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Lévy stochastic processes, with noise distributed according to a Lévy stable distribution, are ubiquitous in
science. Focusing on the case of a particle trapped in an external harmonic potential, we address the problem
of finding “shortcuts to adiabaticity”: After the system is prepared in a given initial stationary state, we search
for time-dependent protocols for the driving external potential, such that a given final state is reached in a
given, finite time. These techniques, usually employed for stochastic processes with additive Gaussian noise, are
typically based on a inverse-engineering approach allowing to find exact analytical solutions for the required
protocol. We generalize the approach to the wider class of Lévy stochastic processes, both in the overdamped
and (for pure translations) in the underdamped regime, by finding exact equations for the relevant characteristic
functions in Fourier space.
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I. INTRODUCTION

In a seminal 1926 paper, Richardson was able to show that,
in the atmosphere, the average squared distance between two
diffusing particles increases faster than linearly with time [1].
This violation of Fick’s law is due the turbulent nature of
the atmosphere: In particular, Richardson observed that eddies
tend to separate at a faster rate particles that are farther away
from each other and was able to determine the scaling D �
l4/3 for the diffusivity, where l is the distance between the
particles. This is equivalent to saying that the mean-squared
displacement of the particles is proportional to t3 (unlike in
the standard diffusion processes, where it is linear in time)
[2]. Since then, anomalous diffusion has been recognized to
be present in a wealth of domains in physics and beyond (e.g.,
in engineering, biology, and finance) [3], and many models
have been proposed to describe and understand it [4,5]; among
them, the class of Lévy processes holds a prominent position
[6,7].

First introduced by Mandelbrot [8], Lévy flights are ar-
guably the simplest realization of a superdiffusive stochastic
process. They can be thought of as a sum of instantaneous
displacements of a particle, following a Lévy distribution;
these jumps have the remarkable property that the sum of
an arbitrary number of them is still a Lévy random variable
[9]. The name “flights” refers to the fact that these processes
involve, from time to time, sudden fast displacements of
the particle (the tails of the distribution are power-law like).
Since these abrupt moves may reveal unphysical in many
contexts, alternative descriptions based on the Lévy statistics
have been proposed: Important examples are the truncated
Lévy flights [10], in which a suitable cutoff is imposed to the
tails of the distribution, and the so-called Lévy walks [11],

*marco.baldovin@universite-paris-saclay.fr

in which the instantaneous velocity is bounded; in the latter
case, the large displacements prescribed by the Lévy statistics
are achieved by keeping the same direction of motion for a
suitable time. Still, pure Lévy flights provide a useful model
to study and understand phenomena subject to superdiffusive
behavior [12], especially when used as the nondetermin-
istic part of a Langevin-like equation (the “Lévy noise”)
[13].

Lévy processes have found applications in wide variety of
fields, ranging from turbulence [14,15] to paleoclimate anal-
ysis [16], including finance [17]. In condensed matter, they
have been recognized to play an important role in Josephson
junctions [18] and in the transport properties of disordered
graphene [19]. In plasma physics, it has been shown that the
motion of the fast ions produced by nuclear fusion may be
described by asymmetric Lévy motion [20]. Also in biology,
many observed behaviors can be characterized by using this
class of stochastic models [21]. The interest around them
arose in the wake of the influential paper by Viswanathan
et al. [22], observing Lévy statistics in the foraging be-
havior of wandering albatrosses. These results were later
revisited, due to some methodological inconsistencies [23],
but they were nonetheless able to raise large interest in the
biophysics community [21], especially about the relation be-
tween optimal search strategies and Lévy walks or flights
[24,25]. Lévy flights were employed, for instance, to improve
the well-known “Infotaxis” search algorithm, increasing its
performances under some conditions [26,27]. Nowadays non-
Gaussian processes are observed also in completely different
contexts, as in the path of eukariotic cells (whose motion is
not determined by foraging [28]), swarming bacteria [29], and
cancer cells [30].

Interesting questions arise when particles performing Lévy
flights are also subject to a force that can be externally con-
trolled (e.g., a confining potential). Systems of this sort have
been realized with cold atoms [31], but in principle also
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particles in turbulent flows or biological systems may be con-
trolled in this way. In economics, models of this kind have
been used to describe the growth rates of the gross domestic
product of a country [32]. In all these situations, one may
ask how the external potential needs to be manipulated in
order to bring the system to a desired final state in a finite
time (and, possibly, in an optimal way). Let us consider, for
instance, the situation in which a particle is subjected to an
external harmonic confining potential, whose stiffness k can
be controlled in time. At the beginning the value of this elastic
constant is ki, and the particle is found in the corresponding
stationary state. We want to bring it to the final steady state
corresponding to k = k f > ki in a given time t f . If we just
abruptly change the value of k, then the relaxation of the
system will take, in general, a time much longer than t f . An
intuitive strategy is to compress the system by imposing val-
ues of k larger than k f and then making it relax to the desired
final distribution, but the precise choice of the time-dependent
protocol k(t ) allowing for this “shortcut” to the final state is,
in general, highly nontrivial and requires refined analytical
tools.

This class of problems, which are known under the name
of “shortcuts to adiabaticity” (STA), is rooted in the context
of quantum mechanics [33]. The interest for them has then
spread also in the domain of kinetic theory, with application
to the study of Boltzmann equation [34] and stochastic ther-
modynamics (see Ref. [35] for a recent review). A successful
approach to solve such problems is of inverse nature: One
chooses a suitable time-dependent evolution for the distribu-
tion of the quantity under study, from which the evolution
equation allows us to infer the time-dependent driving re-
quired. In general, several (infinitely many) types of driving
are admissible, and a second level of question amounts to
optimize some cost function among the admissible family.
This method has been applied to many different systems,
typically with the aim of switching between two different
equilibrium states [36,37]; recent studies have also addressed
out-of-equilibrium problems, as the Brownian gyrator [38]
and driven granular gases [39,40]. Moreover, among the el-
igible protocols, it is interesting to search for that minimizing
some cost function of the problem (as, for instance, the aver-
age work, the entropy production or the total time, given some
constraints).

In this paper, we address the problem of finding STA
for Lévy processes driven by external harmonic potential.
The task is nontrivial in this case, because the stationary
distributions associated to Lévy processes are already hard
to treat analytically. Yet, we need to go beyond stationarity
and find explicit time-dependent solutions. The key ingre-
dient, as we will show, is to consider the evolution of the
characteristic function, which is more convenient to treat in
this context. First, the overdamped limit is worked out in
Sec. II; it is possible in this case to find protocols corre-
sponding to transformations in which the system is translated,
and/or compressed (decompressed) by increasing (decreas-
ing) the stiffness of the external controlling potential. In
Sec. III, we allow the particle to have inertia and we study the
underdamped regime of the dynamics. There we are able to
solve the problem for translation protocols. Conclusions are
drawn in Sec. IV.

