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Statistics of extreme turbulent circulation events from multifractality breaking
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Recent numerical explorations of extremely intense circulation fluctuations at high Reynolds number flows
have brought to light novel aspects of turbulent intermittency. Vortex gas modeling ideas, which are related
to a picture of turbulence as a dilute system of vortex tube structures, have been introduced alongside such
developments, leading to accurate descriptions of the core and the intermediate tails of circulation probability
distribution functions (cPDFs), as well as the scaling exponents associated to statistical moments of circulation.
We extend the predictive reach of the vortex gas picture of turbulence by emphasizing that multifractality
breaking, one of its salient phenomenological ingredients, is the key concept to disclose the asymptotic form
of cPDF tails. A remarkable analytical agreement is found with previous results derived within the framework of
the instanton approach to circulation intermittency, a functional formalism devised to single out the statistically
dominant velocity configurations associated to extreme circulation events.
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I. INTRODUCTION

Homogeneous and isotropic turbulent flows are usually as-
sociated to the intensification and mixing of the vorticity field
across a broad range of length scales [1]. Compelling evidence
has been gathered since the mid-1990s, as the result of direct
numerical simulations (DNS), to reveal that the flow regions
where vorticity is the most intense are shaped like elongated
thin vortex tubes [2–5]. These are entangled and strongly
interacting long-lived coherent structures, which account for
essentially all of the turbulent kinetic energy that cascades
down from the largest to the smallest scales of dynamical
importance [3].

Relying on the above phenomenological hints, one might
expect velocity circulation to be a key observable in the sta-
tistical description of turbulence. In the early 1990s, Migdal
imported to the context of fluid dynamics high-energy func-
tional methods [6] to study the far, supposedly non-Gaussian,
tails of circulation probability distribution functions (cPDFs).
However, the first subsequent investigations carried out within
the numerical and experimental fronts [7–9] were unfortu-
nately unable to. trigger continued progress, mainly due to the
existing computational limitations of the time (both in speed
and memory capacity).

More recently, considerable hardware improvements have
enabled the implementation of DNS at much higher Reynolds
numbers, so that a vivid interest in the problem of turbulent
circulation statistics has resurfaced in the literature [10–16],
even driving further perspectives in the understanding of
quantum turbulence [17,18]. The deadlock of numerical issues
was broken by a computational tour de force performed by
Iyer et al. [10,14], who have identified a number of relevant
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statistical aspects of the turbulent circulation �, summarized
as follows:

(i) Scaling exponents of its statistical moments depart more
clearly from the Kolmogorovian-like predicted values at high
orders, where they become linearly dependent on the moment
orders;

(ii) Circulation kurtoses grow with nonelementary func-
tional forms as length scales get smaller, saturating, at the
bottom of the inertial range, with weakly Reynolds number
dependent values;

(iii) cPDFs’ far tails have simple exponential forms modu-
lated by prefactors ∝1/

√|�|;
(iv) Properly rescaled cPDFs’ tails collapse for contours

that span identical minimal surface areas.
A recent vortex gas model, which combines the multiplica-

tive cascade nature of turbulence and its structural elements
(that is, a dilute set of vortex tubes taken as the spatial support
of relevant dynamical degrees of freedom) has led to quantita-
tive accounts of the above items (i) and (ii) [11,13,16], which
accurately compare to the findings of Ref. [10].

We aim in this work to take a deeper look into the foun-
dations of the vortex gas model and to show that property
(iii) [12,14], a most distinctive signature of circulation in-
termittency, can also be recovered along the same modeling
guidelines. We will not touch on point (iv), waved here only
for the sake of information completeness. That means, in
practical terms, that we restrict our analysis to the circulation
evaluated on oriented contours which enclose planar domains.

This paper is organized as follows. Section II outlines the
principal ideas of the vortex gas model, which are additionally
strengthened in Secs. III and IV, through the analysis of DNS
data and Monte Carlo simulations. Assembling the modeling
ingredients then collected and working with simulational-
assisted arguments, we derive, in Sec. V, the functional form
of asymptotic cPDF tails, which is surprisingly noted to agree
with (completely independent) results derived from previous
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FIG. 1. Planar vortex structures, represented as a set of discon-
nected dark spots, indicate the intersections of three-dimensional
vortex tubes with a 350 × 350 planar slice of a 10243 DNS domain
as postprocessed from the Johns Hopkins turbulence database [19].

analytical studies. In Sec. VI, finally, we summarize our find-
ings and point out directions of further research.

