, k2, J, J1: Uk1k2 (J, J1, J res
2 ) = 0, (16)

with J res
2 = J res

2 [k, J, J1], the resonant action complying
with the constraint k · � = 0. For the frequency profile
�[J] ∝ J , it simply reads J res

2 = [(k1 + k2)J − k1J1]/k2. In
Appendix D 2, we show that (i) Eq. (15) allows one to recover
the local interaction potentials already unveiled in Ref. [20],
and (ii) for particular values of α, the harmonic sum from
Eq. (15) can be explicitly performed.

Following Eq. (15), any (linearly stable) DF, F = F (J ),
when embedded within the mean potential H0 = 1

2 J2 and
pairwise interaction from Eq. (15), satisfies ∂F/∂t = 0 when
plugged into Eq. (4). We call such a situation a second-order
kinetic blocking; i.e., both the 1/N BL flux and the 1/N2 flux
from Eq. (4) exactly vanish. In the limit where collective ef-
fects can effectively be neglected, we expect that such systems
will relax on the much longer timescale O(N3Td ). Given the
difficulty of (i) deriving a kinetic equation at order 1/N3 and
(ii) numerically integrating such dynamics on extremely long
timescales, we postpone their investigation to future works.

V. APPLICATION

In order to test Eq. (4), we perform numerical simulations
of classical Heisenberg spins embedded within an external
potential (see, e.g., Refs. [15,16]). We refer to Appendix E
for a detailed presentation of the setup.

In Fig. 1, we illustrate the initial diffusion flux
∂F/∂t = ∂F/∂J . This figure shows a good quantitative
agreement between the predicted and measured fluxes. The
remaining slight mismatch likely stems from contributions
associated with collective effects.

VI. CONCLUSIONS

We presented a 1/N2 closed and explicit kinetic equation
for long-range interacting one-dimensional inhomogeneous
systems. The collision operator from Eq. (4) generalizes the

FIG. 1. Initial diffusion flux ∂F/∂t = ∂F/∂J in action space as
measured in direct N-body simulations and predicted by Eq. (4).
Detailed parameters are given in Appendix E.

classical inhomogeneous Landau kinetic equation to regimes
where the 1/N relaxation exactly vanishes by symmetry.
Equation (4) conserves the total mass, momentum, and en-
ergy, and it satisfies an H theorem. We exhibited a class of
long-range interaction potentials for which this 1/N2 collision
term exactly vanishes. Finally, we showed how Eq. (4) quan-
titatively matches with measurements from direct N-body
simulations.

Naturally, the present work is only one step toward ever
more detailed characterizations of the long-term relaxation
of finite-N systems. As such it would be worthwhile to (i)
generalize Eq. (4) to also account for collective effects—a
significantly challenging endeavor, and (ii) investigate, both
analytically and numerically, systems driven by the interaction
potential from Eq. (15), for which we expect a second-order
kinetic blocking, i.e., a relaxation on N3Td timescales. Finally,
effective applications of Eq. (4) to interpret spinor condensate
and easy-plane ferromagnet experiments could be investi-
gated.
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APPENDIX A: DERIVATION

Most of the derivation of Eq. (4) follows the same lines as
in Ref. [20] (see Appendix A therein). Here, we only highlight
the key changes stemming from inhomogeneity.

1. BBGKY hierarchy

The dynamics of the system is exactly described by the
BBGKY equations for the n-body DFs, Fn(w1, . . . , wn, t ) (see
Appendix A 1 in Ref. [20]). It reads

∂Fn

∂t
+ [Fn, Hn]n +

∫
dwn+1 [Fn+1, δHn+1]n = 0, (A1)
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with the Poisson bracket

[ f , h]n =
n∑

i=1

(
∂ f

∂θi

∂h

∂Ji
− ∂ f

∂Ji

∂h

∂θi

)
. (A2)

In Eq. (A1), the n-body Hamiltonian Hn follows from Eq. (1)
with the replacement N → n. In Eq. (A1), the specific inter-
action energy δHn+1 simply reads

δHn+1(w1, . . . , wn+1) =
N∑

i=1

U (wi, wn+1). (A3)

Importantly, Eq. (A1) provides us with the evolution equa-
tions for the one-, two-, and three-body DFs (F1, F2, and F3).
This is the starting point of the derivation.