II. OVERDAMPED REGIME

As alluded to above, continuous stochastic processes ruled
by Lévy statistics are ubiquitous in physics. To characterize
these dynamics it is useful to introduce a white stationary
Lévy noise, i.e., a stochastic process ξα (t ) such that its integral
over time

Iα (t ) =
∫ t

0
dt ′ ξα (t ′) (1)

has stationary independent increments and characteristic func-
tion

p̂Iα (s; t ) = e−|s|αKαt . (2)

We recall that the characteristic function p̂(s) of a probability
density function (PDF) p(x) is defined as

p̂(s) =
∫ ∞

−∞
dx eisx p(x). (3)

Here α ∈ (0, 2] is the Lévy index and Kα is a constant with
the physical dimensions of a length to the αth power, divided
by a time, which rules the intensity of the Lévy noise. In the
Brownian case α = 2, I2 reduces to the usual Wiener process,
and K2 is the diffusion coefficient. The s → −s symmetry of
the characteristic function (2) induces symmetric Lévy flights,
meaning that displacements in the positive and in the negative
direction covering the same distance are equally probable.
Asymmetric noises are also possible, but they will not be
considered in this paper. Appendix A provides a minimal
introduction to Lévy α-stable distributions.

In this section, we will focus on the class of one-
dimensional processes x(t ) whose dynamics can be modeled
by a first-order stochastic differential equation of the form

ẋ = μ f (x) + ξα (t ). (4)

The above dynamics can be seen as the overdamped motion
of a particle subjected to the force f (x) = −∂xU (x) deriving
from an external potential U (x) in a viscous medium with
mobility μ. The nondeterministic part of the evolution, ξα , is a
Lévy noise, with Lévy parameter α and generalized diffusion
coefficient Kα [13].

It can be shown [41,42] that the PDF of the above processes
obeys the fractional Fokker-Planck equation,

∂t p(x, t ) = −μ∂x[ f (x)p(x, t )] + Kα

∂α p(x, t )

∂|x|α , (5)

where the Riesz fractional derivatives dα

d|x|α are defined through
their Fourier transform,∫ ∞

−∞
dx e−isx

[
dα

d|x|α ϕ(x)

]
= −|s|α

∫ ∞

−∞
dx e−isxϕ(x). (6)

It can be checked that if α = 2, then the usual Fokker-Planck
equation is recovered.

A. Stationary solution in harmonic potential

Due to the large number of potential applications, the be-
havior of Lévy processes subjected to external forces has been
widely studied over the years [13,42,43]. Particular attention
has been devoted to understand to what steady states the
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particles relax, depending on the shape of the fixed external
potential [44,45].

If the external potential is quadratic,

U (x) = 1

2
k(x − λ)2, (7)

where k is the stiffness and λ the rest position (point of zero
force), then Eq. (4) reads

ẋ = μk(λ − x) + ξα (t ), (8)

while the fractional Fokker-Planck equation (5) can be written
as

∂t p = μk∂x[(x − λ)p] − Kα

2π

∫ ∞

−∞
e−isx |s|α p̂(s, t ) ds. (9)

Starting from a given initial stationary state, we are con-
cerned with the problem of finding protocols to reach a
different stationary state in a prescribed time. To this end, the
control we have over the system is through the time depen-
dence of both the stiffness k and the rest point λ. The final state
is completely specified by the values of the external potential
parameters at the end of the process, namely

k(t f ) = k f , λ(t f ) = λ f . (10)

If the external potential was suddenly switched into its final
form, then the typical timescale for the relaxation would be

τ = 1

μk f
. (11)

It is useful to turn to dimensionless units through the
change of variables

t → τ t∗ x → (Kατ )1/αx∗ s → (Kατ )−1/αs∗

λ → (Kατ )1/αλ∗ μk → k∗/τ.

Equation (9) can then be rewritten as

∂t∗ p = k∗∂x∗[(x∗ − λ∗)p] −
∫ ∞

−∞
ds∗ e−is∗x∗

2π
|s∗|α p̂(s∗, t∗).

(12)
In these dimensionless variables one has, by definition,
k∗(t∗

f ) = 1, and the timescale for the relaxation is unity. In
the following, stars will be dropped in order to avoid clutter.

From the fractional Fokker-Planck equation (12) by pass-
ing to Fourier space, one obtains an equation for the
characteristic function:

∂t p̂ = −ks(∂s p̂ − iλ p̂) − |s|α p̂, (13)

whose stationary solution is

p̂st (s) = exp

(
isλ − |s|α

αk

)
; (14)

the normalization condition p̂st (0) = 1 has been already taken
into account.

To obtain the stationary distribution, we get back to real
space:

pst (x) = 1

π

∫ ∞

0
ds cos(sx − sλ)e−sα/αk . (15)

The above integral converges for all values α ∈ (0, 2], but
only for some of them is it possible to express the stationary
PDF in closed form. Let us notice for instance that in the
Brownian case, α = 2, the PDF (15) reads:

pst (x) =
√

k

2π
exp

[
−k

2
(x − λ)2

]
, (16)

which is consistent with the well-known equilibrium distri-
bution for a Brownian particle. If α = 1 the solution is given
instead by a Cauchy distribution [43], then

pst (x) = 1

π

k

1 + [k(x − λ)]2 . (17)

B. Shortcuts to adiabaticity

Most STA protocols can be recast in the following proce-
dure. Let us assume that we are interested in the stochastic
process described by the evolution equation,

∂t p(x, t ) = F[p](x, t ; {ζi}), (18)

where F[·](x, t ; {ζi}) is some evolution operator (e.g., the
Fokker-Planck one) that depends on the set of control param-
eters {ζi}. We need to find a suitable ansatz p(x, t |{̃ζi}) for
the time-dependent solution, depending on the free parameters
{̃ζi}, such that Eq. (18) reduces to a tractable system of equa-
tions relating {ζi} to {̃ζi}. At this point the evolution of {̃ζi(t )}
can be chosen according to some criterion (e.g., optimization
of a cost function during the process), and corresponding
equations for the protocol {ζi(t )} are found in turn.