II. MODELING PRINCIPLES

The main motivation underlying the vortex gas approach to
circulation statistics [11] can be synthetized in Fig. 1. The im-
age there depicted is produced from a DNS of homogeneous
and isotropic turbulence with Taylor-Reynolds number Rλ =
433, as available from the Johns Hopkins turbulent database
[19]. The picture shows, through an application of the swirling
strength criterion for the identification of vortex structures
[20], a large number of disconnected spots which are assumed
to locate the intersections of putative three-dimensional vortex
tubes [2–5] with an arbitrary planar slice of the DNS domain.

The swirling strength methodology defines a point r in
a slicing plane similar to the one of Fig. 1 to belong to a
vortex structure if the planar velocity gradient tensor at r
has a nondegenerate pair of complex conjugate eigenvalues
(λ, λ̄), which indicates local swirling motions. Our procedure
of cutting vortex tubes by “tomographic” planes is actually a
usual tool in the investigation of vortical coherent structures
in wall-bounded turbulent flows [20–23].

The spots of Fig. 1 can be effectively taken, in this way, as
planar vortex structures, which are found to have typical linear
dimensions of a few times the Kolmogorov dissipation length
ηK [16].

We rephrase, throughout this section, the essential content
of the vortex gas model and refer to Refs. [11,13,16] for
supplementary technical details. Let then �̃(ri ) be the total
circulation carried by a vortex spot centered at ri and ξ (ri)
be the surface number density of vortex spots placed in some

small planar neighborhood that surrounds ri. Working in a
continuum approximation for the circulation around a planar
domain D of area A, we have that

� =
∫
D

d2r ξ (r)�̃(r), (2.1)

where, in the vortex gas model, ξ (r) is related, up to some
unimportant dimensionless constant, to the energy dissipation
rate field ε(r) as

ξ (r) = 1

η2
K

√
ε(r)

ε0
. (2.2)

Above, ε0 ≡ E[ε(r)] is the mean energy dissipation rate in
the flow. Notice, however, that the statistical moments and
the cPDF’s of the standardized circulation �/

√
E[�2] do not

depend on ε0, a fact that underlies many of the developments
advanced in Refs. [11,13,16].

The reduced circulation field �̃(r) is postulated to be a
bounded random Gaussian field with vanishing mean and
two-point correlation function,

E[�̃(r)�̃(r′)] ∼ |r − r′|−α, (2.3)

within inertial range scales, with α = 4/3 − μ/2, where μ is
the intermittency scaling exponent that describes the spatial
decay of energy dissipation rate correlations [24], that is

E[ε(r)ε(r′)] ∼ |r − r′|−μ. (2.4)

The determination of the intermittency exponent μ has been
the subject of some debate [24], with reasonable past esti-
mates given by μ = 0.20 ± 0.02 [25] and μ = 0.25 ± 0.05
[26]. We take here the value μ = 0.17 ± 0.01, recently estab-
lished through the analysis of extensive experiments carried
out with plane and circular jets [27].

Resorting to the relatively slow decay (2.4), when com-
pared to (2.3), an alternative formulation of (2.1) has been put
forward as

� = ξcg(D)
∫
D

d2r�̃(r), (2.5)

where

ξcg(D) ≡ 1

A

∫
D

d2rξ (r) (2.6)

is the coarse-grained version of ξ (r), taken over the domain
D. Eq. (2.5) proves to be a very convenient tool for the sta-
tistical analysis of circulation fluctuations, as it follows from
results of the field-theoretical generalization of the Obukhov-
Kolmogorov (OK62) model of intermittency [28,29], known
as the Gaussian multiplicative chaos (GMC) model of the
turbulent cascade [30]. It can be shown, then, that (2.1) and
(2.5) behave, as a matter of fact, in the same scaling way with
respect to domain size variations.