2. Cluster expansion

To perform perturbative expansions with respect to the
small parameter 1/N , the n-body DFs are developed using
the cluster expansion [27]. Doing so, one introduces the
two- and three-body correlation functions G2(w1, w2) and
G3(w1, w2, w3). As an example, G2 is defined via

F2(w1, w2) = F (w1) F (w2) + G2(w1, w2), (A4)

where, from now on, we write the one-body DF as F = F1.
Once this expansion has been performed, the quantities at our
disposal scale with respect to N like F ∼1, G2 ∼1/N , and
G3 ∼1/N2.

These expansions are then injected into Eq. (A1) to obtain
evolution equations for ∂F/∂t , ∂G2/∂t , and ∂G3/∂t . All these
calculations are explicitly performed in Ref. [25].

3. Truncation at order 1/N2

The next step is to truncate these three evolution equations
at order 1/N2. We perform the following operations.

(i) We introduce the small parameter ε = 1/N and decom-
pose the two-body correlation function as

G2 = ε G(1)
2 + ε2 G(2)

2 . (A5)

Similarly, the other parameters at our disposal are rescaled as
μ → ε μ and G3 → ε2 G3.

(ii) We truncate the BBGKY evolution equations up to
order ε2. We split the evolution equation for ∂G2/∂t into two,
respectively, for ∂G(1)

2 /∂t and ∂G(2)
2 /∂t .

(iii) We leverage our assumption of a quasistationarity,
i.e., F = F (J ) and H0 = H0(J ), hence introducing the orbital
frequencies �(J ).

(iv) We neglect the contributions from collective effects;
i.e., we perform replacements of the form∫

dw3 G(1)
2 (w2, w3) ∂θ1U (w1, w3) → 0, (A6)

and similarly for G(2)
2 and G3.

(v) In the hot limit, we neglect the source term in
G(1)

2 ×G(1)
2 in ∂G3/∂t , as its contribution is a factor 1/Q

smaller than the source term in G(2)
2 .

4. Solving the equations

Following all these steps, we have at our disposal a set
of four coupled partial differential equations. These equa-
tions can be solved sequentially, starting with G(1)

2 , then G3,
then G(2)

2 , and finally F . This is done as follows.
(i) We perform Fourier expansions with respect to the

angles θi.
(ii) We rely on the assumption of timescale separation,

hence fixing F (J, t ) = const. when solving for fluctuations.
(iii) We impose the initial conditions G(1)

2 (t = 0) = 0 and
similarly for G(2)

2 and G3.
Ultimately, we obtain an explicit time-dependent expres-

sion for G(2)
2 (t ). Leveraging once again timescale separation,

we consider the limit t → +∞ of G(2)
2 (t ) in the evolution

equation for ∂F/∂t . A typical time integral is then replaced
asymptotically by

lim
t→+∞

∫ t

0
dt1 ei(t−t1 )ωR = πδD(ωR) + iP

(
1

ωR

)
, (A7)

where ωR ∈ R is a linear combination of �.

5. Simplifying the expressions

At this stage, we are left with a kinetic equation involving
thousands of terms. The computer algebra system allows for
efficient manipulations of these expressions. The key steps are
as follows.

(i) We implement systematic relabelings of the actions
(J1, J2) and resonance numbers (k1, k2), so that the resonant
frequencies are all of the form ωR = k · �.

(ii) We integrate by parts with respect to the actions so that
no derivatives act on δD, and only first-order derivatives of the
DF and coupling coefficients are present.

(iii) We use the scaling relations of δD and P , e.g.,
δD(αx) = δD(x)/|α|, to take out resonance numbers.

(iv) The frequency profile being monotonic, we use∫
dJ2 f (J1, J2) δD

(
�[J1] − �[J2]

) = f (J1, J1)

|�′(J1)| . (A8)

(v) We use the resonance condition δD[k · �] to make
the replacements (� − �2) → −(k1/k2)(� − �1) and
(�1 − �2) → −([k1 + k2]/k2)(� − �1), with the shortened
notation (�,�1,�2) = �. Principal values are therefore only
expressed as functions of (� − �1).

All these manipulations are automated using tailored rules
in MATHEMATICA, which can all be found in Ref. [25]. Ulti-
mately, one obtains the closed result from Eq. (4).