The same procedure could be adopted, in principle, also
in this case. To this end, working in Fourier space turns out
to be more convenient when dealing with fractional values
of α. We therefore search for time-dependent characteristic
functions exactly solving Eq. (13). In this respect, the most
natural ansatz for the solution is given by

p̂(s, t ) = exp

[
is̃λ(t ) − |s|α

αk̃(t )

]
, (19)

where λ̃(t ) and k̃(t ) are time-dependent parameters whose
evolutions still have to be fixed. Note that λ̃ is the median
of the distribution: It can be checked that the distribution
p(x, t ) stemming from Eq. (19) is symmetric under (x − λ̃) →
−(x − λ̃) transformations. For α > 1, this quantity is also the
mean value (which is not defined for α � 1).

We insert the proposed solution (19) into the evolution
equation for the characteristic function, Eq. (13), in order
to get an explicit expression for k(t ) and λ(t ). The resulting
condition reads

i ˙̃λs + |s|α
αk̃2

˙̃k = −ik (̃λ − λ)s + (k − k̃)
|s|α
k̃s

. (20)

By splitting the real and the imaginary part of the above
equation, two coupled relations are found:

k = k̃ +
˙̃k

αk̃
, (21a)

λ = λ̃ +
˙̃λ

k
. (21b)

054122-3



BALDOVIN, GUÉRY-ODELIN, AND TRIZAC PHYSICAL REVIEW E 106, 054122 (2022)

The coupled equations (21) provide the time-dependent pro-
tocols k(t ) and λ(t ), once the evolution of the PDF is chosen
[i.e., once k̃(t ) and λ̃(t ) are fixed]. The driving protocol is
thus inferred by first imposing the desired PDF evolution:
Let us stress that the success of this “inverse engineering”
technique relies on the possibility of finding a suitable ansatz
for the time-dependent PDF, leading to conditions which are
independent of x [Eq. (21) in the present case]. We stress
that the presented result is exact, and it does not rely on
approximations of any kind.

The following boundary conditions need to be enforced:

λ̃(0) = λ(0) = λi, λ̃(t f ) = λ(t f ) = λ f ,

k̃(0) = k(0) = ki, k̃(t f ) = k(t f ) = 1. (22)

The last condition follows from the adopted dimensionless
units. Let us notice that, once the boundary conditions for λ̃

and k̃ are fixed, the others follow by imposing that ˙̃λ and ˙̃k
vanish at the boundaries. This amounts to four conditions for
λ̃(t ) and k̃(t ): If all of them are fulfilled, then Eqs. (21) provide
the desired, exact protocol. One possible way to proceed is to
assume that both k̃(t ) and λ̃(t ) are third-order polynomials.
With this choice one finds

k̃(t ) = ki + 
k(3z2 − 2z3), (23a)

λ̃(t ) = λi + 
λ(3z2 − 2z3). (23b)

where 
k = 1 − ki, 
λ = λ f − λi and we have introduced
the rescaled time,

z = t/t f . (24)

Once inserted into Eq. (21), the above expressions provide
the explicit protocol we were looking for. In particular, the
stiffness is described by

k = ki + 1

αt f

6
k(1 − z)z

ki + 
k(3 − 2z)z2
+ 
k(3z2 − 2z3). (25)

If α = 2, then the usual protocol for the overdamped Brow-
nian case is recovered [36]. An analogous expression for the
point of zero force is readily found:

λ = λi + 
λ
6 − 2kt f z2 + 3z(kt f − 2)

kt f
z. (26)

The above expression can be used also in the Brownian limit
to engineer compound protocols involving translations and
compressions or decompressions.

It is important to notice that the above derived relations
provide protocols for arbitrary small values of t f , while the
spontaneous relaxation of the system would be observed, with
the chosen dimensionless units, only on timescales t f � 1.

C. Translation protocols

Let us first focus on the particular case in which the
stiffness is the same at the beginning and at the end of the
process, and only the value of λ is required to change in time,
corresponding to a mere translation.

If we require that the median λ̃ of the distribution follows
the polynomial evolution defined by Eq. (23b), then the pro-
tocol to impose is given by Eq. (26), with constant k = 1.
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FIG. 1. Translation protocols. (a) For different values of t f , the
time dependent protocol λ(t ) defined by Eq. (26) is shown. The
imposed evolution of λ̃(t ) [polynomial function in Eq. (23b)] is also
displayed for comparison (dashed black curve). (b) The protocol that
minimizes the average work, Eq. (30b), is shown for different values
of t f . As before, the corresponding λ̃(t ) is reported as a dashed black
line. The considered protocols do not depend on α.

As a consequence, the process does not depend on α. This
is a general property that comes from the fact that α does
not appear in Eq. (21b); for pure translational processes, the
relations already known for the Brownian limit hold also for
generic Lévy distribution of the noise. It should be noticed that
as soon as α > 1, the median λ̃ is also the average of the PDF,
and Eq. (21b) can be derived by averaging the Langevin equa-
tion (8) under the assumption of constant stiffness. The above
described argument, making use of characteristic functions, is
valid also for α � 1.

In Fig. 1(a) the evolution of λ̃ is shown for different val-
ues of t f . With our choice of the dimensionless units, the
typical relaxation time of the dynamics is unity. Consistently,
the curves approach the quasistationary behavior λ(t ) = λ̃(t )
when t f � 1, since in this limit the “thermalization” of
the system is much faster than the driving dynamics and
λ̃(t ) closely “follows” the parameter λ(t ): This slow driving
regime corresponds to the “adiabatic” limit, to which the “A”
in “STA” refers to. Conversely, when t f � O(1), the protocol
λ(t ) can significantly differ from λ̃(t ).
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The evolution (23b) is an arbitrary choice, and different
functions can be taken, depending on the specific require-
ments of the problem under study. For instance, one may
be interested in minimizing the work needed, on average, to
accomplish the protocol:

〈W 〉 =
∫ t f

0
dt

∫ ∞

−∞
dx ∂tU (x, t )p(x, t ).