The GMC model of intermittency is a mathematical for-
malism which addresses in a rigorous way the postulated
fundamental properties of the OK62 phenomenology. We
mean, in particular, the lognormality of ε(r) and the refined
similarity hypothesis, viz., the statement that fluctuations of
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the three-dimensional coarse-grained dissipation rate scale as

E

{[
�−3

∫
r��

d3rε(r)

]q}
∼ �τq , (2.7)

where τq = μq(1 − q)/2. An important heuristic point about
the GMC modeling of homogeneous and isotropic turbulence
is that it not only reproduces OK62, but it goes beyond:
correlation functions of ε(r) can be exactly computed, powers
of ε(r) are noticed to be lognormally distributed and to satisfy
scaling relations similar to (2.7), which, on its turn, can be
generalized to arbitrary subspaces of the three-dimensional
space (as we do for the two-dimensional slices of the flow).

In short and concrete terms, the application of GMC mod-
eling to a planar vortex gas like the one shown in Fig. 1 stands
for representing the vortex surface density as the multifractal
field,

ξ (r) ∝
√

ε(r) ∝ exp[γφ(r)], (2.8)

where γ = √
2πμ � 1.0 and φ(r) is a free massless two-

dimensional scalar field [31]. It then follows, from GMC
analysis, that ξcg(D) is a lognormal random variable (which
has its Reynolds number dependence discussed in Ref. [11]).
The product of (2.8) with the usual two-dimensional inte-
gration measure d2r gives an example of what is called a
Liouville measure in the lexicon of the GMC theory.

At this point, we note that a critical issue with the above
modeling setup is that it leads to scaling exponents for the
statistical moments of circulation that are quadratically depen-
dent on their orders, failing to reproduce the clearly observed
crossover from quadratic to linear behavior at high moment
orders [10]. It turns out, however, that a simple variation of
the GMC basilar definitions yields a way to cope with this
difficulty [13]. The modified GMC model takes into account
the phenomenon of multifractality breaking, translated here
as the fact that fluctuations of ξ (r) are actually bounded
from above. More specifically, while still keeping (2.8), we
now prescribe fluctuations of the scalar field φ(r) to be ruled
by the probability density functional exp{−S[φ]}/C, where
C = ∫

D[φ] exp{−S[φ]} and

S[φ] =
∫
D

d2r
[

1

2
(∂iφ)2 + V (φ)

]
, (2.9)

with

V (φ) =
{

0, if φ < �0,

V0 → ∞, if φ � �0,
(2.10)

for some phenomenologically chosen bounding parameter �0.
It is clear, in view of (2.8) and (2.9), that ξ (r) cannot fluctuate
beyond exp[γ�0]. The bound �0 is expected to have a log-
arithmic dependence on L/ηK , where L is the integral length
scale of the flow [13]. This implies that the upper bound of
ξ (r) scales with some power of the Reynolds number, but this
is not going to be a point of relevance in our considerations.
As a trivial observation, we remark that the original GMC
formulation can be referred to as the case “�0 = ∞.”

We also point out that the boundedness of ξ (r) (or ε(r),
equivalently) provides, as an important by-product, a solution
of a notorious difficulty of the OK62 model as a fully con-
sistent description of intermittency. As emphasized by Frisch

[24], the OK62 model does not respect the Novikov’s convex-
ity inequalities, which means that it fails to estimate scaling
exponents of velocity structure functions at high-enough mo-
ment orders. That would be the case here if fluctuations of
ξ (r) were not bounded. However, as is already known from
Ref. [13], bounded fluctuations of ξ (r) lead to scaling expo-
nents of velocity structure functions which depart from the
OK62 results at high orders, in sharp agreement with DNS
evaluations [10] and in consonance with the Novikov’s con-
sistency prescriptions.

Before getting to the main arguments related to the analyti-
cal form of far cPDFs’ tails, it is interesting (and important) to
reassess, for validation purposes, the correctness of Eqs. (2.2)
and (2.5). This is our task in the next two sections.