APPENDIX B: COUPLING COEFFICIENTS

The coupling coefficients Uk1k2 (J) appearing in Eq. (4) are
generically given by

Uk1k2 (J) = [
(�[J] − �[J1])U (1)

k1k2
(J) + k2 U (2)

k1k2
(J)

]2
. (B1)
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The coupling functions appearing in this expression read

U (1)
k1k2

(J) = k2(k1 + k2){Uk1+k2(J, J2) ∂J2Uk1(J1, J2)

− Uk2(J, J2) ∂JUk1(J, J1)}
+ k1(k1 + k2){Uk1(J, J1) ∂JUk2(J, J2)

− Uk1+k2(J, J1) ∂J1Uk2(J1, J2)}
− k1k2{Uk2(J1, J2) ∂J1Uk1+k2(J, J1)

− Uk1(J1, J2) ∂J2Uk1+k2(J, J2)} (B2)

and

U (2)
k1k2

(J) = (k1 + k2)
d�

dJ
Uk1 (J, J1)Uk2 (J, J2)

− k1
d�

dJ1
Uk1+k2 (J, J1)Uk2 (J1, J2)

− k2
d�

dJ2
Uk1 (J1, J2)Uk1+k2 (J, J2). (B3)

We refer the reader to Ref. [25] for the associated derivation.

APPENDIX C: PROPERTIES

1. Conservation laws

We can generically rewrite Eq. (4) as

∂F (J )

∂t
= ∂F (J )

∂J
, (C1)

with F (J ) being the diffusion flux. The time derivatives of
Eq. (5) then read

dM

dt
=

∫
dJ

∂F
∂J

,

dP

dt
= −

∫
dJ F (J ),

dE

dt
= −

∫
dJ �(J )F (J ). (C2)

The conservation of the total mass, M(t ), follows from the
absence of any boundary contributions.

For the conservation of P(t ) and E (t ), we investigate∫
dJ F (J ) =

∑
k1,k2

(k1 + k2)
∫

dJ Ak1k2 (J), (C3)

with Ak1k2 (J) given by Eq. (4). With the relabelings J ↔J1 and
(k1, k2) → (−k1 − k2, k2), Eq. (C3) becomes [25]∫

dJ F (J ) = −
∑
k1,k2

k1

∫
dJ Ak1k2 (J). (C4)

Similarly, with the relabelings J ↔J2 and
(k1, k2) → (−k1, k1 + k2), Eq. (C3) becomes [25]∫

dJ F (J) = −
∑
k1,k2

k2

∫
dJ Ak1k2 (J). (C5)

We can now go back to the computation of the conserved
quantities in Eq. (C2). By adding 1

3 of Eqs. (C3)–(C5), we

finally obtain

dP

dt
= − 1

3

∑
k1,k2

∫
dJ Ak1k2 (J) {(k1 + k2) − k1 − k2} = 0,

dE

dt
= − 1

3

∑
k1,k2

∫
dJ Ak1k2 (J) {k · �} = 0, (C6)

where the final equality stems from the presence of the reso-
nance condition δD[k · �] in Eq. (4).

2. Well-posedness

Following the same approach as in Ref. [20], we define the
set of fundamental resonances as

{(k, k′) | 0 < k, k′}. (C7)

For a given fundamental resonance, (k, k′), we define the
associated set of resonance pairs (k1, k2) with

R(k, k′) = {(k, k′), (k + k′,−k), (k,−k − k′),

× (k′, k), (k + k′,−k′), (k′,−k − k′)}. (C8)

We note that (i) all (k1, k2) in R(k, k′) satisfy k1�0, and (ii)
even for k = k′, this set still contains six elements.

Following these definitions, we rewrite Eq. (4) as [25]

∂F (J )

∂t
= 2π3μ2 ∂

∂J

[ ∑
k,k′>0

Fkk′ (J )

]
, (C9)

where Fkk′ (J ) stands for the flux generated by the fundamen-
tal resonance (k, k′). It reads

Fkk′ (J ) = P
∫

dJ1

(�[J] − �[J1])4

∑
(k1,k2 )∈R(k,k′ )

Ck1k2 (J, J1). (C10)

Here, Ck1k2 (J, J1) follows from Eq. (4) and reads

Ck1k2 (J, J1) =
∫

dJ2
Uk1k2 (J)

k2
1 (k1 + k2)

δD[k · �]

(
k · ∂

∂J

)
F3(J).