= −
∫ t f

0
dt λ̇

∫ ∞

−∞
dx (x − λ)p(x, t ). (27)

The statistical properties of the Lévy distributions assure that
the above integral is well defined for α > 1. For smaller values
of α the average work diverges. Physically, this means that
for α � 1 very large forces are typically needed to balance
the effect of superdiffusion. It should be stressed that, even
if 〈W 〉 diverges, the work performed by the protocol during
each individual realization of the process is finite. Taking into
account the form of our ansatz (19), we can write this average
work as

〈W = − 1

2π

∫ t f

0
dt λ̇

∫ ∞

−∞
dx (x − λ)

∫ ∞

−∞
ds eis(x−λ̃)−|s|α/α

= i

2π

∫ t f

0
dt λ̇

∫ ∞

−∞
ds e−|s|α/α−is(̃λ−λ)∂s

∫ ∞

−∞
dx eisx

= i
∫ t f

0
dt λ̇

∫ ∞

−∞
ds e−|s|α/α−is(̃λ−λ)∂sδ(s), (28)

where in the first step we have applied the shift x → x + λ

to the integration variable, and then we have recognized the
Fourier transform of a Dirac δ. By performing an integration
by parts, under the proviso that α > 1, we get

〈W 〉 = −
∫ t f

0
dt λ̇(̃λ − λ) =

˙̃λ
2
(t f ) − ˙̃λ

2
(0)

2
+

∫ t f

0
dt ˙̃λ

2
,

(29)
where use was made of Eq. (21). The above integral is min-
imized by a motion with constant speed ˙̃λ = 
λ/t f , where

λ = λ f − λi; indeed, the Euler-Lagrange equation reduces

to ¨̃λ = 0, and the value of ˙̃λ is fixed by the boundary condi-
tions. The remaining terms on the right-hand side of Eq. (29)
vanish in the present case (as we demand for steady states at
t = 0 and t = t f ). The evolution of λ̃ and the corresponding
protocol for the rest position λ of the external potential then
read

λ̃ = λ̃i + 
λ z, (30a)

λ = λ̃i + 
λ

(
z + 1

t f

)
. (30b)

It is worth noticing that in order to fulfill the boundary
conditions, sudden jumps are needed to the value of λ at the
beginning and at the end of the process, in agreement with
previous works pertaining to the Brownian case [46]. These
discontinuities have no consequence on the average work,
which can be written as a function of the time evolution of λ̃

only [see Eq. (29)]. Figure 1(b) presents the situation, where
the curve of λ again approaches that of λ̃ (quasistatic limit) as
t f � 1.
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FIG. 2. Compression protocols. The evolution of k that is re-
quired to compress the system from ki = 1/3 to k f = 1 is shown for
several values of αt f . The imposed evolution for k̃ [the third-order
polynomial Eq. (23a)] is represented as a black dashed curve. For
αt f � 1 the evolution approaches the quasistationary limit k(z) �
k̃(z).

D. Compression or decompression protocols

Another particular case of the protocols described in
Sec. II B is met when the rest position of the external potential
does not change during the process and only the stiffness k
is varied. Depending on the sign of 
k = 1 − ki, one then
achieves a “compression” or a “decompression” (we recall
that with our choice of the dimensionless units, k(t f ) = 1).

In Figs. 2 and 3, different drivings as encoded in Eq. (25)
are shown, for both compression and decompression. For in-
creasing values of αt f , as expected, the protocols approach the
imposed k̃(z), determined in this case by Eq. (23a).

Unlike translations, (de)compression protocols do depend
on the Lévy parameter α. This is not totally surprising: α
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FIG. 3. Decompression protocols. Evolution of k when decom-
pressing the system from ki = 3 to k f = 1, according to Eq. (23a),
for different values of αt f . Notice that some of the curves involve
negative values of the stiffness to impose. Also for the decompression
protocols, the quasistatic limit is approached as αt f � 1.
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determines the shape of the distribution, and the realization
of a (de)compression protocol is expected to depend on that.
Rigid translations, on the other hand, should be insensitive to
the particular shape of the distribution, due to the linearity
of the force. Once expressed in terms of the rescaled time
z, the evolution of k is a function of the product αt f : As a
consequence, for decreasing values of α the curves will move
away from the imposed k̃(z) evolution [which is expected to
be equal to k(z) in the opposite, quasistatic limit, αt f → ∞].
This can be understood by looking at Figs. 2 and 3, where
the value of αt f is changed. In particular, if the transition
is required to happen in a rather short time interval t f , then
a decompression protocol may involve negative values of k.
This condition is fine from a mathematical point of view, but
it means that the trap should be transiently expulsive rather
than confining, which may lead to practical difficulties in
applications [47]. It is thus natural to wonder what condi-
tion must be imposed on the parameters of the problem in
order to keep positive values of k during the whole decom-
pression process. Multiplying Eq. ((21) by α/̃k leads to the
relation

α +
˙̃k

k̃2
= α

k

k̃
� 0, (31)

where the inequality holds if the external stiffness is con-
strained to non-negative values. By integrating between t = 0
and t = t f one gets

αt f �
1

k f
− 1

ki
. (32)

The equality holds when the external potential is suddenly
removed at the beginning of the process and then restored at
the end, so that during the time interval k = 0 the evolution is
completely free.

Leaving aside the particular case α = 2, the average work
is not well defined along a (de)compression protocol. In-
deed, to evaluate that quantity one should compute the
integral

〈W 〉 =
∫ t f

0
dt k̇

∫ ∞

−∞
dx (x − λ)2 p(x, t ), (33)

which is ill defined for α < 2. As a consequence, in this case it
is meaningless to search for the protocol which minimizes the
work. For the Brownian case, the problem has been studied in
several works [46,48–50].

E. Compound protocols

Enforcing a simultaneous translation and (de)compression
may lead to quite involved dynamics, due to the coupling
between λ and k in Eq. (21b). Some examples are provided
in Fig. 4, where the rest position Eq. (26) is computed for dif-
ferent compound translation-decompression protocols. When
t f is small enough, negative values of k are induced, as shown
in Fig. 3(b). When k becomes equal to zero, due to Eq. (26),
λ tends to ∞. At that point the external potential is flat, and
the particle is (momentarily) free. Moreover, as k becomes
negative, λ changes sign, too, passing from +∞ to −∞: Not
only the curvature of the external potential is reversed but also
the point of zero force is on the other side of the real axis,
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FIG. 4. Compound protocols involving simultaneous translation
and decompression (overdamped dynamics). The rest position λ of
the external potential (point of zero force) is shown, for a compound
protocol in which the stiffness decreases from ki = 3 to k f = 1. The
curves follow Eq. (26), while the evolution of k (not shown) is the
same as in Fig. 3 [computed from Eq. (25)]. Different values of t f are
considered: As before, the curve approaches the imposed λ̃ evolution
in the quasistatic limit αt f → ∞.

with respect to the median λ̃ of the distribution. In some sense,
the external force, which at the beginning of the process was
“pulling” the particle, is now “pushing” it. The situation is
reversed again when k turns back to positive values before
reaching its final value k f . A pictorial representation of the
process is provided in Fig. 5, where the external potential and
the distribution are plotted at different times.