III. SURFACE VORTEX DENSITY
AS A MULTIFRACTAL FIELD

Define the planar domain D� to be a square of side �.
According to the general results of the GMC theory about
the statistical properties of the energy dissipation field [30], it
follows, from Eqs. (2.2) and (2.6), that the statistical moments
of the coarse-grained field ξcg(D�) scale across the inertial
range as [11]

E
[
ξ

q
cg(D�)

] ∼ �ζq , (3.1)

with scaling exponent

ζq = μ

8
q(1 − q). (3.2)

In order to investigate the validity of (3.1) and (3.2) it is
necessary to record fluctuations of N�, the number of vortex
structures contained in D�. In fact, if we define

Mq(�) ≡ E
[
Nq

�

]
, (3.3)

then ζq can be putatively obtained from

�−2qMq(�) ∼ E
[
ξ

q
cg(D�)

] ∼ �ζq . (3.4)

A serious difficulty with the implementation of (3.3) and (3.4)
is that vortices are not unambiguously defined physical ob-
jects, so that identifying and counting them can be a puzzling
job. Among the several alternative ways of defining vortex
structures [23], we adopt the swirling strength criterion [20],
taking into account its simplicity (it is based on first order
derivatives of the velocity field) and broad well-documented
usage.

We have applied the swirling strength criterion to the
velocity field projected on 40962 planar slices of a 40963

DNS domain (Rλ = 610) available from the Johns Hopkins
turbulence database. Following the usual practice to avoid
spurious results (fake structures) and poor vortex identi-
fication resolution (artificial vortex merging), vortices are
identified whenever swirling strength eigenvalues have the
absolute values of their imaginary parts larger than some
prescribed threshold. In our specific case, we have identified
vortices from the condition that |Im(λ)| � 0.125|Im(λ)|rms.
No relevant variations in the number of vortex structures are
observed if the threshold factor 0.125 is changed to 0.5. This
indicates that vortex structures form a well-resolved (dilute)
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FIG. 2. Numerical evaluations of Mq(�), Eq. (3.3), (circles con-
nected by dotted lines) for Rλ = 610 and the related power-law
fits (solid lines) obtained in the scaling region 100 < �/ηK < 1130
(points at the right of the vertical dashed line). Graphs are vertically
displaced to ease visualization and run through integer moment or-
ders from q = 1 at the bottom to q = 7 at the top.

system and are reasonably well captured by the swirling
strength criterion.

From the example of Fig. 1, we see that the detected vor-
tex structures have many different shapes. By inspecting the
planar vorticity field within vortex spots, we assign to each of
them a single representative point as the position where the
absolute vorticity is maximum. A two-dimensional stochastic
point process is then defined in this way. As described below,
a large statistical ensemble with random values of N� is gen-
erated by sliding the square D�, site by site along the 40962

sliced planar domains embedded in the host DNS grid.
Spanning the entire DNS spatial domain, we have worked

with 64 evenly spaced two-dimensional slices normal to each
of the three space directions, comprising a total number of 192
slices. To efficiently compute N� on the DNS slices, a function
f (r) is defined on the grid as unity at vortex representative
positions and zero elsewhere. Then f (r) is convolved (through
a product in Fourier space) with an indicator function,

I�(r) =
{

1, if |r| ∈ D0,
0, if |r| /∈ D0, (3.5)

where D0 is a square of side � centered at the origin. The
resulting function, h(r) = ∑

r′ I�(r − r′) f (r′), gives the total
number of points inside a square of side � centered at any
arbitrary position r on the grid, which amounts to a realization
of the two-dimensional random process N�.

Results for the statistical moments of N� and the associated
scaling exponents ζq are presented in Figs. 2 and 3. They
provide excellent support to the postulated relationship be-
tween the surface vortex number density in planar slices of
the flow and viscous dissipation, Eq. (2.2). We see in this way
that the structural and multiplicative cascade aspects of tur-
bulent intermittency are indeed closely connected. The local
distribution of coherent vortex structures is found to reflect,

FIG. 3. The scaling exponents ζq for moment orders q = 1 to 7
(open circles) obtained from the fits of Fig. 2 are compared to the
predicted values given by Eq. (3.2), with μ = 0.17 (solid line).

at Kolmogorov length scales, the “granularized” nature of the
energy dissipation field ε(r).