(C11)
Combining Eqs. (C10) and (C11), we must ultimately per-

form an integration with respect to dJ1dJ2. As in Ref. [20],
we can propose an alternative writing for Ck1k2 (J, J1) by per-
forming the relabeling J1 ↔J2. We obtain [25]

Ck1k2 (J, J1) =
∫

dJ2
U k1k2 (J)

k2
2 (k1 + k2)

δD[k · �]

(
k · ∂

∂J

)
F3(J).

(C12)
As in Eq. (4), we introduced k = (k1 + k2,−k2,−k1) along
with the coupling function

U k1k2(J) = [
(�[J] − �[J1])U (1)

k1k2
(J) − k1U

(2)
k1k2

(J)
]4

. (C13)

In that expression, U (1)
k1k2

(J) [respectively, U (2)
k1k2

(J)] are directly
obtained from Eq. (B2) [respectively, Eq. (B3)] by performing
the relabeling J1 ↔J2.

To obtain a well-posed expression for the flux Fkk′ (J ),
it remains to appropriately combine the two possible writ-
ings, Ck1k2 (J, J1) and Ck1k2 (J, J1). Once again, the computer
algebra system proves undoubtedly useful [25]. Starting from
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Eq. (C10), we consider the writing

Fkk′ (J ) = P
∫

dJ1

(�[J] − �[J1])4

× {(Ckk′ + Ck′k )

+ (Ck+k′,−k + Ck+k′,−k′ )

+ (γkk′ Ck,−k−k′ + (1 − γkk′ ) Ck,−k−k′ )

+ (γkk′Ck′,−k−k′ + (1 − γkk′ ) Ck′,−k−k′ )}, (C14)

with the weight

γkk′ = (k − k′)2

k2 + k′2 . (C15)

Such a choice is always well-defined since k, k′ >0 [see
Eq. (C7)]. This symmetrization is the same as in Ref. [20].

We can then rewrite Eq. (C14) as

Fkk′ (�) = P
∫

d�1
Kkk′ (�,�1)

(� − �1)4
, (C16)

where we used the fact that J �→ �(J ) is monotonic, intro-
ducing therefore � = �[J] and �1 = �[J1]. After calculation
[25], for δ� → 0, one finds

K (�,� + δ�) 
 O[(δ�)3], (C17)

making the principal value in Eq. (C16) well-posed.

APPENDIX D: STEADY STATES

1. H theorem

Starting from Eq. (8), the time-derivative of Boltzmann’s
entropy is given by

dS

dt
=

∫
dJ

F ′(J )

F (J )
F (J ). (D1)

Using the same symmetrizations as in Eq. (C6), we find

dS

dt
= 1

3

∑
k1,k2

∫
dJ Ak1k2 (J)

×
{

(k1 + k2)
F ′(J )

F (J )
− k1

F ′(J1)

F (J1)
− k2

F ′(J2)

F (J2)

}
. (D2)

It then only remains to inject the expression of Ak1k2 (J)
[Eq. (C3)] to obtain dS/dt as given in Eq. (9).

2. Second-order kinetic blocking

Let us consider interaction potentials of the form

Uk (J, J ′) ∝ δk|d
|k|α |J − J ′|α, (D3)

with α an arbitrary power-law index and d �1 being an ar-
bitrary integer. We also introduced the function δk|d = 1 if
k ≡0 [mod d] and 0 otherwise.

As detailed in Ref. [25], for such a potential, when embed-
ded within the frequency profile �(J ) ∝ J , one finds

Uk1k2 (J, J1, J res
2 ) ∝ [(k1 + k2) δk1|d δk2|d

− k1 δk1+k2|d δk2|d − k2 δk1+k2|d δk1|d ]2

= 0, (D4)

where we used δk|dδk′|d = δk|dδk+k′ |d . We have therefore de-
vised a generic second-order kinetic blocking.