III. UNDERDAMPED DYNAMICS

Let us now consider the underdamped version of the model
described in Sec. II, i.e., the case of a particle with inertia
subject to Lévy noise in an harmonic trap. The motion is
described by the equations{

ẋ = v

mv̇ = −∂xU (x) − γ v + ξα (t ) , (34)

where the Lévy noise ξα features the same properties as dis-
cussed for the overdamped case. Here v is the instantaneous
velocity of the particle, m is the mass and γ = 1/μ the damp-
ing coefficient. Equations (34) tend to the Klein-Kramers
description for the special case α = 2 [51]. The above evo-
lution can be written in terms of a second-order stochastic
differential equation for the position as

mẍ = −∂xU (x) − γ ẋ + ξα (t ), (35)

or, equivalently, as the fractional Fokker-Planck equa-
tion [43,52],

∂t p = −∂x(vp) + 1

m
∂v[∂xU p + γ vp] + Kα

∂α p

∂|v|α . (36)
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FIG. 5. Pushing-pulling protocol (overdamped dynamics). Time evolution of distribution function and external potential in a compound
translation-decompression protocol leading the system from the initial steady state in (a) to the final steady state in (e). The instantaneous
distribution (blue) and the external driving potential (red) are shown at different stages of the protocol. Following the evolution of the system,
we note that at intermediate times [(c) z = 0.7] the stiffness of external potential changes sign and the rest point switches from positive to
negative, before reaching the final configuration. In other words, in (b) and (d) the potential “pulls” the distribution; in (c), on the other hand,
the particle is “pushed” by the external force. Parameters: α = 1/2, ki = 3, k f = 1, λi = 0, λ f = 1, and t f = 2, corresponding to the protocol
shown in Fig. 4, yellow curve.

A. Stationary solution in harmonic potential

We now specialize to the harmonic case

U (x) = k

2
(x − λ)2 (37)

and, as before, we switch to dimensionless variables

t → τ ′t∗ x → (Kα )1/α (τ ′)1+ 1
α x∗ v → (Kατ ′)1/αv∗

λ → (Kα )1/α (τ ′)1+ 1
α λ∗ k → m

(τ ′)2
k∗,

where

τ ′ = m

γ

is the typical relaxation timescale of the underdamped dy-
namics (decorrelation time of the velocity in the absence of
external forces). Let us notice that in the underdamped regime
τ ′ is larger than τ = γ /k f (the relevant timescale for the over-
damped case). The geometrical average

√
ττ ′ is proportional

to the characteristic period of the harmonic oscillator.
Dropping the stars, the fractional Fokker-Planck equa-

tion in the new variables reads

∂t p = −∂x(vp) + ∂v[k(x − λ)p + vp] + ∂α p

∂|v|α . (38)

It is useful to define the typical angular frequency of the
damped oscillator

ω =
√

k − 1

4
. (39)

Since we are interested in the underdamped limit, we assume
that the argument of the square root is positive, and ω is thus
real.

We introduce the characteristic function

p̂(s, u, t ) =
∫ ∞

−∞
dx

∫ ∞

−∞
dv eisx+iuv p(x, v, t ), (40)

so that the fractional Fokker-Planck equation can be rewritten
as

∂t p̂ = (s − u)∂u p̂ − ku∂s p̂ + ikλup̂ − |u|α p̂. (41)

The stationary solution of the above equation can be found
by means of the method of characteristics [43,52]. An explicit
derivation is detailed in Appendix B. The final result is

p̂st (s, u) = exp

[
iλs + |u|α

[g(y)]α

∫ y

0
dy′[g(y′)]α − |s0|α

αk

]
,

(42)
where

y = y(s, u) = 1

ω
arctan

(
ω

s
u − 1

2

)
, (43a)

s0 = s0(s, u) = ωu

g[y(s, u)]
, (43b)
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and

g(y) = sin(ωy)e−y/2. (44)

B. STA for translation processes

In this section we aim at finding explicit protocols to
connect steady states with different values of λ (but same
k = k(t f ) = 1) in a finite time t f .

As in the overdamped case, we need to assume a suitable
ansatz for the shape of the characteristic function during the
protocol; plugging it into Eq. (41) will provide a relation
between the external control parameter λ and the time-
dependent variables determining the shape of the pdf during
the process.

Our ansatz reads

p̂(s, u) = exp

[
ĩλ(t )s + |u|αGα (y) − |s0|α

kα
+ uh(t )

]
(45)

with y = y(s, u) and s0 = s0(s, u) as defined in Eqs. (43a) and
(43b), and

Ga(y) = 1

[g(y)]a

∫ y

0
dy′[g(y′)]a, (46)

where h(t ) is a time-dependent function such that h(0) =
h(t f ) = 0. Exploiting linearity, Eq. (41) can be written in the
more convenient form

∂t ln p̂ = L ln p̂ + ikλu − |u|α, (47)

where we have introduced the linear operator

L = (s − u)∂u − ku∂s. (48)

In Appendix C it is shown that, given a generic function f (s0),

L[ f (s0)] = 0 ; (49)

moreover, from the property

L[uaGa(y(s, u))] = ua (50)

(shown again in Appendix C), it can be concluded, by invok-
ing the linearity of L, that

L[|u|αGa(y(s, u))] = |u|α. (51)

Taking into account these results and our choice of the ansatz,
Eq. (47) leads to

i ˙̃λs + uḣ = ĩλLs + hLu + ikλu

= −ikλ̃u + h(s − u) + ikλu.
(52)

We require that the above equation holds for any value of s
and u; it follows that

h = i ˙̃λ, (53a)

λ = λ̃ +
˙̃λ + ¨̃λ

k
. (53b)

This formula provides the relation between λ and λ̃ we were
searching for. The inertial term of the underdamped regime
results in the appearance of the second-order derivative of λ̃

in Eq. (53b). As for the corresponding overdamped case, the
protocol does not depend on the Lévy index α. In particular,
it has to be the same also for the Brownian case α = 2; this
verification is worked out in Appendix D.

Let us notice that the validity of the relations (49) and (50)
relies on the hypothesis that the values of k in the ansatz and
in the operator L are the same; (de)compression processes
with a distribution parameter k̃ different from k, as in the
overdamped case, would require more elaborated strategies.