IV. A MONTE CARLO LOOK AT
THE CIRCULATION EQUATIONS

We focus now on the conjectured statistical equivalence
between Eqs. (2.1) and (2.5). An interesting way to address
this issue is through their respective characteristic functions,
viz.,

Z1(χ ) ≡ E[eiχ
∫
D d2rξ (r)�̃(r)]ξ,�̃ (4.1)

and

Z2(χ ) ≡ E[eiχξcg(D)
∫
D d2r�̃(r)]ξ,�̃ . (4.2)

On averaging the above expressions over the Gaussian fluctu-
ations of �̃(r), we find, in more compact notation,

Zm(χ ) = E[e− 1
2 χ2N−1

m ψm ]ψm , (4.3)

with m = 1, 2 and

ψm ≡ Nm

∫
D

d2r
∫
D

d2r′ξ (r)�m(r − r′)ξ (r′), (4.4)

where

�1(r − r′) = (|r − r′| + η)−α, (4.5)

�2(r − r′) = 1, (4.6)

and the length scale η plays the role of an ultraviolet regu-
larization parameter (it can be identified to ηK ) and Nm is a
normalization constant adjusted so that the random variable
ψm gets described by a standardized probability distribution
function with unit variance.

The characteristic function Zm(χ ), Eq. (4.3) is, of course,
determined by the probability distribution functions ρm(ψm)
of ψm, for the bounded (finite �0) and unbounded (�0 =
∞) scalar field models of ξ (r). Aiming at determinations of
ρm(ψm), we have performed Monte Carlo simulations of the
field theoretical model defined by (2.9) and (2.10).
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FIG. 4. PDFs of the quadratic form ψ for domains D of dimen-
sions (a) 20η × 20η and (b) 5η × 5η. Pairs of PDFs associated to
the same lattice sizes have been vertically displaced to ease visual-
ization; Bounded and unbounded � refer, respectively, to fluctuating
fields φ � �0 = 2.7, and φ < ∞. The Gaussian kernel and no ker-
nel captions indicate, respectively, the cases defined by Eqs. (4.5)
and (4.6).

Following Ref. [13], we develop our numerical experi-
ments with a two-dimensional 100 × 100 lattice which has
lattice parameter η (taken, for convenience, as the unity of
length) and the case of bounded Liouville measures pre-
scribed by �0 = 2.7 [32]. We furthermore define γ = 1 for
the intermittency parameter introduced in (2.8) and α = 1.3
(�4/3 − μ/2) for the scaling exponent of the two-point cor-
relation function (4.5).

The results reported in Fig. 4 fully corroborate our expecta-
tions. We study ψm for blocks with two different dimensions,
namely, 5η × 5η (block in the scaling range) and 20η × 20η

(block in the integral scale). Fluctuations of the fine and the
coarse-grained circulations, Eqs. (2.1) and (2.5), are observed

not to depend on the specific details of the self-similar Gaus-
sian kernels of the microcirculation field �̃(r), when cPDFs
are recast in standardized form. In other words, ρ1(ψ ) =
ρ2(ψ ) ≡ ρ(ψ ). It should be noted, however, as it can also be
inferred from Figs. 4(a) and 4(b), that ρ(ψ ) is strongly sensi-
tive to the existence of a bound �0 for the fluctuations of the
scalar field φ(r). This fact is related to important phenomeno-
logical aspects of the turbulent circulation, as discussed in the
following.

V. GAUSSIAN FACTORIZATION OF EXTREME
CIRCULATION EVENTS

We are mostly interested to understand the impact that
the modified GMC model outlined in Sec. II has on the
structure of cPDFs. One may wonder, in this connection,
whether the coarse-grained variable ξcg, Eq. (2.6), is still log-
normally distributed. As suggested by its low-order statistical
moments, not much is changed, since the scaling exponents
ζq are noticed to be well-approximated by quadratic functions
of q [13]. This is reasonable, since low-order moments are
dominated by relatively small fluctuations of φ(r), which are
not strongly perturbed by the bounded fluctuations of �0. In
contrast, scalar field fluctuations that determine the scaling
behavior of high-order moments of ξcg are more frequently
blocked by the bound �0, so that the quadratic profile of ζq is
unavoidably lost and replaced by a linear one at large-enough
q [13].