For α = 0, Eq. (D3) becomes the simple interaction po-
tential Uk (J, J ′) ∝ δk|d . This makes the pairwise interaction
independent of the particles’ actions. This class of potential
was already unveiled in Ref. [20], when investigating homo-
geneous 1D systems at order 1/N2. In particular, Ref. [20]
showed that this interaction potential becomes

U (w, w′) ∝ 1 − 1

d

d−1∑
k=0

δD
[
(θ − θ ′) − k π

d

]
. (D5)

As discussed in Ref. [20], such potentials amount to exactly
local interactions: they do not drive any relaxation.

For d = 1 and α>0 being an even integer, one can explic-
itly compute U (w, w′) from Uk (J, J ′) as given by Eq. (D3).
Up to prefactors, one obtains (see 9.622.3 in Ref. [29])

U (w, w′) ∝ (
J − J ′)2n

B2n
[

1
2π

w2π (θ − θ ′)
]
, (D6)

with n�1 being an integer. In that expression, B2n(x) is a
Bernoulli polynomial, e.g., B2(x) = x2 − x + 1

6 . We also in-
troduced the “wrapping” function

w2π (θ ) ≡ θ [mod 2π ]; 0 � w2π (θ ) < 2π. (D7)

Investigating systems driven by interaction potentials as in
Eq. (D6) will be the subject of future works.

APPENDIX E: NUMERICAL SIMULATIONS

We consider the same system as in Ref. [18], i.e., a set of
N particles evolving on the unit sphere. This setup mimics
“vector resonant relaxation” in galactic nuclei [30]. Given an
axis ẑ, the spherical coordinates are denoted with (ϑ, φ), so
that w = [φ = θ, cos(ϑ ) = J] are canonical coordinates with
the associated unit vector L̂ = L̂(w).

Following Ref. [16], we fix the external potential Uext and
the pairwise interaction potential U to be

Uext (L̂) = D
(
L̂ · ẑ

)2
; U (L̂, L̂′) = G L̂ · L̂′. (E1)

Following Ref. [30], the individual equations of motion
read dL̂i/dt = ∂H/∂L̂i×L̂i. For the particular choice from
Eq. (E1), we readily find

∂H

∂L̂i
= 2D

(
L̂i · ẑ

)
ẑ + G S, (E2)

with S = ∑N
i=1μ L̂i being the system’s magnetization. Since S

is “shared” by all the particles, the rates of changes, {dL̂i/dt}i,
can be computed in O(N ) operations.
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The invariants of the present system are

∀i : |L̂i| = 1; Sz = S · ẑ; Etot = H. (E3)

Because of the gauge invariance associated with the con-
straints, |L̂i| = 1, dL̂i/dt is uniquely defined, while the
gradient ∂H/∂L̂i is not. As such, we define, unambiguously,
the precession vector �i = L̂i×dL̂i/dt , so that

dL̂i

dt
= �i × L̂i; �i · L̂i = 0. (E4)

In order to exactly conserve all the |L̂i|, the system’s dy-
namics is integrated using the structure-preserving classical
fourth-order Munthe-Kaas scheme [31]. We refer to Sec. 5.1
in Ref. [32] for a presentation of this explicit scheme.

For the results presented in Fig. 1, we considered
N = 1 024, G = −1, D = 15, and Mtot = 1. The integration
was performed with a fixed time step h = 5×10−4, with a
dump every �t = 100 and integrated up to t = 2×105. Run-
ning one realization requires about 32 h of computation on a

single core. At the final times, the relative errors in Sz and Etot

were typically 10−7.
For the initial conditions, as in Ref. [18], we consider

F (w) = Ce−(J/σ )4
, (E5)

with C a normalization constant. We fixed the DF’s initial dis-
persion to σ = 0.45. This ensures that the system is linearly
stable and hot enough (see Fig. 6 in Ref. [18]).

To obtain Fig. 1, we performed a total of 1024 independent
realizations. The action, −1�J �1, is binned in 50 equal
size bins. For each realization, each action bin and each time
dump, we determine the number of particles left to that ac-
tion. This is then averaged over the available realizations.
Finally, we fit the associated time series with an affine time
dependence: its slope is proportional to the local diffusion flux
F (J, t = 0). To estimate the measurement errors, we follow
the same bootstrap approach as in Appendix F of Ref. [23].
In Fig. 1, we report the 16% and 84% level lines over 100
bootstrap resamplings.
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