Equation (53b) can be inferred from the very beginning
by formally averaging Eq. (35) as a relation for the mean.
This is how an identical relation is found, for instance, in
Ref. [53], where a related problem, in the Brownian limit, is
addressed. However, it should be kept in mind that for α � 1
the parameter λ̃ is not the average of the distribution, which is
actually not defined.

Once λ̃(t ) is fixed in such a way that the final state is
reached in a time interval t f , Eq. (53b) allows us to compute
the explicit expression for the external potential. In the same
spirit of what has been done for the overdamped dynamics,
also in this case we search for the simplest protocol fulfilling
the boundary conditions

λ̃(0) = λ(0) = λi λ̃(t f ) = λ(t f ) = λ f (54)

and the constraint given by Eq. (53b). Since λ also depends on
¨̃λ, in this case we need to impose

˙̃λ(0) = ˙̃λ(t f ) = 0, (55)

to avoid discontinuities of ˙̃λ at t = 0 or t = t f . Indeed, if ˙̃λ �=
0 at the boundaries, due to Eq. (53b), then also ¨̃λ would be
finite, leading to infinite instantaneous variation of the driving
parameter λ.

A relatively simple polynomial fulfilling all the above con-
ditions is

λ̃ = λi + 
λ z3(6z2 − 15z + 10), (56)

leading to the external protocol

λ = λi + 
λ z3(6z2 − 15z + 10)

+ 30

λ

kt2
f

z(z − 1)[t f z2 + (4 − t f )z − 2]. (57)

Figures 6(a) and 6(b) show the driving (57) for different
values of t f and k, once the evolution (56) has been im-
posed. The quasistatic behavior λ(t ) � λ̃(t ) is approached
in the limits t f � 1 and k � 1. This can be expected on
physical grounds, as both conditions imply that the typical
timescales of the dynamics are much shorter than the total
time of the protocol. It can be checked that these consid-
erations are consistent with Eq. (53b). We recall that, with
the chosen dimensionless variables, spontaneous relaxation
would be complete for t f � 1.
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C. Work optimization for translation processes

It is interesting to look for the protocol which minimizes
the average work in the underdamped case. For α > 1 one has

〈W 〉 =
∫ ∞

−∞
dx

∫ t f

0
dt ∂tU (x, t )p(x, t )

= 1

2π

∫ ∞

−∞
dx

∫ t f

0
dt ∂tU (x, t )

∫ ∞

−∞
ds p̂(s, 0, t ). (58)

Recalling (see Appendix B) that s0 → s for u → 0 one has

〈W 〉 =
∫ t f

0
dt

λ̇

2π

∫ ∞

−∞
dx (λ − x)

∫ ∞

−∞
ds e−isx+ĩλs− |s|α

α

=
∫ t f

0
dt

λ̇

2π i

∫ ∞

−∞
ds eĩλs− |s|α

α
−iλs∂sδ(s)

=
∫ t f

0
dt λ̇(λ − λ̃), (59)

where first we have recognized the Fourier transform of a
Dirac δ, and then we have integrated by parts.

Bearing in mind condition (53b) one finally has

〈W 〉 =
∫ t f

0
dt

(
˙̃λ +

¨̃λ + ˙̇ ˙̃
λ

k

)( ˙̃λ + ¨̃λ
)
. (60)

The evolution that minimizes 〈W 〉 is the one solving the
Euler-Lagrange equation

∂λ̃L − d

dt
∂ ˙̃λ

+ d2

dt2
∂ ¨̃λ
L − d3

dt3
∂˙̇ ˙̃

λ
L = 0 (61)

with

L(t, λ̃, ˙̃λ, ¨̃λ,
˙̇ ˙̃
λ ) =

(
˙̃λ +

¨̃λ + ˙̇ ˙̃
λ

k

)( ˙̃λ + ¨̃λ
)
. (62)

The solutions are given by

¨̃λ = 0, (63)

which implies, accounting for the boundary conditions,

λ̃ = λi + 
λ z, (64a)

λ = λi + 
λ z + 
λ

t f
+ 
λ

t2
f

[δ(z) − δ(z − 1)]. (64b)

The protocol which minimizes the average work is thus
quite similar to the one already seen for the overdamped
case: It amounts to a rigid translation at constant speed of
the distribution, obtained by “dragging” it through a linear
motion of the external potential. An important difference be-
tween the two situations lies though in the fact that here the
discontinuities of ˙̃λ at the boundaries lead to the presence
of two δ-shaped terms. At the beginning of the protocol, an
instantaneous “kick” is needed to increase the velocity of the
translating distribution, while a sudden slowdown has to be
imposed at the end. The qualitative scenario resembles the one
found in Ref. [53], where a similar problem, in the Brownian
case, is treated; in that context, however, the final value λ(t f )
is imposed instead of λ̃(t f ), a difference which explains the
discrepancy between the results found there and Eq. (64b).
This means that in Ref. [53], there is no control on the final
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FIG. 6. Translation protocol for underdamped dynamics. In both
panels, the dashed line represents the imposed evolution λ̃(z) of the
median, Eq. (56), while the solid colored curves are examples of
protocol (57) for the rest position λ(z) of the external potential. In
(a) different values of t f are considered, while the stiffness is fixed
to k = 1. (b) Examples of λ(z) for a fixed value of t f = 1 and dif-
ferent choices of k. In the limits t f → ∞ and k → ∞ the evolution
approaches the quasistatic protocol λ(z) � λ̃(z), as expected from
Eq. (53b). As already seen for the overdamped case, the protocol
does not depend on the Lévy index α.

state reached, since the target pertains to the confining poten-
tial, not to the distribution of position and velocity. Also in this
case, as in the overdamped situation, it should be noticed that
the sudden jumps on λ do not affect the average work; indeed,
〈W 〉 can be written as a function of the time derivatives of λ̃

only, through Eq. (60).

IV. CONCLUSIONS

Lévy processes are a useful generalization of Brownian
motion, able to describe a large gamma of stochastic dynamics
in physics and beyond. We discussed how the problem of
adiabaticity shortcuts generalizes in this context, i.e., how to
control an external potential acting on the system in order
to get a desired final state in a given time. These protocols
may be applied to already existing experimental setups, for
instance in the field of cold atoms [31], and they may reveal
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useful also in turbulence, biophysics and even economics
[32]. Also, the possibility to carefully monitor and fine-tune
stochastic noise in experiments [54] may open the road to ad
hoc experiments with Lévy statistics.