Not only large fluctuations of φ(r) are affected in the mod-
ified GMC framework, but we also expect their correlation
functions to become finite-ranged. The argument is simple:
having in mind fluctuations of the free scalar field in the
absence of any bound, consider the total area A�0 < L2 of the
planar region defined by φ(r) < �0. It is not difficult to obtain
the Gaussian-based estimate

A�0 � 1

2
L2

[
1 + erf

(
�0√

2φrms(L)

)]
, (5.1)

where [13]

φ2
rms(L) ≡ E[φ2] = 1

2π
ln

(
L

η

)
. (5.2)

Equations (5.1) correctly leads to A�0 = 0, L2/2, and L2 in
the respective limits �0 → −∞, 0, and ∞. A mass scale m
(inverse correlation length) is then introduced as

m ∼ 1√
A�0

. (5.3)

All of the above means, in the same fashion, that fluctuations
of ξ (r) are bounded from above and finite ranged in the
modified GMC model. We may suspect, thus, on the grounds
of the central limit theorem, that the random variable ξcg(D)
crosses over, at fixed �, from lognormal to Gaussian behavior
as �0 gets smaller. We have investigated this phenomenon
through Monte Carlo simulations which have the same defin-
ing parameters L/η = 100 and γ = 1 as the ones introduced
in Sec. IV. Figure 5 yields results for domains with sizes
�/η = 50 [Fig. 5(a)] and �/η = 5 [Fig. 5(b)], for a sample
of bounds �0.
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FIG. 5. PDFs of the coarse-grained field ξcg(D) (dashed lines)
for unbounded (� = ∞) and bounded fluctuations of φ defined by
�0 = 2.0, 2.7, 3.2, and 4.0. Solid lines show the parabolic interpola-
tions (conjectured Gaussian approximations) for some of the concave
PDFs’ right tails. Coarse-graining is carried out for domains D of
dimensions (a) 50η × 50η and (b) 5η × 5η.

As it can be noticed for the case �/η = 50 in Fig. 5(a),
ξcg(D) follows more closely a normal distribution the smaller
is �0. However, once we want to discuss extreme fluctuations
of the circulation variable (2.5), an accurate Gaussian approx-
imation for the whole PDF of ξcg(D) may be a superfluous,
too restrictive, condition. A relevant point in this context is
to check whether large positive fluctuations of ξcg(D) can
be well described by Gaussian PDF tails [the solid lines in
Figs. 5(a) and 5(b)], and to what extent such relaxed approxi-
mations lead to reliable evaluations of high-order moments of
ξcg(D).

Special care is needed here not to be fooled by appear-
ances. In fact, even though the PDF’s right tail of ξcg(D) for
the unbounded case (�0 = ∞) seems to be reasonably well
approximated by a Gaussian tail, as indicated in Fig. 5(a), it
fails to account for the evaluation of the fifth-order moment
of ξcg(D), see Fig. 6(a). In opposition, much better results for
the same moment order are achieved for the two studied sizes
of D in the situation where �0 = 2.7, according to the related
plots provided in Figs. 6(a) and 6(b).

FIG. 6. Dashed and solid lines correspond, respectively, to the
dashed and solid lines of Fig. 5. Panels show the integrands of
the fifth-order moments of ξcg(D) for domains D of dimensions
(a) 50η × 50η and (b) 5η × 5η.

A more careful analysis of the pertinence (or not) of
a Gaussian description of the large positive fluctuations of
ξcg(D) can be put forward with the help of a conveniently
defined set of expectation values, as detailed as follows:

E[ξ q
cg(D)] ≡ statistical moment determined directly from

the Monte Carlo samples of ξcg(D);
EG[ξ q

cg(D)] ≡ statistical moment determined by the (not
normalized) Gaussian distributions that fit the right tails of the
PDFs of ξcg(D);

ELG[ξ q
cg(D)] ≡ statistical moment determined by a log-

normal distribution which has its mean and variance computed
from the Monte Carlo samples of ln[ξcg(D)].

We introduce, accordingly, a pair of statistical moment
ratios RG (q) and RG (q),

RG (q) ≡
E

[
ξ

q
cg

]
EG

[
ξ

q
cg

] , RLG (q) ≡
ELG

[
ξ

q
cg

]
EG

[
ξ

q
cg

] . (5.4)
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FIG. 7. Statistical moment ratios RG (q) (symbols) and RLG (q)
(short-dashed line for �0 = 2.7 and domain D of dimensions 5η ×
5η; solid line for �0 = ∞ and domain D of dimensions 50η × 50η).

If, therefore, RG (q) � 1 holds for high moment orders, then
large positive deviations of ξcg(D) behave like Gaussian ran-
dom variables. On the other hand, the scenario of Gaussian
fluctuations loses its relevance if RG (q) � RLG (q), once the
lognormal description of ξcg(D) is found to be as effective as
in the pure (original) GMC model.

Figure 7 shows representative evaluations of RG (q) and
RLG (q) at integer orders 2 � q � 8. The �0 = ∞ case for
�/η = 50 is found to be excellently accounted for by a log-
normal description, something that does not happen for the
bounded cases given by �0 = 2.7.

The essential message conveyed from the investigated sta-
tistical moment ratios RG (q) and RLG (q) is that the modified
GMC model yields PDFs of ξcg(D) which are characterized
by Gaussian right tails. Under such circumstances, we may
rewrite ξcg(D) as

ξcg(D) = E[ξcg(D)] + ξ̃cg(D), (5.5)

where ξ̃cg(D) has vanishing mean and Gaussian-like fluctua-
tions for ξ̃cg(D) � E[ξcg(D)].

Substituting now (5.5) into (2.5), we get, for the circulation
variable,

� = E[ξcg(D)]
∫
D

d2r�̃(r) + ξ̃cg(D)
∫
D

d2r�̃(r). (5.6)

The two contributions on the right-hand side of Eq. (5.6) have
completely different large deviation behaviors. The first one
is clearly Gaussian; the second is given as the product of
two Gaussian random variables—a well-known case study in
probability theory [33]—and turns out to dominate the posi-
tive or negative large deviations of �. These are then predicted
to follow cPDF tails which have the same asymptotic decay as

modified Bessel’s functions of the second kind, that is,

ρ(�) ∼ exp (−c|�|)/
√

|�|, (5.7)

for some positive constant c. There is an impressive agree-
ment between (5.7) and the functional form of ρ(�) predicted
through the instanton approach [12]. Circulation instantons
leading to (5.7) were proposed by Migdal as velocity con-
figurations that dominate the characteristic function of the
circulation variable. Statistical averages are, in that set-
ting, evaluated from a random ensemble of generalized
Beltrami flows, conjectured to dissipate energy at small vis-
cous scales. It is worth stressing, furthermore, that Eq. (5.7)
is strongly supported by high Reynolds number numerical
simulations [14].

VI. CONCLUSIONS

We have carefully examined important conceptual and
technical assumptions of the vortex gas model of turbulent
circulation statistics [11] in its (improved) modified GMC
version [13]. They provide the stage for our derivation, as
a central phenomenological result, of the decaying form of
cPDF tails, the asymptotic relation (5.7). We find a perfect
(and somewhat surprising) analytical agreement with the de-
scription of circulation intermittency based on the probability
of occurrence of statistically dominant (instanton) configura-
tions of the velocity field [12].

This works provides strong support for the proposed re-
lation between the dissipation field ε(r) and the distribution
of turbulent vortex structures in planar slices of the flow, a
phenomenological connection which is also observed in the
distribution of quantum vortices in superfluid turbulence [17].
The interpretation of ξ (r) ∝ √

ε(r) as the surface number
density of planar vortex structures is quantitatively addressed
in Sec. III with striking success. This is clearly evidenced from
the comparison of the predicted parabolic profile of the scaling
exponents ζq for the qth-order statistical moments of ξcg(D�)
and their empirical evaluations, as shown in Fig. 3.

As an interesting motivating point for future research, we
address the conjecture that the upper boundedness of ξ (r) is
a consequence of the existence of repulsive statistical inter-
actions between vortex structures at small dissipative scales
[16]. In fact, mutual vortex repulsion is likely to preclude
high density fluctuations of planar vortex clusters. Along these
lines, we note that precise numerical estimates of the bound-
ing parameter �0, introduced in Eq. (2.10), are still in order.

We call attention, furthermore, to the case of nonplanar
circulation contours, an essentially open problem, where min-
imal surfaces [12,14] are expected to play a vital role in the
statistical description of turbulent circulation fluctuations. Un-
derstanding the need for minimal surfaces remains as a major
challenge within the present vortex gas model of circulation
statistics, even though the application of Eq. (2.1) to arbitrary
bounded surfaces is in principle free of modeling difficulties.
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