The analytical approach to the problem allows us to find
exact protocols to be applied in the considered regimes.
We stress that this kind of insight could not be gained
by other strategies (e.g., numerical simulations), since the
inverse-engineering method adopted here is based on the
manipulation of exact solutions of the dynamics. We have
analyzed the case of a particle subject to Lévy noise and
harmonic confining potential, both in the overdamped and
in the generic underdamped regime. In the former limit, we
can find explicit analytical protocols for translation processes,
(de)compressions and compositions of the two effects; in the
latter, we have studied pure translations only (correspond-
ing to the first particular case analyzed in Ref. [53] in the
Brownian limit). We stress that the underdamped regime is
considerably more difficult than the overdamped one, as it
involves a second-order dynamics, i.e. an additional degree
of freedom to control. This is also true for the Brownian limit
[55].

In the Brownian case, the relations defining the external
dynamical protocol can be typically found by analyzing the
Fokker-Planck equation in real space; here, due to the pecu-
liarities of Lévy noise, an exact analysis is only possible in
Fourier space, by making a suitable ansatz for the character-
istic function. The two approaches coincide when the Lévy
stability parameter α is equal to 2 (Gaussian limit). Once
analytical relations for the protocols are available, it is also
possible to optimize quantities of interest along the evolution.
Here, we have considered the problem of optimal average
work in translation processes, generalizing the results already
known for the Brownian limit.

Along the lines of the present results, one may study the
more involved case of underdamped processes with Lévy
noise and varying stiffness. Besides, our study shows that it
is possible to apply the methods of shortcuts to adiabaticity to
models whose stochastic nature is not described by the usual
additive Gaussian noise; this opens a promising perspective
on a wide class of out-of-equilibrium systems.
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APPENDIX A: BASIC PROPERTIES OF α-STABLE LÉVY
DISTRIBUTIONS

A full discussion about Lévy α-stable distributions is be-
yond the scope of this paper. While referring the reader to
specialized textbooks [9,56,57], we limit ourselves here to an
outline of their main properties.

A probability distribution p is said to be stable if, given two
random variables x and y such that

x ∼ p(x) y ∼ p(y) (A1)

(here and in the following the symbol “∼” means “is dis-
tributed according to”), then any linear combination z = ax +
by of the two (with a and b real constants) satisfies

z ∼ p(cz + d ) (A2)

for some choice of c and d . The most important example is
the Gaussian, which is the only one with finite variance, and
also one of the few that can be written in closed form.

In general, stable distributions can only be expressed by
means of their characteristic function, i.e.,

p̂(s) =
∫ ∞

−∞
ds eixs p(x). (A3)

It can be shown that all (and only) the distributions whose
characteristic function reads

p̂(s; α, β, γ , δ) = eisδ−|γ s|α [1−iβ s
|s| φ(s)] (A4)

with

φ(s) =
{

(|γ s|1−α − 1) tan
(

πα
2

)
− 2

π
log |γ s| (A5)

are stable. The parameter α ∈ (0, 2] is sometimes called
“Lévy index” [13]; the Gaussian case is recovered when
α = 2. The symmetry of the distribution is ruled by β (it is
symmetric if β = 0).

Lévy α-stable distributions are known to have “heavy
tails,” meaning that their asymptotic behavior (for α < 2) is
power law. In particular, it can be shown that

p(x) ≈ |x|−(1+α) when |x| � 1. (A6)

A consequence of the stability property is that any random
variable resulting from a sum process (i.e., an iterated sum
of identically distributed random variables) will be described
by a distribution belonging to this class. A generalized central
limit theorem holds [58].

APPENDIX B: STATIONARY STATE
FOR THE UNDERDAMPED HARMONIC

OSCILLATOR WITH LÉVY NOISE

To find the stationary solution for the underdamped har-
monic oscillator in the case of generic Lévy noise, we have
to impose ∂t p̂ = 0 in Eq. (41). The resulting equation for the
steady state characteristic function,

(s − u)∂u p̂ − ku∂s p̂ + (ikλu − |u|α ) p̂ = 0, (B1)

is a linear partial differential equation which can be solved
with the method of characteristics. It is worth recalling that
here the term “characteristics” refers to a particular set of
curves f (s, u) = const in the (s, u) plane, such that Eq. (B1)
becomes an ordinary differential equation when evaluated
along any of those curves. They should not be confused with
the characteristic functions of probability theory, a terminol-
ogy also used in the present paper.

We introduce a parametric description of the variables s, u

s = s(y) u = u(y) (B2)

such that

dy = du

s − u
= − 1

ku
ds (B3)
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or, equivalently,

du

dy
= s − u,

ds

dy
= −ku. (B4)

With this choice, Eq. (B1) can be rewritten as

d p̂

dy
= du

dy
∂u p̂ + ds

dy
∂s p̂ = −(ikλu − |u|α ) p̂, (B5)

i.e., an ordinary differential equation, much simpler to solve.
First, we have to find explicit expressions for u(y) and

s(y) along the infinite characteristic curves determined by
Eqs. (B4). From those relations, one derives the second-order
differential equation

d2u

dy2
+ du

dy
+ ku = 0, (B6)

which is solved by

ũ(y; s0) = s0

ω
sin(ωy)e−y/2 = s0

ω
g(y), (B7)

where s0 is a parameter whose value discriminates between
different curves, and we have introduced the angular fre-
quency of the damped oscillator,

ω =
√

k − 1

4
. (B8)

We will assume that ω is real, since we are interested in the
underdamped limit. We have also introduced the function

g(y) = sin(ωy)e−y/2. (B9)

Of course, Eq. (B6) is also solved by any function of the kind

ũ(y; s0, y0) = s0

ω
g(y − y0), (B10)

obtained by shifting the argument of the solution (B7) by
an arbitrary constant y0. However, all of them describe the
same characteristic curve in the (s, u) plane, up to an irrele-
vant change of parametrization, so that we can safely impose
y0 = 0. The second of Eqs. (B4) implies

s̃(y; s0) =
[

1

2
+ ω

tan(ωy)

]
u(y). (B11)

The curves identified by (s(y; s0), u(y; s0)), for given values of
s0, are represented in Fig. 7. When y = 0, each curve crosses
the s axis, and s = s0. For y → ±π/2ω the curve approaches
the u = 2m/s line.

We can now solve Eq. (B5), which is a linear homogeneous
ordinary differential equation with nonconstant coefficients.
The solution is expressed as

p̂st (y; s0) = F (s0) exp
∫ y

0
dy′[−ikλ̃u(y′; s0) + |̃u(y′; s0)|α]

= F (s0) exp
∫ y

0
dy′

[
−ikλ

s0g(y′)
ω

+
∣∣∣ s0g(y′)

ω

∣∣∣α]
,

(B12)

FIG. 7. Characteristic curves in the (s, u) plane for Eq. (B1).
Different colors correspond to different values of s0. Black dashed
lines identify some y = const curves; the continuous black line
y = ±π/2ω separates the half-planes with s0 < 0 and s0 > 0. Here
ω = 1.

where F (s0) is an arbitrary function of s0, and we have made
use of Eq. (B7). At this point we only have to substitute
the pair (s0, y) with the corresponding (s, u), by inverting
Eqs. (B7) and (B11). It is found that

y(s, u) = 1

ω
arctan

(
ω

s
u − 1

2

)
, (B13a)

s0(s, u) = ωu

g[y(s, u)]
. (B13b)

Equation (B12) can be rewritten as

p̂st (s, u) = F (s0) exp [−ikλuG1(y) + |u|αGα (y)], (B14)

where y = y(s, u), s0 = s0(s, u) and

Ga(y) = 1

[g(y)]a

∫ y

0
dy′[g(y′)]a. (B15)

We still have to impose the functional form of F . The
normalization condition p̂st (0, 0) = 1 only implies F (0) = 1.
In order to have enough constraints, we should also require
p(x, v) to be always positive, and vanishing for x, v → ±∞.
This condition is quite difficult to implement; instead, one
may impose that the marginalized stationary distribution for
the particle positions is the same as in the overdamped limit.
This marginal distribution can be written as

pst (x) = 1

2π

∫ ∞

−∞
dseisx p̂(s, 0) = 1

2π

∫ ∞

−∞
dseisxF (s),

(B16)
where we have used the fact that s0(s, u) → s when u → 0.
One obtains

p̂st (s, 0) = p̂st (s) = exp

(
iλs − |s|α

αk

)
; (B17)
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as a consequence, it can be concluded by comparison that

F (s0) = exp

(
iλs0 − |s0|α

αk

)
. (B18)

Finally, let us notice that

G1(y) = ey/2

sin(ωy)

∫ y

0
dy′ sin(ωy′)e−y′/2

= 1

ω2 + 1/4

[
ωey/2

sin(ωy)
− ω

tan(ωy)
− 1

2

]
= ω

kg(y)
− s

ku
, (B19)

where in the last step we have made use of Eq. (B13a).
Inserting this result into Eq. (B14), and taking into account
Eq. (B18), a simpler expression for the characteristic function
of the stationary distribution can be obtained:

p̂st (s, u) = exp

[
iλs + |u|αGα (y) − |s0|α

αk

]
, (B20)

where all terms depending on s0 have been absorbed into
F (s0). The functional form of F (s0) may be fixed by passing
to real space and imposing proper boundary conditions for the
PDF. However, as discussed in the main text, this is not needed
for our purposes.

APPENDIX C: PROPERTIES OF THE OPERATOR L

In this Appendix, we show two properties of the operator
L defined by Eq. (48), namely Eq. (49) and (50).

First, let us compute two quantities whose explicit expres-
sion will be useful for the following derivation:

g′(y) =
[

ω

tan(ωy)
− 1

2

]
g(y) =

( s

u
− 1

)
g(y) (C1)

and

∂sy = 1

s − s2

u − u
4 − ω2u

=
(

s − s2

u
− ku

)−1

. (C2)

Let us also notice that Eq. (B13a) implies

u∂uy = −s∂sy. (C3)

Recalling definition (43b) and taking into account the
above results, it is immediate to show that, for a generic
function f (s0),

L[ f (s0)] =
[

s − u − su − s2 − ku2

g(y)
g′(y) ∂sy

]
ω f ′(s0)

g(y)

=
[
s − u − u

( s

u
− 1

)]ω f ′(s0)

g(y)
= 0, (C4)

which is nothing but Eq. (49).
Finally, let us compute

L[uaGa(y)] = (s − u)aua−1Ga(y)

+ ua

[(
s − s2

u
− ku

)
∂sy

]
G ′

a(y). (C5)

The term in square parentheses is equal to 1, due to Eq. (C2).
By noticing that

G ′
a(y) = − ag′(y)

[g(y)]a+1

∫ y

0
dy′ga(y′) + 1

= −a
( s

u
− 1

)
Ga(y) + 1, (C6)

one gets

L[uaGa(y)] = ua, (C7)

i.e., Eq. (50).

APPENDIX D: THE UNDERDAMPED BROWNIAN CASE

This Appendix is devoted to the study of the Brownian
case α = 2. In this case the proposed ansatz has an explicit
expression also in real space, and it can be checked that
it corresponds to the known solution of the Fokker-Planck
equation for the dynamics.

Our ansatz (45), taking into account the condition (53),
reads in the Brownian case

ln p̂ = ĩλs + i ˙̃λu + u2G2(y) − s2
0

2k
. (D1)

Let us compute G2 explicitly:

G2(y) = ey/m

sin2(ωy)

∫ y

0
dy′e−y′/m sin2(ωy′)

= m2ω2(ey/m − 1)

2k sin2(ωy)
− mω

2k tan(ωy)
− 1

4k
, (D2)

where we have made use of the identity 1 + 4ω2m2 = 4mk.
Once inserted into Eq. (D1), the above relation leads to

ln p̂ = ĩλs + i ˙̃λu − ω2u2

2k sin2(ωy)
− ωu2

2k tan(ωy)
− u2

4k

= ĩλs + i ˙̃λu − u2

2
− s2

2k
. (D3)

In the last step we have exploited the definition of y,
Eq. (B13a).

At this point it is possible to write explicitly the probability
density function of the particle in real space. Indeed,

p(x, v, t ) = 1

4π

∫ ∞

−∞
ds e−is(x−λ̃)− s2

2k

∫ ∞

−∞
du e−iu(v− ˙̃λ)− u2

2

=
√

k

2π
e− (v− ˙̃λ)2

2 − k
2 (x−λ̃)2

. (D4)

Let us notice that this solution is consistent with the expected
shape for the (equilibrium) stationary state, given in this case
by a Maxwell-Boltzmann distribution when ˙̃λ = 0. We have
now to check that the above ansatz, once plugged in the
Fokker-Planck equation

∂t p = −∂x(vp) + ∂v[k(x − λ)p + vp] + ∂2
v p (D5)

leads to the correct condition. Indeed one obtains

(v − ˙̃λ)(kλ̃ + ˙̃λ + ¨̃λ − kλ)p = 0, (D6)

which implies Eq. (53b), as expected.
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